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Abstract
Over the last two decades, extra- and intracellular pH have emerged as fundamental regulators of cell motility. Fundamental 
physiological and pathological processes relying on appropriate cell migration, such as embryonic development, wound 
healing, and a proper immune defense on the one hand, and autoimmune diseases, metastatic cancer, and the progression of 
certain parasitic diseases on the other, depend on surrounding pH. In addition, migrating single cells create their own local-
ized pH nanodomains at their surface and in the cytosol. By this means, the migrating cells locally modulate their adhesion 
to, and the re-arrangement and digestion of, the extracellular matrix. At the same time, the cytosolic nanodomains tune 
cytoskeletal dynamics along the direction of movement resulting in concerted lamellipodia protrusion and rear end retraction. 
Extracellular pH gradients as found in wounds, inflamed tissues, or the periphery of tumors stimulate directed cell migration, 
and long-term exposure to acidic conditions can engender a more migratory and invasive phenotype persisting for hours up to 
several generations of cells after they have left the acidic milieu. In the present review, the different variants of pH-dependent 
single cell migration are described. The underlying pH-dependent molecular mechanisms such as conformational changes of 
adhesion molecules, matrix protease activity, actin (de-)polymerization, and signaling events are explained, and molecular 
pH sensors stimulated by  H+ signaling are presented.
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Introduction

Cell migration is a central component of embryonic devel-
opment, wound healing, tissue homeostasis, and a proper 
immune defense. However, aberrant cell migration con-
tributes to various pathologies, such as metastatic cancer 
and autoimmune diseases. In addition, a number of para-
sitic protozoa can migrate through certain tissues of the 
human body, particularly amoebae like the Entamoeba 
histolytica [79] or the brain-eating Naegleria fowleri [58]. 
The process of lamellipodium-driven single cell migration, 
whether directed or random, entails a set of requirements. 
A migrating cell needs to (i) polarize in the direction of 

movement, (ii) fine-tune its attachment to and detachment 
from the substrate such as extracellular matrix (ECM) com-
ponents or surrounding cells, (iii) exert (traction) forces on 
the substrate, and (iv) reorganize or even remove parts of 
the surrounding ECM, especially when invading a basement 
membrane. Each of these mechanisms is one way or another 
related to, if not even directly dependent on, the pH value. 
While in the healing skin the migration of both fibroblasts 
and keratinocytes is most efficient at rather physiological pH 
values of around 7.5 [78], moderately acidic environments 
as found in tumor tissue or at inflammatory sites promote 
motility of tumor cells [121, 155] and neutrophils [111], 
respectively. Aside from that, extracellular pH gradients 
direct migrating cells [114, 166], and long-term exposure 
to relatively acidic pH values can cause cells to adopt a more 
migratory and invasive phenotype that can persist for hours 
up to several generations of cells after they have left the 
acidic milieu [123, 163]. The present review deals with all 
of these pH-sensitive parameters involved in cell migration. 
Underlying molecular mechanisms are explained and criti-
cally examined.

This article is part of the special issue on Physiology of systemic 
and cellular pH regulation in Pflügers Archiv—European Journal of 
Physiology.
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Extracellular  pHe as a clue inducing cell 
polarity

Epithelial cells forming a single-layer epithelium feature 
a highly pronounced apical-basal polarity with the apical 
membranes facing lumina of internal cavities and the baso-
lateral membranes being orientated away from these lumina 
towards the underlying tissue. A functional dichotomy 
accompanies this morphological polarity. Different sets of 
membrane proteins such as ion channels and transporters, 
receptors, and adhesion molecules are expressed in the api-
cal and the basolateral membranes, in order to enable epithe-
lia to fulfill their main physiological functions in addition to 
being a protective barrier between different compartments, 
namely secretion and absorption. Tight junctions, strong 
linkages between adjacent epithelial cells, keep these mem-
brane proteins apart in the different membrane sections. In 
addition, regulated membrane trafficking directs the proteins 
to their final destination where a number of them are kept 
in place by adaptor proteins, such as members of the ezrin, 
radixin, and moesin (ERM) family that tie membrane pro-
teins to the cortical actin cytoskeleton. Generally, the polar-
ity of epithelial cells is predetermined by the given tissue 
structure and coordinated by the activity and localization 
of apical-basolateral polarity regulators, e.g., the PDZ-rich 
scaffold protein Scribble, the PDZ domain–containing adap-
tors Par3 and Par 6, the PDZ-containing scaffold PATJ, or 
the transmembrane protein Crumb 3 [99]. These cell polar-
ity–regulating proteins act through molecular mechanisms 
such as oligomerization, higher-order complex formation, 
auto-inhibitory interactions, or electrostatic interactions 
with the plasma membrane [125]. However, as soon as 
tightly connected, epithelial cells set out to break out of 
the epithelial order, e.g., during the process of epithelial-
to-mesenchymal transition (EMT), they lose their apical-
basolateral polarity due to a fundamental reorganization 
of the cytoskeleton and a loss of cell–cell junctions. These 
structural changes come along with a profound redistribution 
of membrane proteins such as ion channels and transport-
ers and receptors. A new, morphologically and functionally 
different polarity, a front-back polarity, forms, allowing the 
cells to acquire a migratory phenotype. Not only epithelial 
cells undergoing EMT, but also migrating cells of any other 
origin, including endothelial cells, fibroblasts, mesenchymal 
cells, immune cells, and osteoblasts/-clasts, regardless of 
their initial polarization status, establish a front-back polar-
ity when they start to migrate, i.e., a morphological and 
functional polarity along the direction of movement [116]. 
As the leading edge of a migrating cell protrudes forward, 
the trailing end retracts.

Cues that trigger single cell polarization can be chemi-
cal gradients, mechanical stimuli, membrane tension, 

substrate rigidity, and electric fields [120]. The amoeba 
Dictyostelium discoideum, commonly referred to as slime 
mold, is a rewarding model system for investigating the 
mechanisms of directed amoeboid movement including the 
different modes of polarization. Exposure to its adequate 
chemoattractant cAMP induces a polarized, elongated 
morphology. In a fluid flow without a chemical stimulus, 
Dictyostelium orientates itself along the current, the lead-
ing edge pointing upstream, and the retracting tail down-
stream [28]; and in an electric field, the leading edge is 
directed towards the electron-emitting cathode [144]. In 
contrast to the external, spatial cue–driven polarization, 
spontaneous polarization is based on the cell’s intrinsic 
ability to break symmetry. Positive feedback loops involv-
ing the lipid phosphatidylinositol-3,4,5-trisphosphate and/
or the small Rho-type GTPase Cdc42 are sufficient to drive 
spontaneous polarization [96, 182].

In the end, however, in the absence of any spatial cue 
or chemical substance, the omnipresent parameter affect-
ing polarity of single cells is the environmental pH value 
(Fig. 1a). Amoeba proteus exhibits the most polarized shape, 
accompanied by the highest migratory activity, at extracel-
lular pH  (pHe) values of between pH 5.0 and pH 6.5 (11). 
Similarly, fMLP (N-formyl-methionyl-leucyl-phenylala-
nine)–stimulated neutrophils migrate most efficiently at 
 pHe 7.4–7.6 [148], and also human melanoma (MV3) cells 
seeded on, or embedded in, a collagen type I matrix show 
the highest migration speeds when most perfectly polarized 
at  pHe values of 7.0–7.2 [155]. Intriguingly, cells equipped 
with efficient acid/base transporters in their plasma mem-
brane, e.g., NHE1, can countervail the impact of the envi-
ronmental pH [161] by generating their own pH nanoen-
vironment right at the cell surface [157], stabilized by the 
glycocalyx [77].

Interrelations between cell polarity and pH

Regardless of whether induced or spontaneous, the polariza-
tion of migrating cells is accompanied by an accumulation 
of a multitude of ion transporters and channels at their lead-
ing edge [156]. These include acid/base transporters such 
as  Na+-HCO3

− cotransporters (NBCs) (NBCn1 [9, 143] or 
NBCe1 [164]), anion exchangers (AEs) [72, 164], NHE1 
[157], carbonic anhydrases [164], and water-permeable 
aquaporins [86, 131]. Regarding the migratory process, this 
accumulation of ion transporters at the leading edge serves 
at least two purposes.

First, osmotic water influx through aquaporins adjacent 
to the ion transporters is concomitant with the movement of 
osmotically active ions into the cytosol, which then leads 
to local swelling and outgrowth of the lamellipodium in 
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the direction of movement [87, 108, 139, 150]. At the same 
time, the retraction of the rear part comes along with osmotic 
shrinkage, triggered by (membrane) stretch-activated, mech-
anosensitive  Ca2+-channels [18, 108, 156], and mediated 
by  Ca2+-sensitive  K+ [137, 138, 142],  Cl− [134], and water 
efflux, the latter most likely facilitated by aquaporins [129].

Second, in parallel with this “osmotic engine,” driven by 
the directed movement of ions and water across the cytosol 
from the leading edge to the trailing end [160], migrating 
cells utilize the accumulation of pH regulatory transport-
ers at the leading edge to establish pH gradients along the 
direction of movement [158]. The  Na+/H+ exchanger NHE1 
(SLC9A1) accumulates at the leading edge of migrating 
fibroblasts (human and hamster lung [48]; murine embry-
onic [95]), renal epithelial cells (canine [72]), and melanoma 
cells (human MV3 [157] and murine B16V cells [95]). In 
serum-starved, quiescent cervical cancer cells, the epider-
mal growth factor (EGF) triggers polarization and subse-
quent migration by inducing a redistribution of randomly 
distributed NHE1 to the simultaneously developing lamel-
lipodia [20]. There, at the leading edge, the  H+-extruding 

activity of NHE1 causes a local acidification of the cell sur-
face [157] and a complementary cytosolic alkalinization of 
the lamellipodium [95]. Regardless of whether exposed to a 
 HCO3

−/CO2 or a HEPES (2-[4-[2-hydroxyethyl]piperazin-
1-yl]ethanesulfonic acid)–buffered medium, the cytosolic pH 
difference between the more alkaline lamellipodium and the 
more acidic trailing end comes to a ΔpH of 0.15 in human 
and murine melanoma cells (MV3, B16V). In contrast, it is 
clearly lower (ΔpH ~ 0.05) in non-malignant cells such as 
fibroblasts (NIH3T3) and endothelial-like (EA.hy926) cells 
[95]. This considerable difference in the front-back ΔpHi 
between malignant and non-malignant cells is consistent 
with the general upregulation of net-acid extruding trans-
porters in metabolically highly active cancer cells compared 
to normal cells [42]. Accordingly, and consistent with a cer-
tain resistance to the absence of  HCO3

−, MV3 and B16V 
cells show significantly higher NHE1 activity at their lamel-
lipodia than NIH3T3 fibroblasts, resulting in a steeper intra-
cellular pH gradient along the direction of movement [95]. 
In MV3 cells, the intracellular pH gradient is mirrored by 
a cell surface pH gradient with a ΔpH of up to 0.2 between 

Fig. 1  Cell polarization and 
migration depend on extracellu-
lar pH  (pHe) and acid extrusion. 
a While Amoeba proteus shows 
perfect polarization and high 
migratory activity in a rather 
acid  pHe range of between 
pH 5.0 and 7.0 (11), human 
melanoma (MV3) cells polarize 
and migrate in an optimum 
way at  pHe 6.8–7.2 [155]. 
Neutrophils can cope with quite 
a wide  pHe range from values 
below 6.0 to more than 8.0 
[148]. b Stimulation of NHE1 
by cytosolic acidification with 
propionic acid at  pHe 7.0 leads 
to the formation of numerous 
sticky protrusions accompanied 
by a strongly inhibited migra-
tion. Inhibition of the propionic 
acid–stimulated NHE1 activity 
by cariporide causes a drastic 
change in cell morphology from 
branched to spherical. Blocking 
integrin α2β1 with rhodocetin at 
unaffected NHE1 activity and 
 pHe 7.0 results in a spherical 
cell shape as well [155]. These 
observations point to a role of 
both NHE1 activity and integrin 
dimers in cell adhesion and 
migration
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the more acidic leading edge and the rear end [157]. The pH 
gradient at the cell surface is maintained by the cell’s intact 
glycocalyx. Removing N-glycosides from the glycocalyx, 
either with tunicamycin that suppresses the formation of 
N-glycosidic linkages in the endoplasmic reticulum or by a 
mixture of glucosaminidase and PNGaseF (peptide-N4-(N-
acetyl-beta-glucosaminyl) asparagine amidase) that remove 
almost all N-linked oligosaccharides from the cell surface 
glycoproteins, leads to both a collapse of the cell surface pH 
gradient and a significant decrease in the migratory activity 
[77]. Upon stimulating NHE1 activity by cytosolic acidifi-
cation with propionic acid at unchanged extracellular pH, 
glycocalyx-deficient cells re-establish their cell surface pH 
gradient, but with considerably lower pH values, and regain 
their ability to migrate [77]. These observations suggest 
that the glycocalyx acts as a diffusion barrier for protons, 
especially laterally, with the aim of creating locally defined 
pH domains at the cell surface, which then ensure both the 
maintenance of cell polarity and a smooth migration.

In fact, in addition to the existence of the cell surface pH 
gradient, cell migration requires the presence of cell adhe-
sion molecules (CAMs) such as cadherins, selectins, or inte-
grins. In MV3 cells, integrin α2β1 dimers mediate adhesion 
to, and migration on, a collagen type I substrate [93]. Neither 
the mere availability of intact α2β1 integrin dimers at the 
cell surface in the absence of the longitudinal cell surface 
pH gradient nor the presence of the pH gradient alone, in 
the absence of intact α2β1 integrins in β1-deficient cells, is 
sufficient to enable MV3 cells to migrate [77]. These find-
ings imply an interdependence between adhesion (forces) 
and pericellular pH, particularly with regard to the fact that 
integrins with extended conformation protrude from the sur-
face of the plasma membrane by ~ 20 nm [107].

Extracellular pH nanodomains locally 
modulate essential components 
of the migratory machinery

Cell‑matrix adhesion

The interaction forces between integrin dimers at the cell 
surface of osteoclasts and their Arg-Gly-Asp peptide (RGD) 
sequence containing ligands, such as fibronectin and vitron-
ectin, are strongly pH-dependent, with the highest binding 
force at pH 6.5 [81]. As shown for integrin αvβ3, extracel-
lular pH modulates the conformation of integrin dimers and 
thus regulates their activity, including the avidity between 
the integrin dimer and an ECM molecule [113]. In migrat-
ing MV3 cells, α2β1 integrins and NHE1 colocalize at focal 
adhesion sites of the outgrowing lamellipodium, where 
NHE1 activity creates a locally acidic nanoenvironment 
at the cell surface (Fig. 2). Pericellular pH, including the 

more acidic pH nanodomains at focal contacts identified 
by DsRed2-paxillin, was determined by ratiometric fluo-
rescence measurements using total internal reflection fluo-
rescence (TIRF) microscopy, after either the N-glycosidic 
linkages of the glycocalyx or the outer leaflet of the plasma 
membrane had been labeled with the pH-sensitive fluores-
cein-conjugates WGA (wheat germ agglutinin) and DHPE 
(1,2-dihexadecanoyl-sn-glycero-3-phosphoethanolamine), 
respectively [77, 90, 157]. This local acidification then sup-
ports the formation and possibly the maturation of focal 
adhesions, most likely by unfolding the headpieces of the 
α2β1 integrin dimers, allowing a strong interaction with 
ECM proteins [90]. The accumulation of hypoxia-induced, 
cell surface-bound carbonic anhydrase IX (CAIX) at both 
nascent and maturing focal adhesions strongly suggests its 
assisting role in the generation of acidic nanodomains at 
the cell surface and possibly alkaline nanodomains in the 
cytosol [26]. Becker and Deitmer [6] advanced the more 
than 20-year-old concept of carbonic anhydrase–associated 
transport metabolons [122, 153]. Transport metabolons are 
structural and functional complexes that reside in the plasma 
membrane and consist of a carbonic anhydrase such as CAIX 
and a  HCO3

− or  H+ transporter, e.g., AEs, NBCs, NHEs, or 
monocarboxylate transporters (MCTs). Especially in meta-
bolically highly active tumor cells under hypoxic conditions, 
glycolytic metabolites and  H+ ions accumulate. Becker and 
Deitmer [6] propose that intracellular CAII directly bound 
to the C-terminal tail of MCT and CAIX bound to the MCT 
chaperone CD147 both function as “proton antennae,” thus 
facilitating the rapid exchange of  H+ between the transporter 
pore and surrounding protonable residues near the cell mem-
brane. This efficient mechanism would not only drive the 
export of  H+ and lactate to allow a high glycolytic rate but 
could also modulate proton-sensitive interactions between 
cell surface and ECM.

Quite recently, the presence of acidic nanodomains 
around focal adhesions was verified by a different experi-
mental approach: single cells were seeded on coverslips 
coated with chemically immobilized pH-sensitive fluores-
cein isothiocyanate (FITC), and the fluorescence intensity 
of the substrate underneath the cells was detected by utiliz-
ing classical fluorescence microscopy. Here, focal adhesions 
were identified by immune-labeling vinculin, a major cyto-
solic component of focal contacts [98]. No matter whether 
identified by DsRed2-paxillin or immune-labeled vinculin, 
single, typically oval focal adhesions cover an area of ~ 3 
µm2, measuring 4 µm in length and nearly 1.4 µm at their 
widest [69]. The areal extent of focal adhesions therefore 
does not allow pH domains with a radial expansion of 
less than ~ 1.4 µm to be measured. However, since (i) in 
the applied TIRF microscopy [90] the evanescent wave 
penetration depth at an excitation wave length of 488 nm 
is 80–150 nm [36], (ii) the distance between ventral cell 
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surface and the substrate at the focal contacts is approxi-
mately 10–20 nm [15], and (iii) removal of the glycocalyx 
leads to a disappearance of the pH domains [77], which have 
different pH values directly at the plasma membrane than in 
the glycocalyx [157], the axial expansion of the pH nano-
domains is actually in the range of 10 to several 100 nm.

Once strong focal contacts are established, the cell can 
move over the substrate utilizing it as an opposite force to 
exert its own traction and compressive forces, mainly gener-
ated by actomyosin contractility [49]. Towards the trailing 
end, both the density and the activity of NHE1 decrease. The 
resulting relative alkalization around the integrins weakens 
the adhesion forces between cell and substrate, and eventu-
ally facilitates the disengagement of focal adhesions so that 
the cell can smoothly retract its rear end and move forward. 

This is consistent with the observation that stimulation of 
NHE1 activity by cytosolic acidification with propionic acid 
at unchanging physiological bulk  pHe values stimulates the 
formation of sticky lamellipodia-like protrusions (Fig. 1b). 
These protrusions are sticky to such an extent that they can-
not be detached from the matrix anymore in order to be 
retracted. They need to be shed off the cell body instead. 
Conversely, specific inhibition of NHE1 with cariporide 
(HOE642) at physiological  pHe drastically reduces the cells’ 
adhesiveness resulting in a nearly perfectly spherical cell 
shape, like that found after trypsinization of cultured cells 
when passaging them [155, 157, 161]. Similarly, at  pHe 7.0 
and regular NHE1 activity, the inhibition of α2β1 integrin 
dimers by rhodocetin, a C-type lectin–related protein iso-
lated form the venom of the Malayan pit viper [31], causes 

Fig. 2  pH gradients and pH 
nanodomains in the cytosol and 
at the cell surface modulate 
focal adhesion dynamics, migra-
tion, and invasion. NHE1 and 
other acid/base regulators such 
as NBCn1 accumulate around 
focal adhesions at the leading 
edge where they locally (i) alka-
linize the submembranous zone 
of the cytosol and (ii) acidify 
the cell surface. Membrane-
bound carbonic anhydrases such 
as CAIX physically interact 
with NBCn1 and supply the 
 HCO3

− to be transported into 
the cell. Alkaline  pHi values 
reduce actin binding by talin 
and stimulate the activities of 
FAK, Cdc42, and the actin-
severing protein cofilin, leading 
to increased actin and focal 
adhesion dynamics. Acidic  pHe 
values increase integrin avidity 
and promote the formation 
of integrin-matrix bonds. At 
the cell rear, an alkaline  pHe 
weakens adhesion, while an 
acidic  pHi (i) slows down actin 
and focal adhesion dynam-
ics due to reduced cofilin and 
FAK activity, (ii) strengthens 
actin-talin binding, and (iii) 
stimulates myosin activity, 
which then jointly promotes the 
retraction process. At the tips of 
invadopodial structures, NHE1 
activity acidifies the surface 
and thus provides optimum pH 
conditions for ECM-degrading 
MMPs that clear the way. Please 
see text for further details and 
references
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the cells to become spherical [155], and blocks the residual, 
pH-dependent migratory activity in β1-deficient MV3 cells 
completely [77].

pH‑dependent integrin‑mediated outside‑in signaling

By modulating number and strength of integrin bonds, 
pericellular pH potentially affects cell migration also by 
integrin-mediated outside-in signaling. Bound integrins, 
especially the β-subunits, signal via Src family kinases, 
the focal adhesion kinase (FAK), and a number of small 
G proteins in order to regulate PI3K-AKT, MAPK, ITAM-
PLC/Ca2+, and RhoA-ROCK signaling pathways whose 
intricate interplay fine-tunes the migratory machinery [105, 
145]. Following the (pH-dependent) binding of extracel-
lular ligands to the integrin dimer, an activated subunit 
of a heterotrimeric G protein, Gα13, binds to the integrin 
β subunit and thus (i) enhances integrin outside-in signal-
ing and (ii) feeds back to GPCR (G protein–coupled recep-
tor)–stimulated RhoA activation [46, 145]. Four members 
of the group of GPCRs, namely GPR4, TDAG8 (GPR65), 
OGR1 (GPR68), and G2A (GPR132), are proton sensors 
[149], and at this point, it is worth mentioning that TDAG8 
has been shown to act through Gα13/Rho signaling in blood 
cancer cells [61]. Hence, it is conceivable that the pericel-
lular pH affects integrin-mediated outside-in signaling not 
only directly through the number and through the strength of 
focal adhesions but also indirectly by modulating integrin-
mediated signaling via subunits of G proteins activated by 
proton-sensing GPCRs.

Also in astrocytes, integrin-mediated outside-in signaling 
leads to the activation and localized recruitment of Cdc42, a 
member of the Rho GTPase family. Cdc42 then generates a 
persistent polarity of the migrating astrocyte by promoting 

(i) Rac-dependent protrusion and (ii) PKCζ/dynein-depend-
ent reorientation of the Golgi, the microtubule organization 
center, and the microtubule network towards the leading 
edge [33].

Cell–cell adhesion

Cell–cell interaction depends on  pHe and is modulated by 
NHE1 as well, however in opposite direction to their effects 
on cell–matrix interactions [53]. While acidic  pHe and strong 
NHE1 activity strengthen cell–matrix adhesion, they weaken 
cell–cell adhesion (Fig. 3). In view of tumor diseases, this 
is relevant for the metastatic process because in solid tumor 
tissue the interstitial pH is considerably lower than in the 
surrounding healthy tissue and decreases from the tumor 
edge to the tumor center [57]. Indeed, low cell–cell adhesion 
forces facilitate detachment of cells from primary melanoma 
(MV3) spheroids. Thus, a synergistic interplay between pH-
dependent cell–matrix and cell–cell adhesions harmonizes 
different steps of the metastatic cascade. Protons secreted by 
NHE1 promote metastasis by first facilitating cell detach-
ment from the primary tumor and subsequently modulating 
cell–matrix interactions to drive cell migration and invasion 
[53].

Cell invasion and metastasis—activity of matrix 
proteases

Cell invasion is based on migration and defines the ability 
of cells to navigate through the ECM within a tissue or to 
infiltrate neighboring tissues by crossing the basement mem-
brane that usually separates them. For an invading cell to have 
sufficient space, the ECM must be remodeled, if not locally 
digested. The task of ECM remodeling including cleavage 

Fig. 3  Extracellular acidifica-
tion weakens cell–cell adhesion 
and stimulates cell–matrix 
adhesion at the same time. 
These simultaneous effects are 
thought to synergistically pro-
mote metastasis by facilitating 
both the detachment of single 
cells from a primary tumor and 
the invasion of the surrounding 
tissue [53]
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of most ECM components is performed by matrix-degrading 
proteases [89]. The pH optimum for the activity of a number 
of ECM-degrading proteases such as cathepsins B [45], D 
[12], L [29], and S [13] is clearly more acidic than the physio-
logical  pHe of 7.3–7.4 measured in normal and healthy tissues 
[44]. In addition to pure enzymatic activity, pH sensitivity of 
both half-life/stability and activation from inactive precursors 
(pro-proteases) also contributes to pH-dependent proteolytic 
activity of matrix proteases. Thus, a low  pHe favors the activ-
ity of interacting proteolytic cascades, which in turn convert 
pro-matrix metalloproteinases (proMMPs) into active MMPs 
[73]. Human stromelysin-1, also known as matrix metallo-
proteinase-3 (MMP3), is involved in the activation of pro-
MMP1, -7, -8, and -9 [27] and exhibits its maximum activity 
in a narrow range of pH values ranging from pH 5.75 to 6.25 
[54]. Interestingly, the activity of MMP3 relies on its own 
protonation, i.e., protonation of its  His224 [54, 60], whereas 
the activity of MMP2 depends on the extent to which its sub-
strate fibrinogen is protonated [106]. Not only the stability 
and activity, but also the expression and secretion of ECM-
degrading enzymes may depend on  pHe. Thus, an acidic envi-
ronment stimulates the expression of MMP9 through calcium 
influx–triggered phospholipase D-mitogen-activated protein 
kinase signaling and acidic sphingomyelinase activation [65, 
66] and induces the release of cathepsin B [130].

Because NHE1 contributes greatly to the pericellular pH 
nanoenvironment, it is hardly surprising that it also affects 
the secretion and activity of ECM-degrading proteases [16, 
47, 171]. Noteworthily, stable transfection with an ion trans-
location-defective NHE1 reduces both gene expression and 
activity of MMP9 [119], and in breast cancer cells, NHE1 
inhibition blocks the CD44-dependent increase in cathepsin 
B maturation and activity [10].

In conclusion, the pericellular pH nanoenvironment of 
migrating/invading cells with a more acidic  pHe either at the 
very edge of the lamellipodium or at the tips of invadopodia 
protruding into the ECM leads to localized pH-sensitive pro-
teolytic activity very close to the membrane (Fig. 2). Inter-
estingly, an integrin β1-mediated adhesion to ECM proteins 
and a pH-dependent collagen I-digesting activity of cysteine 
peptidases at the surface of the brain-eating amoeba Naeg-
leria fowleri are assumed to play a critical role in their inva-
sion of the central nervous system [58, 176]. At first glance, 
it may seem contradictory that acidification at the cell sur-
face causes the cell to bind more strongly to the matrix, 
while at the same time digesting the matrix to which the 
cell is supposed to adhere. However, it is thought that diges-
tion of and adhesion to the matrix do not occur at the very 
same spot. While the ECM at the front of the lamellipodial/
invadopodial structures needs to be softened and dissolved, 
focal adhesion sites acting as anchors and counterforce are 
created and stabilized a little further back, for example, at 
the base of the emerging invadopodia [141, 154].

Intracellular pH nanodomains locally 
modulate essential components 
of the migratory machinery

Cytosolic constituents of focal adhesion complexes

As NHE1 activity acidifies adhesion foci at the cell sur-
face, it simultaneously—and just as locally—alkalizes those 
submembranous regions of the cytosol that house the cyto-
plasmic domains of the adhesion molecules, their numerous 
structural and signaling interaction partners, and other pro-
teins involved in the formation, maturation, and disassembly 
of focal adhesions [21, 90]. A number of these molecules 
react in a pH-dependent manner.

Talin

The adaptor protein talin, also called the master of integrin 
adhesions [71], links integrins directly to actin [109]. One of 
its several actin bindings sites is pH-dependent, with a more 
than twofold greater affinity of F-actin binding at pH 6.5 
compared to pH 7.5 [152]. This is concomitant with a shorter 
lifetime of focal adhesions combined with a higher migra-
tory rate at higher intracellular pH  (pHi) and a decreased 
focal adhesion turnover accompanied by a reduced migra-
tory activity at lower  pHi values [152]. The pH dependence 
of their mechanical stability was confirmed on isolated focal 
adhesions by means of bead-pulling experiments employing 
a magnetic microneedle apparatus [5]. Correspondingly, the 
cytosolic pH gradient in migrating cells with more alkaline 
 pHi values in the front region allows for higher focal adhe-
sion turnover and actin dynamics at the cell front, supporting 
sampling of the surrounding substrate, actin treadmilling, 
and lamellipodial growth. The more acidic  pHi towards the 
trailing edge stabilizes the integrin- and talin-mediated con-
nection between the plasma membrane and F-actin ensuring 
the efficient and complete retraction of the rear end. Talin’s 
 histidine2418 was identified as an essential element of the 
pH-dependent molecular switch regulating F-actin binding 
[152].

Vinculin, paxillin, kindlin, and zyxin

Vinculin being part of the talin-vinculin axis is another 
major constituent of focal adhesions. It regulates and trans-
mits mechanical forces between the cytoskeleton and adhe-
sion receptors [101], for instance, by maintaining talin in its 
extended conformation [19]. However, observations on its 
pH dependence are contradictory [102, 112].

In addition to vinculin, paxillin, kindlin, and zyxin are 
typical constituents of focal adhesion complexes [62, 63]. 
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Although a pH-dependent role of these proteins in focal 
adhesion assembly and cell motility has not been shown 
explicitly, at least paxillin and zyxin may well be pH-
dependent. They are furnished with several c-terminal 
LIM domains that bind to mechanically stressed (tension, 
compression, twist-bend coupling) actin filaments [186]. 
The recruitment of paxillin to αvβ3 integrin–positive 
focal adhesions also depends on LIM domains [126]. The 
activity of these LIM domains is likely to depend on pH. 
In the small flowering plant Arabidopsis (Brassicaceae 
family), a group of these LIM domains can affect actin-
bundling in a pH-dependent manner, probably due to an 
accumulation of acidic amino acids at their C-termini 
[104].

Focal adhesion kinase (FAK)

FAK is a central regulator of focal adhesion remodeling. 
It binds to the cytoplasmic domain of integrin β subunits 
and transduces growth factor and integrin signals for sur-
vival [1], adhesion dynamics [180], and migration [147]. 
FAK is directly sensitive to physiological changes in pH. 
An alkaline pH causes deprotonation of FAK-His58 and thus 
drives conformational changes that modulate the accessibil-
ity of  Tyr397 to enable its autophosphorylation [21], which is 
required for the subsequent Src-mediated phosphorylation 
of the catalytic  Tyr576 and  Tyr577 [17, 83]. Conversely, a 
substitution of  His58 by alanine with its hydrophobic, non-
reactive methyl side chain allows autophosphorylation and 
cell spreading at low  pHi, too [21].

Cytoskeletal dynamics and contractility

Cell migration relies on coordinated periodic lamellipodial 
protrusion and rear end retraction, accomplished by a highly 
dynamic regulation of actin structures at the leading edge and 
an appropriate actomyosin-mediated contractility at the rear 
end.  pHi controls both actin dynamics in the lamellipodium 
and actomyosin-mediated contractility towards the cell rear.

Gelsolin and actin‑depolymerizing factors/cofilin

The actin-regulatory, cytoplasmic gelsolin plays a crucial role 
in remodeling the actin cytoskeleton during cell migration by 
severing, capping, and uncapping actin filaments. Its F-actin-
severing activity is modulated by phosphatidylinositol-4,5-bi-
sphosphate (PIP2) binding and requires a high (between  10−6 
and  10−5 mol  L−1) intracellular  Ca2+ concentration  [Ca2+]i 
and a low  pHi [35, 162, 189]. The low  pHi leads to local 
structural changes caused by protonation of two histidines 
 (His29, 151) and one aspartate  (Asp109) within the first of 
six subunits. While protonation of all three is essential for 
pH-dependent actin-severing activity, protonation of  His151 

directly affects filament binding because it resides right at the 
gelsolin/actin interface [35].

Being a member of the actin-depolymerizing factor 
(ADF)/cofilin family, cofilin is another pH sensor act-
ing on actin dynamics [38, 187]. Increased assembly of 
a branched actin filament network drives membrane pro-
trusion at the leading edge of migrating cells [8, 117]. 
In the outgrowing lamellipodium, a zone of fast F-actin 
polymerization subjacent to the leading edge is followed 
by an area of virtually complete depolymerization of actin 
filaments a few micrometers back, generating a 2–4-µm 
treadmilling actin array adjoining the leading edge [118, 
179]. Actin monomers originating from the depolym-
erization process recycle to the zone of polymerization 
to keep the treadmill running. Cofilin (i) facilitates the 
fragmentation of actin filaments in the depolymerization 
zone resulting in an increase in actin monomers, and (ii) 
debranches filaments to generate new free barbed ends for 
nucleation by the Arp2/3 complex [8]. A rather alkaline 
pH, as found in the front end of migrating cells due to 
local NHE1 activity [90, 95], leads to deprotonation of 
cofilin’s  His133, thus weakening the bond between PI[4, 5]
P2 in the inner leaflet of the plasma membrane and cofi-
lin [38]. This results in the release of active cofilin from 
the membrane followed by increases in both actin free 
barbed ends and available actin monomers [64]. Simi-
larly, in invadopodial structures as well as in lamellipo-
dia, cortactin-bound cofilin is released at more alkaline 
pH due to a reduced cortactin-cofilin binding affinity, 
again increasing barbed end generation, while a decrease 
in local pH pushes cofilin to (re)bind to cortactin [94].

To emphasize the cross-species universality of pH (gra-
dient)–dependent protrusion growth and motility mecha-
nisms, it should be mentioned here that the growing pol-
len tube of Arabidopsis thaliana (Brassicaceae family) 
establishes a pH gradient along the direction of growth 
and that isovariants of actin-depolymerizing factor (ADF) 
with different pH sensitivity drive pollen tube growth by 
acting pH dependently and thus locally in different regions 
of the growing tube [178]. Similar observations were made 
earlier in growing lily pollen tubes, where the pH-sensitive 
ADF together with actin-interacting protein localize to the 
cortical actin fringe region. Acidification with sodium 
acetate causes actin filament destabilization in the apical 
and subapical region, a stabilization of actin-fibers in the 
distal region, and an inhibition of pollen tube growth by 
80% [88].

Actin self‑assembly and contractility of the actomyosin 
cytoskeleton

The self-assembly of actin is also pH-dependent. In nem-
atode spermatozoa, faster assembly and lower G-actin 
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concentrations occur at lower pH values [177], such as 
those found in the rear end of migrating cells [95]. In addi-
tion, the contractility of reconstituted active actin systems is 
tightly controlled by local pH [74]. Contractility increases 
as pH decreases. This is due to the fact that the intrinsic 
cross-bridge strength of myosin-II is pH-dependent and thus 
accountable for a sharp transition of the actin/myosin-II 
activity from non-contractile to contractile by a pH change 
of not more than 0.1 [74]. Consequently, a cytosolic pH gra-
dient of up to 0.2 pH units [95] allows cell rear retraction 
in migrating cells while maintaining a flow with strongly 
reduced overall contractility at the protruding cell front.

Interestingly,  pHi also precisely controls the assembly of 
the unique major sperm protein (MSP) filament system of 
migrating nematode sperm cells. The pseudopodium exhib-
its a  pHi gradient with pH 0.15 units higher at the leading 
edge, where fiber complexes assemble, than at the base, 
where disassembly takes place [70].

Cdc42

The small GTPases Rac, Rho, and Cdc42 are hierarchi-
cally linked to each other and play key roles in both estab-
lishing cell polarity and directional cell migration [92, 
132]. The cell front contains higher active Rac and lower 
active Rho concentrations, while the rear end has lower 
active Rac and higher active Rho concentrations. Cdc42 is 
recruited to the leading edge where a guanine nucleotide-
exchanger factor (GEF) catalyzes GTP binding by Cdc42. 
GEF binding to phosphoinositol 4,5-bisphosphate is pH-
dependent and, as shown in fibroblasts, requires  H+ efflux 
by NHE1 activity [39]. For RasGRP1, a Ras-specific GEF, 
 His212 has been identified as a pH sensor that activates 
RasGRP1 when the inside of the cell becomes less acidic. 
When the charge on  His212 changes from positive (pro-
tonated) to neutral (deprotonated), the RasGRP1 protein 
opens up to bind to DAG (diacylglycerine) at the mem-
brane [174].

Molecular pH sensors: basic and acidic 
amino acids

The previous paragraphs insinuate that over the last two 
decades (de)protonable basic and acidic amino acids, par-
ticularly histidine and aspartate, have emerged as molecular 
pH sensors that translate pH changes into conformational 
changes of proteins and thus affect their catalytic activity, 
substrate binding, stability, interaction, aggregation, and 
localization [151]. The protonation of proteins can be con-
sidered a reversible posttranslational modification, analo-
gous to phosphorylation, methylation, and ubiquitination. 

This proton-mediated posttranslational modification repre-
sents a certain signaling specificity as it applies to only a 
minority of sites in selective proteins that titrate within the 
physiological pH range [135]. Relevant examples in addi-
tion to the above-mentioned are the epidermal growth factor 
receptor (EGFR), the transcription factor p53, the signal-
ing and adherens junction protein β-catenin [184, 185], and 
the proton-sensing G protein–coupled receptors OGR1 and 
GPR4 [91].

EGFR exhibits pH-sensitive kinase activity and confers 
increased pathway activation at higher  pHi when arginine at 
position 776 is mutated to histidine. This results in increased 
proliferation, accelerated malignant transformation [185], and 
possibly the acquisition of migratory capabilities as typical of 
cancer cells with higher  pHi values.

Similarly, p53 shows a pH-sensitive transcriptional activ-
ity when displaying the recurrent somatic mutation from 
 arginine273 to histidine [59, 185]. The transcriptional activ-
ity and cell death in response to DNA damage are decreased 
at higher  pHi.

With regard to cell motility, β-catenin is of interest for 
various reasons. Activation of β-catenin down-regulates 
cell–cell junction–related genes, induces epithelial-to-
mesenchymal transition [68], regulates genes implicated in 
migration such as paxillin [2], and stabilizes the front-rear 
polarity of migrating cells [173]. Degradation of β-catenin 
needs phosphorylation of N-terminal residues for recogni-
tion by the E3 ligase β-TrCP. Not the phosphorylation step 
itself but the concomitant binding to β-TrCP depends on 
pH. A higher  pHi induces increased β-TrCP binding and 
thus decreases β-catenin stability [184]. Interestingly, in 
contrast to EGFR or p53, it is not a mutation of arginine 
to histidine, but a somatic mutation of  His36 to arginine 
[37] that allows β-catenin to bypass pH sensitivity, i.e., the 
pH-sensitive β-TrCP recognition (and degradation), which 
then results in increased Wnt pathway activity in cancer 
cells [14].

pHe and its changes can be detected and transduced by 
the proton-sensing G protein–coupled receptors OGR1 and 
GPR4 [91]. While OGR1 signals via inositol phosphates 
(IP), GPR4 elicits cAMP signaling. Both IPs and cAMP 
are central players in cell migration [55, 56, 168] and reach 
their maximum production at  pHe 6.8. Five histidines 
 (His17, 20, 84, 169, 269), including the interactions of  His17 with 
 His84 and  His20 with  His269, allow for the  pHe-dependent 
OGR1-mediated IP- and GPR4-mediated cAMP production 
[91].

In the end, being one of the major regulators of cellular pH 
homeostasis, even NHE1 itself displays a cluster of histidine 
residues in the proximal C-terminal cytoplasmic domain. This 
histidine cluster regulates pH-dependent PI(4, 5)P2 binding 
and transporter activity [181].
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pH taxis—directional migration along a pH 
gradient

When the extracellular bulk  pHe is in the form of a gradi-
ent, it can serve as a directional stimulus. Such gradients 
are found within tumors, in cutaneous wounds, and at 
inflammatory sites.

At the interface between human prostate tumors grown 
in mice and the surrounding normal tissue,  pHe increases 
about 0.4 units (~ 6.9 to ~ 7.3) over 1 mm towards the nor-
mal tissue [41], and within human colon adenocarcinoma 
xenografts,  pHe decreases by about 0.7 units (~ 7.4 to ~ 6.7) 
over ~ 350 nm from a tumor blood vessel [52]. Although 
hardly measured explicitly in vivo in the human body, the 
presence of such gradients is highly probable in a number 
of solid human tumors in situ. The nanoprobe ONM-100, 
which emits fluorescence at pH values below 6.9 while 
its fluorescence is quenched at pH values above 6.9, has 

been successfully applied to identify breast, esophageal, 
and colorectal tumors, and squamous cell carcinomas in 
the head and neck region, prior to surgical resection. The 
images used to localize these tumors actually imply cen-
trifugal fluorescence gradients within the cancer tissue 
[84, 175].

In chronic cutaneous wounds,  pHe increases considerably 
from the wound edge (below 6.5) to the wound center (above 
7.4) over distances of less than 1 cm [136].

At inflammatory sites, e.g., during the course of inflam-
matory responses against bacteria in peripheral tissues,  pHe 
can be as low as 5.5. This drop in  pHe can be caused by (i) a 
shift to glycolytic metabolism in response to tissue hypoxia 
resulting from the damage of small blood vessels and the 
metabolic activity of infiltrating leukocytes, (ii) a massive 
production of protons by neutrophils during the activation 
of the respiratory burst, and (iii) the accumulation of short-
chain fatty acids produced by bacteria [32].

Fig. 4  Directional cell migra-
tion along pH gradients. a In a 
normal wound (left half), epi-
dermal keratinocytes and der-
mal fibroblasts migrate towards 
the more alkaline  pHe in the 
center of the wound in order 
to close it. In a chronic wound 
(right half), a quite acidic pH 
at the wound margin prevents 
keratinocytes and fibroblasts 
from migrating into the wound. 
Instead, neutrophils are attracted 
by the low pH. Once inside 
the wound area, their presence 
including the local secretion of 
inflammatory mediators fuels 
the inflammatory process and 
thus prevents wound healing. b 
In general, neutrophils migrate 
towards inflammatory sites 
that typically are acidic (left). 
Microvascular endothelial cells 
also migrate to tissue areas with 
an acidic pH value, while meta-
static tumor cells migrate away 
from the acidic tumor tissue to 
regions with a physiological pH 
value near blood and lymph ves-
sels. Please see the section on 
pH taxis for further details and 
references
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Depending on the cell type and the physiological con-
text, cells migrate either towards or away from the lower pH 
(Fig. 4b). Chinese hamster ovary (CHO) cells engineered to 
express αvβ3 integrin and primary bovine retinal microvascu-
lar endothelial cells (MVECs, endogenously expressing αvβ3 
integrin), both seeded on fibronectin, migrate towards the 
acidic end of a  pHe gradient, ranging from pH 7.5 to 6.0, due 
to a preferential polarization towards the lower pH [114]. 
The migration velocity is steadily decreasing as cells move 
towards the lower pH, confirming that there is an optimum 
pH for migratory activity as shown for human melanoma 
(MV3) cells [155]. Integrin activation including outside-in 
signaling in response to acidic  pHe may represent one of 
the major potential mechanisms underlying pH taxis. In this 
way, acidic  pHe, as found in hypoxic tissue, could stimu-
late MVEC migration and angiogenesis in order to ensure 
sufficient vascularization and oxygen and nutrient supply. 
However, it has not been clarified yet to what extent mere 
pH-dependent cell–matrix and cell–cell interactions, includ-
ing integrin-mediated downstream signaling, can fulfill the 
task of a pH detector. It can be almost certainly ruled out 
that this mechanism plays an exclusive role in pH detection. 
Accordingly, as for endothelial cells, acidic pH was found to 
downregulate vascular endothelial growth factor receptor-2 
(VEGF-2) and thus impede VEGF-mediated migration [34]. 
In the latter study, however, the experimental set up did not 
include a  pHe gradient, but instead the cells were exposed to 
a homogenous bulk pH, and furthermore, both EC sprout-
ing and tubulogenesis remained unaffected by extracellular 
acidity.

Human metastatic breast cancer cells (MDA-MB-231 
cells) seeded on type I collagen migrate in the direction 
of higher  pHe values in a gradient of 0.2–0.3 pH units/mm 
[166]. The slope of this gradient would correspond to a gra-
dient of 0.02 units per single cell length and thus would 
only be a tenth of the NHE1-generated intra- and pericellular 
pH gradients in MV3 cells [95, 157]. Given the observa-
tions that in MV3 cells (i) the pH gradient at the cell sur-
face is stabilized by the glycocalyx [77], and (ii) the protons 
extruded by polarized distributed NHE1 have a stronger 
impact on migration than those present in the bulk solu-
tion [161], it is difficult to visualize a mechanism by which 
an externally applied  pHe gradient of 0.02 units could pre-
vail the intrinsic, pericellular pH gradient of 0.2 units. The 
question of how the shallow ambient  pHe gradient modifies 
the steeper pH gradient in immediate proximity to the cell 
surface in order to either enhance or mitigate directed cell 
migration has remained unanswered to date. An involvement 
of both the glycocalyx as a cell surface–buffering compart-
ment accepting/releasing protons [77, 157] and proton-
sensing G protein–coupled receptors [159, 183] seems pos-
sible. pH-dependent MMP activity (please be referred to 
the above paragraph on cell invasion) and the pH-dependent 

properties of substrate components including pH-dependent 
steps of ECM genesis such as collagen fibrillogenesis [51, 
76, 82], fiber crosslinking [23], or self-assembly of laminin 
[40] should be kept in mind as well. Independently of the 
underlying mechanism, for a cancer cell to intravasate and 
metastasize, it is essential to move away from the acidic pri-
mary tumor towards the most alkaline regions surrounding 
blood and lymph vessels (Fig. 4b).

In chronic cutaneous wounds,  pHe rises with increasing 
distance from the wound edges. The strongly acidic margins 
of the wound (pH ≤ 6.5) prevent healing by reducing the 
viability, proliferation, and migration velocity of keratino-
cytes [78, 136]. Thus, the centripetal keratinocyte recruit-
ment along the  pHe gradient from the acid wound periphery 
towards the more alkaline wound center (pH ≥ 7.4) is criti-
cally low (Fig. 4a). Of note, this  pHe gradient mirrors the 
wound’s NHE1 expression profile that shows a centrifugally 
rising NHE1 expression (136). Simply increasing  pHe from 
below 6.5 to 6.8 (i) enables keratinocytes to migrate direc-
tionally towards the higher  pHe in the wound center [136], 
(ii) increases wound closure in an in vitro fibroblast wound 
healing assay, and (iii) accelerates re-epithelialization [78]. 
pH-sensing G protein–coupled receptors are thought to play 
a role not only in tumor cell migration and metastasis but 
also in the wound healing process [183]. To what extent 
proton-sensing G protein–coupled receptors contribute to the 
detection of an external  pHe gradient and pH tactic behavior 
is yet to be investigated in detail. In consideration of the 
chronic wound’s characteristic pH profile, both modulating 
 pHe by applying pH-restoring hydrogel-like dressings [75] 
and the application of  pHe responsive wound dressings have 
been recognized as a potential therapeutic strategy [50, 103].

Superimposition of a chemical and a  pHe gradient, as 
found at sites of inflammation, most efficiently stimulates 
NHE1-dependent, Cdc42-mediated directional migration 
of neutrophils [111]. Formylated peptides and complement 
molecule C5a, both secreted at the site of inflammation, 
induce neutrophil chemotaxis. Even in the absence of these 
chemoattractants, neutrophils tend to migrate from  pHe 7.5 
towards lower pH values, however lose their directionality 
at  pHe 7.2 already. In the presence of a C5a gradient, an 
additionally superimposed  pHe gradient supports neutro-
phil chemotaxis in the direction of the C5a source and 
the lower  pHe. While directionality is strongly inhibitable 
with the NHE1 inhibitor cariporide and steadily decreases 
towards  pHe values as low as 6.5, the migration velocity 
itself remains nearly unaffected by  pHe and is comparably 
less affected by cariporide, suggesting that the steering 
mechanism (chemotaxis) rather than the migration motor 
(velocity) depends on proper ambient pH and NHE1 activ-
ity. In addition to  pHe, the intermediate chemoattractant 
leukotriene  B4  (LTB4) is required for efficient chemotaxis 
towards the end-target chemoattractant C5a. The secretion 
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of  LTB4 from activated neutrophils also depends on NHE1 
activity and  pHi and thus indirectly on  pHe. It decreases 
with falling  pHe and  pHi or when NHE1 activity is inhib-
ited [111]. NHE1 activity as a requirement for chemotaxis 
has been shown also for polymorphonuclear leukocytes 
in an fMLP gradient [127]. In summary, a shallow proton 
gradient with  pHe values decreasing from blood vessels 
towards the inflamed tissue may accelerate extravasa-
tion of stimulated neutrophils and then direct them to the 
inflammatory site (Fig. 4b). Once in the acidic inflamma-
tory microenvironment, neutrophil chemotaxis is impaired 
while migration velocity is only slightly reduced, allowing 
cells to ramble on-site through the inflamed tissue.

In quite a number of cell types, NHE1 turns out to be 
essential for directional migration although other acid/base 
regulating transporters such as  Na+-HCO3

− cotransport-
ers (NBCs) are also present in the plasma membrane. This 
holds true even in the absence of a directional stimulus 
as shown for Madin-Darby canine kidney (MDCK) cells. 
Whereas  Na+-HCO3

− co-imported by NBC1 can compen-
sate for a lack in NHE1 activity with respect to cellular 
pH homeostasis and volume regulation, in the absence 
of a functional NHE1, NBC1 does not provide the cell 
polarity required for directional cell migration [140]. This 
mechanistic predominance of NHE1 over NBCs reduces 
the dependence on the  CO2/HCO3

− carried fraction of the 
extracellular buffer capacity. This could be particularly 
important under in vivo conditions, where the buffering 
capacity of the open  CO2/HCO3

− system can vary consider-
ably depending on  CO2 production in the tissue relative to 
its removal, e.g., by the blood stream. Thus, the dominance 
of NHE1 over NBCs could ensure continuous and smooth 
directional migration in the face of a potentially unstable 
extracellular  HCO3

− concentration. Furthermore, it empha-
sizes the relevance of a tightly controlled pH profile directly 
at the cell surface. The pH nanodomains locally generated 
by NHE1 [90] and its cytoskeletal anchoring, both affecting 
adhesion, related signaling events, and cytoskeletal dynam-
ics, are virtually certain to regulate asymmetric signals that 
establish polarity and a differential, coordinated focal adhe-
sion remodeling at the cell front and rear [30]. However, 
what is the underlying mechanism that would master NHE1 
targeting, that is, how is directional trafficking of NHE1 
towards the cell front regulated, and how is the cell front 
as such established in the first place? A redistribution of 
randomly distributed NHE1, accompanied by the formation 
of a polarized morphology and the acquisition of the ability 
to migrate, has been observed in cervical cancer cells upon 
exposure to EGF [20]. Nevertheless, the mechanism behind 
the directed trafficking of NHE1 in single cells, especially 
in the absence of any directional stimulus, remains unex-
plained to date and needs further examination.

Does pH contribute to self‑guidance 
mechanisms?

The fact that migrating cells themselves generate direc-
tional information via a dynamic interplay of cell-intrinsic 
and cell-extrinsic regulators and thus have more control 
over their directionality than previously assumed has been 
reviewed recently [188]. In terms of single cell migration, 
there are three different self-guidance mechanisms [188], 
and pH strongly affects all three of them.

First, “subcellular symmetry breaking” is based on 
intracellular traveling waves of the cytoskeleton and sign-
aling events via the phosphatidylinositol-4.5-bisphosphate 
system [7, 43]. The resulting break in the symmetry of the 
cell cortex then defines sites of cellular protrusions and 
lamellipodial outgrowth [100]. This symmetry breaking 
includes the above-mentioned pH-dependent cytoskel-
etal dynamics and its pH-dependent components gelso-
lin, ADFs/cofilin, actin self-assembly, actomyosin con-
tractility, and also the small GTPase Cdc42. Hence, the 
intracellular pH gradient along the direction of movement 
with higher  pHi values at the cell front or in protrusions, 
e.g., invadopodia, and lower  pHi values towards the rear 
end [90, 95] most likely contributes to the perpetua-
tion of “subcellular symmetry breaking,” if not even its 
generation.

Second, during “self-generated chemotaxis,” cells cre-
ate their own local, dynamic gradients by breaking down, 
sequestering, or scavenging surrounding attractant mol-
ecules [110, 133]. In this way, a given, yet non-detectable 
gradient can be amplified in the immediate vicinity of the 
cells and thus becomes detectable. Normally, chemotactic 
cells identify attractant gradients by comparing attractant 
receptor occupancy between their front and rears. Differ-
ences as low as 1% can be distinguished. However, beyond 
distances of 0.5 up to 1 mm, the given gradients contain 
zones that would be either too saturating or too shallow 
to cause the detectable 1% occupancy difference [169]. At 
this point, the amplification mechanism comes into play 
to promote long-range chemotaxis and even allow cells to 
navigate mazes [170]. An almost perfect example for the 
role of acid extruders and  pHe in “self-generated chemot-
axis” is the above-mentioned NHE1,  pHe,  pHi, and Cdc42 
dependence of directional neutrophil migration [111].

Third, cells create “self-organized extracellular scaf-
folds” by exerting forces towards the ECM. The resulting 
changes in the ECM’s physical properties and its structure, 
such as either parallelizing or disarranging ECM fibers, 
impact stiffness, order, topology, and porosity, and can 
then act as guidance cues to drive directional cell migra-
tion [22, 24, 172]. The strength of α2β1 integrin–medi-
ated adhesions to collagen type I depends on cell surface 
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pH, and at  pHe 6.8 or when NHE1 activity is stimulated 
by intracellular acidification with propionic acid, human 
melanoma (MV3) cells pull on ECM fibers potentially 
rearranging them [155]. In addition to adhesion-affected 
re-arrangement of the matrix, local digestion of the ECM 
by pH- and thus NHE1-dependent MMP activity contrib-
utes to “self-organized extracellular scaffolds” as well [16, 
47, 154, 171].

In conclusion, once the polarized distribution of (net) acid 
extruders such as NHEs or NBCs is established, their activ-
ity may perpetuate  pHi and  pHe gradients along the direc-
tion of movement. A concerted action of pH-regulating and 
pH-dependent proteins as well as locally controlled osmotic 
swelling and shrinkage [139] may generate an intrinsically 
self-sustaining process making one think of a perpetual 
motion machine. Hence, pH does have an essential share 
in self-guidance. To what extent direct pH sensing by lipids 
in membranes [3] and subsequent signaling contributes to 
keeping the migration machinery going is quite an appealing 
question that certainly demands further investigation.

Acid priming

Several cell types, even metabolically highly active tumor 
cells with generally upregulated net-acid extruding trans-
porters compared with normal cells [42], e.g., human mela-
noma [161], lung carcinoma, and normal bronchial epithelial 
cells [146], rat prostate carcinoma cells [124], or neutrophils 
[67, 111], respond to acidic  pHe exposure by lowering their 
 pHi values. Assuming that the intracellular acidification is a 
direct consequence of the extracellular acidification because 
(net) acid extruders such as NHEs and NBCs cannot work 
efficiently enough against the increasing extracellular proton 
concentration, the intracellular protons may act as messen-
gers via cytosolic proteins with integrated molecular pro-
ton sensors, predominantly histidine and aspartate residues 
(see above). This procedural sequence would not require 
the presence of proton-sensing G protein–coupled receptors 
in the plasma membrane, but may be prone to interfering 
effects caused by pH-sensitive cation channels. As reviewed 
by Pethö et al. [115], acidic  pHe stimulates  Ca2+ (TRPV1; 
TRPC4, 5;  P2X1–4) and  Na+ (ASICs) conducting channels. 
While the resulting  Na+ influx and the concomitant changes 
in the  Na+ gradient across the plasma membrane may affect 
the activity of  Na+-dependent acid/base regulators and con-
sequently  pHi, a rise in  [Ca2+]i can elicit  Ca2+ signaling, 
e.g., via  Ca2+/calmodulin-dependent protein kinases, and 
thus stimulate migration. However, in pancreatic stellate 
cells (PSCs) exposed to  pHe 6.6 overnight,  [Ca2+]i is sig-
nificantly lower,  [Na+]i significantly higher, and the mem-
brane potential strongly hyperpolarized compared to cells 
kept at  pHe 7.4 which impels the  Na+/Ca2+ exchanger NCX1 

that usually removes  Ca2+ from the cytosol to function in 
reverse mode. According to this, NCX1 inhibition stimulates 
PSC migration at  pHe 7.4 because  Ca2+ ions are retained in 
the cytosol, whereas it abates migration at  pHe 6.6 due to a 
blocked  Ca2+ entry [85].

On the other hand,  Ca2+ signaling is modulated by  pHi. 
Due to slow diffusion and buffer sharing, alterations in  pHi 
and  [Ca2+]i can be compartmentalized. Free  Ca2+ ions and 
free protons compete for binding to the same cytoplasmic 
 Ca2+/H+ buffer molecules with sufficient mobility, i.e., low 
molecular weight, such as histidyl peptides, e.g., carnosine, 
and ATP [165]. In this way,  Ca2+ bound to such a buffer mol-
ecule can be recruited uphill from anywhere in the cytosol to 
localized acidic nanodomains where it is then released. This 
spatial  Ca2+/H+ coupling is likely to be of general impor-
tance in local cell signaling [165]. Such a  Ca2+/H+ coupling 
could also explain the, probably  Ca2+/calmodulin-mediated, 
activation of PI3K in cells whose migration is stimulated 
by an acidic environment without the involvement of acid-
sensing ion channels (ASICs), e.g., glioblastoma cells or 
neutrophils [25, 97].

Long-term exposure to an acidic environment can initi-
ate long-lasting effects including an aggressive migratory 
behavior observable even hours after the cells’ return to 
physiological pH values. This acidic priming with “memory 
effect” is a matter of particular interest because it enhances 
the metastatic potential of cancer cells by allowing for 
malignant behavior in a physiological environment far away 
from the primary tumor [123]. In this context, Thews and 
Riemann [167] have recently reviewed the various outside-
in signaling pathways induced by acid exposure and the 
signaling effects mediated by intracellular acidification. A 
low  pHi resulting from extracellular acidification causes 
the release of reactive oxygen species (ROS) from mito-
chondria. ROS induces MAPK activation and stimulates 
gene expression via p38 and the transcription factor CREB. 
The increased transcriptional activity of CREB can persist 
for 24 h after returning the cells back to normal pH [124]. 
However, while the acidosis-induced increase in ROS seems 
imperative for an increased motility of rat prostate cancer 
cells, the augmented phosphorylation of ERK1/2 and p38 is 
not required [123]. Nevertheless, 48 h exposure of human 
triple-negative breast cancer (MDA-MB-231) and mouse 
mammary carcinoma (4T1) cells to  pHe 6.4 caused changes 
in the expression and splicing of 2752 genes, including a 
number of those affecting cell motility, potentially con-
trolled through a specific set of RNA binding proteins and 
downstream of pH-induced chromatin modifications [128]. 
Similarly, in human pancreatic ductal adenocarcinoma cell 
lines, long-term (1-month) acidic pressure  (pHe 6.6) selects 
cells with enhanced migration and invasion abilities induced 
by epithelial-mesenchymal transition (EMT), intensifying 
their metastatic potential when re-exposed to  pHe 7.4, and 
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in acid-selected human pancreatic ductal adenocarcinoma 
(PANC-1) cells, genes relevant to proliferation, migration, 
EMT, and invasion are upregulated [4].

In summary, acid exposure can bring about a “memory 
effect” that is induced by pH-affected signaling including 
ROS production and accompanied by transcriptome rewir-
ing. This enables particularly tumor cells to acquire a more 
malignant and metastatic phenotype in an acidic environ-
ment such as primary tumor tissue and to then maintain a 
pronounced migratory and invasive behavior for several 
hours up to even more than a day after leaving the acidic 
tissue.

Conclusion

Both  pHe and  pHi have a hand in single cell migration.  pHe 
strongly affects cell adhesion and cell morphology, and 
under optimum conditions supports the establishment of 
a polarized morphology, a prerequisite for migration.  pHi 
has an impact on a number of focal adhesion components, 
actin polymerization, and actomyosin contractility. There 
are considerable differences between species, cell types, and 
cell lines in terms of pH-dependent morphology, optimum 
adhesion, migration and invasion, and the direction of pH 
taxis. The set of expressed adhesion molecules alone can 
make a difference, because different integrin-matrix inter-
actions exhibit different pH optima. Human melanoma 
(MV3) cells express α2β1 integrins that mediate optimum 
cell migration on collagen type I at a bulk  pHe of 7.0–7.2 
and basal NHE1 activity producing a cell surface pH of 
7.2–7.4 at the leading edge [90, 157]. In comparison, in 
human breast cancer (MCF-7) cells expressing both α2β1 
integrins and a constitutively active receptor tyrosine kinase 
(ErbB2), cell surface pH is 7.05, and only an increase to 7.2 
by means of NHE1 inhibition leads to optimum migration 
on collagen I [80]. This confirms a cell surface pH of ~ 7.2 
to be optimal for α2β1 integrin–mediated cell migration, 
independently of the cell type. Thus, not in spite of, but 
because of the species- and cell type-dependent differences 
in the pH characteristics of motility parameters, it is tempt-
ing to see the function of pH/protons in the regulation of 
cell motility to be a widespread if not even cross-species 
universal mechanism. Given (i) the multitude of pH-sen-
sitive molecules functioning as adjustable setscrews of the 
migration machinery, (ii) their mutual, pH-dependent inter-
actions, and (iii) the pH-sensitive activity of MMPs, protons 
are modulators of migration and drivers of invasion, and, 
therefore, can be considered intra- and intercellular messen-
gers. Mechanistically, (de)protonation of acidic and basic 
amino acids, particularly histidine and aspartate, translates 
pH into catalytic activity, substrate binding, stability, inter-
action, aggregation, and localization of proteins.

An interesting aspect in relation to therapeutic strategies 
is the extracellular pH as an adjustable screw that could be 
taken advantage of in order to accelerate wound healing, 
control inflammatory processes, and reduce invasion and 
metastasis. This implies that the molecular mechanisms 
underlying pH-regulated cell migration, which harbor great 
potential as therapeutic targets, need to be further investi-
gated. In this context, the proton-sensing GPCRs, ASICs, 
and the proton-sensing members TRPV1 and TRPV4 from 
the transient receptor potential channel vanilloid subfamily 
certainly deserve further in-depth consideration.
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