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Abstract
Artificial light at night (ALAN) affects most of the population. Through the retinohypothalamic tract, ALAN modulates the 
activity of the central circadian oscillator and, consequently, various physiological systems, including the cardiovascular 
one. We summarised the current knowledge about the effects of ALAN on the cardiovascular system in diurnal and nocturnal 
animals. Based on published data, ALAN reduces the day-night variability of the blood pressure and heart rate in diurnal and 
nocturnal animals by increasing the nocturnal values of cardiovascular variables in diurnal animals and decreasing them in 
nocturnal animals. The effects of ALAN on the cardiovascular system are mainly transmitted through the autonomic nervous 
system. ALAN is also considered a stress-inducing factor, as glucocorticoid and glucose level changes indicate. Moreover, 
in nocturnal rats, ALAN increases the pressure response to load. In addition, ALAN induces molecular changes in the heart 
and blood vessels. Changes in the cardiovascular system significantly depend on the duration of ALAN exposure. To some 
extent, alterations in physical activity can explain the changes observed in the cardiovascular system after ALAN exposure. 
Although ALAN acts differently on nocturnal and diurnal animals, we can conclude that both exhibit a weakened circadian 
coordination among physiological systems, which increases the risk of future cardiovascular complications and reduces the 
ability to anticipate stress.

Keywords  Artificial light at night · The cardiovascular system · The sympathetic nervous system · Adrenal gland · Diurnal 
and nocturnal animals

Introduction

Everything cannot happen at once. The coordination of com-
plex biochemical and physiological events in response to a 
wide range of stimuli from the internal and external envi-
ronment is crucial to ensure the efficacy of biological func-
tions. Biological processes oscillate with different periods, 
and the most dominant is the circadian (approximately 24-h) 
generated by the circadian system (reviewed in [88]). The 
circadian system comprises the central oscillator (the supra-
chiasmatic nuclei of the hypothalamus; SCN) and peripheral 
oscillators. Peripheral oscillators are present in every cell of 
the organism (reviewed in [75]), and their activity is coor-
dinated directly and indirectly by the central oscillator as 
well as by various other cues [16]. It is generally assumed 
that the synchronisation of the peripheral oscillators by 
SCN occurs primarily through the nervous and endocrine 
systems (reviewed in [11]). Since SCN has a direct con-
nection with the retina through the retinohypothalamic tract 

 *	 Hana Mauer Sutovska 
	 hana.sutovska@uniba.sk

	 Lubos Molcan 
	 lubos.molcan@uniba.sk

	 Katarina Babarikova 
	 babarikova3@uniba.sk

	 Diana Cvikova 
	 cvikova17@uniba.sk

	 Natalia Kincelova 
	 kincelova3@uniba.sk

	 Lenka Kubincova 
	 kubincova40@uniba.sk

1	 Department of Animal Physiology and Ethology, Faculty 
of Natural Sciences, Comenius University, Ilkovicova 6, 
Bratislava, Slovakia

http://orcid.org/0000-0003-2797-0149
http://orcid.org/0000-0002-4416-1522
http://orcid.org/0000-0002-8161-5888
http://crossmark.crossref.org/dialog/?doi=10.1007/s00424-023-02901-0&domain=pdf


296	 Pflügers Archiv - European Journal of Physiology (2024) 476:295–306

1 3

[32], disruption of the regular light–dark regime (quality, 
intensity, duration and timing) can alter SCN activity and 
circadian rhythms. Moreover, such alterations are associ-
ated with the development and progression of cardiovascular 
diseases [93].

Regular light input can be disrupted by shift work, night 
work, jet lag and artificial light at night (ALAN). Com-
pared to other stimuli, ALAN affects the entire population 
in developed regions [23], including wild animals, and often 
even before they are born [21]. Significant sources of ALAN 
are streetlamps, billboards, vehicles and buildings. Whilst 
natural night-time light exists in the environment, it typi-
cally occurs at lower and variable intensities throughout the 
lunar cycle. For comparison, the intensity of light at night 
in extreme cases (a supermoon) is up to 0.3 lx, generally up 
to 0.1 lx [45]. Light intensity varies significantly even in 
the cities, whereas around streetlamps, it can reach several 
tens of lux. However, this value highly depends on the light 
source's distance and location [31]. Nevertheless, evaluating 
the exact light intensity in human settlements is challenging 
due to the variability of the Earth's atmosphere and various 
techniques [42].

The light activates the SCN by direct and indirect neural 
projections in diurnal and nocturnal animals [40]. Neuro-
transmitters play a key role in the differential response to 
light observed in physiological and behavioural expressions 
in diurnal and nocturnal animals. In diurnal animals, the sig-
nal from the subparaventricular nuclei to the paraventricular 
nuclei is mediated by excitatory glutamatergic neurons. In 
contrast, in nocturnal animals, this signal is mediated by 
inhibitory gamma-aminobutyric acid neurons [40].

There are three possible pathways through which the SCN 
can affect the activity of the cardiovascular system: The first 
one involves the pineal gland and melatonin release. The 
second pathway affects the cardiovascular system through 
the autonomic nervous system. The last one involves the 
endocrine system [76]. Moreover, light can also have an 
SCN-independent effect on the cardiovascular system by 
locomotor activity modulation [72].

In general, light activates the SCN and inhibits mela-
tonin production. Therefore, melatonin levels are high dur-
ing the dark phase of the day in both diurnal (active during 
the daytime) and nocturnal (active during the nighttime) 
animals [4, 55]. The physiological consequences of ALAN 
are often investigated by measuring changes in melatonin 
levels [13, 33, 85]. In humans, ALAN decreased melatonin 
levels in dose-dependent patterns [33]. Also, in diurnal 
zebra finches [54] and European blackbirds [18], a light 
intensity-dependent decrease in plasma melatonin was 
shown, whilst even < 1 lx had a significant effect. A similar 
decrease in plasma and pineal gland melatonin was also 
shown in nocturnal male Wistar rats after 2 and 5 weeks of 
1–2 lx ALAN [55, 65]. Interestingly, the effects of ALAN 

can vary depending on whether the animal is in its natural 
habitat or under controlled experimental conditions. For 
example, in the case of European perch, under laboratory 
conditions, already 1 lx during the dark phase significantly 
reduced the secretion of melatonin [9], in contrast to an 
experiment in the natural environment, when one month of 
15 lx ALAN did not change the melatonin levels in perch 
[10]. ALAN generally decreases melatonin in both diurnal 
and nocturnal animals; therefore, its involvement in car-
diovascular regulation is questionable (reviewed in: [15]).

On the other hand, other physiological processes, 
including cardiovascular regulation, differ significantly 
depending on whether the organism is diurnal or nocturnal 
[2, 40, 81]. The autonomic nervous system, characterised 
by a pronounced circadian rhythm, directly influences the 
heart and blood vessels. The effects of light on sympa-
thetic nerve activity vary according to whether the organ-
ism is diurnal or nocturnal and can be either stimulating or 
inhibiting [78]. In diurnal animals and humans, light stim-
ulates the sympathetic nervous system [78]. Conversely, 
in nocturnal animals, light inhibits the sympathetic nerv-
ous system during the light phase of the day [83]. The 
activity of the heart and blood vessels is also affected by 
glucocorticoids [22, 90]. Similar to the autonomic nervous 
system and catecholamines, glucocorticoids exhibit a sig-
nificant day-night variability, with a considerable increase 
in humans in the morning before awakening [95] and in 
rats at the end of the light (passive, resting) phase of the 
day [64]. The relevance of glucocorticoids in the context 
of ALAN exposure is noteworthy for two main reasons. 
Firstly, ALAN could be perceived as a stress-inducing 
factor like other circadian disruptions such as shift work 
[38]. Secondly, glucocorticoids are a hormonal output and 
feedback signal for the circadian system [79].

Thus, ALAN affects systems that regulate the activity 
of the cardiovascular system. However, research on ALAN 
in humans is currently limited, while animal experimental 
models often involve nocturnal animals such as rats and 
mice. On the other hand, when diurnal animals are used as 
animal models, the studies embrace an ecological perspec-
tive. However, the response of wildlife to ALAN is com-
plex and influenced by many factors, including migration 
patterns and predators [17].

Therefore, this work summarises knowledge (until 
Q1/2023) concerning the impact of ALAN on cardiovascu-
lar functioning and determines whether the consequences 
of ALAN exposure differ between diurnal and nocturnal 
animals. Within this work, we focus on how ALAN 1) 
changes blood pressure and heart rate, 2) affects the regu-
latory mechanisms that are mostly studied in the context of 
the cardiovascular system, specifically the autonomic nerv-
ous system and glucocorticoids, 3) regulates molecular 
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changes in the heart and blood vessels and 4) affects the 
cardiovascular system via changes in locomotor activity.

Heart rate and blood pressure

Diurnal animals

In the human population, exposure to ALAN has been 
associated with increased susceptibility to cardiometabolic 
disease, obesity and type 2 diabetes [41, 85, 86]. However, 
there is currently a lack of adequately controlled, long-term 
studies that comprehensively assess the effects of ALAN 
on the cardiovascular system. At a high intensity, ALAN 
is commonly used in intensive care units. However, this 
environment is specific, and the impact of ALAN is prob-
ably marginal since patients in intensive care units are older, 
and their vital functions and homeostasis are fundamentally 
disturbed. Nevertheless, there is an assumption that an 
increased difference in the light intensity between the light 
and dark phases can support the circadian variability of car-
diovascular parameters, thus accelerate the stabilisation and 
treatment of patients [43, 44, 68].

Studies with older people in home settings showed that 
blood pressure and intima-media thickness positively cor-
related with ALAN intensity, indicating an increased car-
diovascular risk. Blood pressure increased especially during 
light-contaminated nights, and thus, day-night variability 
decreased [61, 62]. However, it is worth noting that the study 
was done in an urban population, often exposed to higher 
noise and stress levels [3]. In middle-aged people (44.2 ± 8.0 
years; n = 6,869), who generally have better cardiovascular 
health compared to the elderly, no relationship was observed 
between ALAN (self-reported intensity as “darkest”, “mid-
dle”, “lightest”) and blood pressure or glomerular filtration. 
The same study showed that shift work was associated with 
increased blood pressure and decreased glomerular filtration 
[94]. In young adults (18–40 years; n = 20), moderate light 
(100 lx, one night) during sleep increases the night-time 
heart rate [50]. Similarly, a positive correlation between the 
intensity of bedroom lights and blood pressure was observed 
in a cohort study in healthy adults (16–22 years; n = 400), 
in whom an increase in light intensity by 1 lx corresponded 
to a rise in systolic blood pressure by 0.55 mmHg, and light 
intensity > 5 lx was associated with a threefold higher inci-
dence of hypertension [91]. Dim light at night also increases 
the heart rate in wild diurnal birds. A study conducted on 
barnacle geese showed that these diurnal birds exhibited an 
increased heart rate during the dark phase in response to 
“supermoon” events. These findings indicate that wild diur-
nal animals react to natural and artificial light fluctuations at 
night with increased heart rate, and only for a certain period, 
while ALAN persisted [36, 69].

Nocturnal animals

In normotensive rats (18 weeks old), which exhibit noctur-
nal activity and are widely used as an experimental model, 
ALAN (5 weeks; 1–2 lx) reduced blood pressure and heart 
rate during the dim light phase, which led to a decrease in 
the daily variability of blood pressure and heart rate [55]. 
In spontaneously hypertensive rats (18 weeks old), which 
are characterised by an increased sympathetic nerve activ-
ity [47], ALAN (5 weeks; 1–2 lx) attenuated the age-related 
increase in blood pressure, leaving a daily heart rate vari-
ability unaffected. Moreover, significant increases in blood 
pressure and heart rate during the transitions between the 
light and dark phases were lost [74]. ALAN (1–2 lx) had 
the most pronounced effects on blood pressure and heart 
rate after two weeks of exposure, and day-night variabil-
ity was partially restored after five weeks of exposure [55, 
82]. In contrast, in rats (28 weeks old) prenatally exposed 
to hypoxia, a significant decrease in day-night variability of 
blood pressure and heart rate was not present until 5 weeks 
of ALAN (1–2 lx) [82]. A similar dampening of the blood 
pressure rhythms was observed after the shift of the light 
cycle [71]. The significance of circadian variability depends 
on the negative feedback loop of clock genes such as Bmal1 
[20]. Thus, in another study, Bmal1 knockout rats exhibited 
lower blood pressure levels than controls with a normal diur-
nal rhythm [73].

In general, we can summarise that ALAN (1) reduces the 
day-night variability of blood pressure and heart rate in both 
diurnal and nocturnal animals and (2) increases the daily 
average of blood pressure and heart rate in diurnal animals, 
whereas, in nocturnal animals, ALAN decreases the daily 
average of cardiovascular parameters (Fig. 1).

The autonomic nervous system

Diurnal animals

In healthy adults (18–40 years), exposure to moderate light 
(100 lx) at night increased the low-to-high frequency ratio, 
indicating a sympathoexcitatory effect of light associated 
with increased heart rate. The study also observed changes 
in the macrostructure of sleep, which the authors also related 
to increased sympathetic activity [50]. However, there is a 
lack of additional studies investigating the effects of ALAN 
on heart rate variability and the autonomic nervous system 
in humans. The available data suggest that exposure to dim 
light during the night, whether for a limited time or at the 
end of the night [30, 35], has comparable effects on heart 
rate variability and the autonomic nervous system to light 
throughout the night.
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Nocturnal animals

Studies in spontaneously hypertensive rats [74] and rats 
exposed prenatally to hypoxia, which experimentally 
increases sympathetic nerve activity [82], suggest that the 
sympathetic nervous system is essential in transmitting 
information from the SCN to the cardiovascular system 
[83]. The sympathetic nervous system acts on the cardio-
vascular system through noradrenaline, released from the 
nerve terminals. At the same time, the sympathetic nervous 
system stimulates the adrenal medulla to release catechola-
mines into circulation [39]. In rats exposed to a regular light-
dark regime, noradrenaline elicits a higher blood pressure 

response during the light (passive) phase than the dark 
(active) phase. However, this phase-dependent response is 
lost under ALAN conditions, with blood pressure exhibiting 
a significantly increased response to noradrenaline even dur-
ing the dark phase [55, 56, 82]. There are several hypotheses 
for this phenomenon: (1) The first is related to vascular tone, 
which is significantly controlled by the sympathetic nervous 
system. An increased vascular tone allows for more signifi-
cant vasodilation when needed, as shown after methoxamine 
(an alpha1-agonist) administration [24]. However, if ALAN 
decreases sympathetic activity, the basal vascular tone is 
also lower (Fig. 2). Exogenously applied noradrenaline 
causes vasoconstriction, which is minimally compensated by 

Fig. 1   Heart rate and blood 
pressure vary over 24 h, with 
higher variability during the 
control light-dark conditions 
compared to artificial light at 
night. Artificial light at night 
affects daily averages and 
diminishes the daily variability 
of heart rate and blood pressure 
in diurnal and nocturnal animals

Fig. 2   Blood pressure (BP) and heart rate (HR) responses to light 
in diurnal and nocturnal animals differ, both through direct photic 
effects and indirectly through non-photic effects via the suprachias-
matic nuclei of the hypothalamus (SCN). AG, adrenal glands; CA, 

catecholamines; GC, glucocorticoids; HPA, hypothalamic-pituitary-
adrenal axis; LA, locomotor activity; LGN, lateral geniculate nucleus; 
PVN, hypothalamic paraventricular nuclei; SNS, sympathetic nervous 
system
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reflex vasodilation due to the already inhibited sympathetic 
activity. (2) The more pronounced and prolonged increase 
in blood pressure after noradrenaline may result from an 
impaired availability of enzymes responsible for the degra-
dation of catecholamines [34, 55]. However, we did not find 
any data about the effects of ALAN on the plasma levels of 
catecholamines or enzymes involved in their turnover. (3) 
Exposure to ALAN (1–2 lx, 2 weeks) increases the expres-
sion of sarco/endoplasmic reticulum Ca2+-ATPase type 2 in 
vascular smooth muscle cells, which may result in increased 
intracellular calcium storage (Sutovska et al., under review). 
Consequently, the application of noradrenaline can trigger 
the release of more calcium into the cytosol, thereby enhanc-
ing contractility. Moreover, decreased catecholamine turno-
ver can prolong the pressure response. However, there may 
be other mechanisms that have not yet been explored or fully 
investigated. In summary, these findings indicate that the 
autonomic regulation of the cardiovascular system is one 
of the crucial pathways through which the central oscillator 
directly and comprehensively regulates the activity of the 
heart and blood vessels.

In humans and nocturnal rats, it is likely that ALAN [30, 
82], as well as phase shifts of the light-dark regime [57], 
can alter the sympathovagal balance, which is manifested by 
increased sympathetic activity in humans and, conversely, 
decreased sympathetic activity in rats.

Glucocorticoids

Diurnal animals

Regarding light pollution, glucocorticoids are given consid-
erable attention, especially considering ALAN as a stressor. 
Given their influence on cardiovascular function [22, 90], 
assessing changes in glucocorticoid levels could provide 
valuable insights into the impact of ALAN on an animal’s 
cardiovascular system. ALAN effects on glucocorticoid lev-
els are mostly studied in birds [1, 53, 67], fish and frogs, 
with comparatively fewer studies conducted on humans. 
However, numerous human studies have been conducted 
on shift work, revealing disrupted daily cortisol rhythms 
with no significant changes in average cortisol levels [58, 
59]. Interestingly, diurnal animals do not show a uniform 
hypothalamic-pituitary-adrenal axis response to ALAN. In 
healthy men (23.4 ± 1.5 years), ALAN (< 5 lx; 2 days; n = 20 
[14]) as well as bright light at night (around 9,500 lx; 1 day; 
24.6 ± 5.1 years; n = 21 [70]), have been shown to reduce 
plasma cortisol levels. However, acute one-day intermit-
tent bright light increased plasma cortisol [70]. Similarly 
to humans, adult cane toads exhibited decreased salivary 
corticosterone after 12 days of 0.04 lx and 5 lx ALAN [77].

On the other hand, in Nile grass rats, ALAN (three weeks) 
elevated daytime corticosterone levels [26]. Also, diurnal 
songbirds (male baya weavers) exhibited increased plasma 
corticosterone levels following acute exposure to ALAN 
(1 week). After chronic exposure (4 weeks), the observed 
increase in corticosterone levels was diminished, indicating 
a specific type of habituation to ALAN [92].

In wild fish, neither acute (48 and 80 lx), long-term 
(around 15 lx), nor pre-hatch ALAN (1–8 lx) had a signifi-
cant effect on cortisol levels [9, 60, 84]. However, glucose 
levels (stress indicator) were significantly increased after 
ALAN (5–15 lx during the dawn period; 9 days; laboratory 
conditions [37]), as well as one-day exposure to continuous 
(48 lx) or intermittent (80 lx) light at night [84]. The authors 
assumed that since the stress was only acute, cortisol may 
have already returned to normal levels at the time of meas-
urement [84], as shown previously [49]. Notably, decreased 
locomotor activity was observed in some fish during ALAN 
exposure, leading the authors to assume that ALAN-resist-
ant animals change their behaviour rather than an endocrine 
stress response [52].

Nocturnal animals

Unlike diurnal animals, nocturnal animals exhibit peak cor-
ticosterone levels at the end of the light (passive) phase of 
the day [64]. Under laboratory conditions, various effects of 
ALAN on corticosterone levels have been shown in rodents 
(Fig. 3):

(1)	 No changes in serum corticosterone levels and hip-
pocampal glucocorticoid receptor expression were 
observed after ALAN (5 lx; 3 days) in female and male 
Swiss Webster mice during both the light and the dark 
phases of the day [89]. Even longer exposure to ALAN 
(5 lx; 3–7 weeks) did not affect the corticosterone lev-
els in mice in the light [6, 29] and the dark [29] phases 
of the day.

(2)	 Suppression of the diurnal rhythm of serum corti-
sol after ALAN (5 lx; 1 week) was observed in adult 
female Siberian hamsters [7]. In rats, 2 weeks of 2 lx 
ALAN suppressed and shifted corticosterone rhythm 
[65].

(3)	 Increased plasma corticosterone levels were observed 
in C57BL/6J mice (5 lx; 4 weeks) [46], male Nile grass 
rats in the light phase (5 lx; 2 weeks) [27], and male 
Wistar rats in the first half of the light phase (ZT03 – 
ZT06; 2 lx; 2 and 5 weeks) [66].

Given the diverse findings across publications on glu-
cocorticoids, we conducted a meta-analysis of 20 publica-
tions investigating glucocorticoids in relation to ALAN. We 
excluded six studies due to incomplete data or information 
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about the time of data collection. The meta-analysis included 
14 studies, six devoted to nocturnal and eight to diurnal ani-
mals. We only analysed data where the light was defined 
other than constant light. The median light intensity in the 
papers was 5 lx (min: 0.04 lx, max: 400 lx). We normalised 
the time in the publications to the beginning of the light 
phase (ZT0). Based on the ZT, we divided the data for the 
meta-analysis according to diurnal and nocturnal animals, 
and we then split the data sets according to the expected 
glucocorticoid peak time and the rest of the day, when the 
maximum for glucocorticoids is not expected. We thus cre-
ated four data sets: 1) diurnal animals ZT22–ZT02 (expected 
peak), 2) diurnal animals ZT02–ZT22, 3) nocturnal ani-
mals ZT10–ZT14 (expected peak) and 4) nocturnal animals 
ZT14–ZT10. In diurnal and nocturnal animals, glucocor-
ticoid levels increase at the end of the passive phase [51].

Since different studies employed different measurement 
techniques and units for glucocorticoid quantification, we 

converted all units to ng, if possible. However, glucocorti-
coids were sometimes expressed per litter/kg, gram, and ml. 
Furthermore, we used standardised mean differences to com-
bine continuous data using fixed- and random-effect models 
(Fig. 3). We observed significant variation in study outcomes 
between studies (heterogeneity) in three of four data sets 
(Fig. 3). Insignificant heterogeneity was in the data sets of 
nocturnal animals that measured glucocorticoids during the 
expected peak (ZT10–ZT14), probably due to the limited 
number of studies (n = 2). These papers showed that ALAN 
reduces glucocorticoid levels during the expected rise. The 
measurement of glucocorticoids in the remaining three data 
sets involving nocturnal and diurnal animals showed mixed 
results, with some showing an increase, some a decrease, 
and others reporting no changes in glucocorticoid levels 
after ALAN (Fig. 3). These differences between studies may 
be attributed to shifts in the timing of glucocorticoid peaks 
[65]. The magnitude of glucocorticoid shift could depend 

Fig. 3   Meta-analysis with continuous outcome of glucocorticoids in diurnal and nocturnal animals. ZT0 represents the beginning of the light 
phase; CI, confidence interval; SD, standard deviation



301Pflügers Archiv - European Journal of Physiology (2024) 476:295–306	

1 3

on the duration of ALAN exposure. Therefore, we tried to 
minimise the shift effect with a 4-h peak interval. How-
ever, this interval might not be sufficient if ALAN exposure 
is prolonged. On the other hand, since not all papers had 
precisely defined experimental conditions, there could be 
different possibilities of significant heterogeneity. In future 
studies, the measurement of corticosterone and other param-
eters with apparent circadian variability requires monitoring 
throughout a 24-h cycle to arrive at a clear conclusion since 
ALAN likely changes the amplitude and acrophase of the 
measured parameters.

To sum up, the overall impact of ALAN on glucocor-
ticoids is not uniform within diurnal or nocturnal species. 
Studies on humans and frogs show a decrease in glucocorti-
coid levels following ALAN exposure, whereas fish appear 
resistant to ALAN despite some displaying increased glu-
cose levels. On the other hand, diurnal songbirds and noc-
turnal rodents exhibit increased glucocorticoid levels after 
ALAN exposure. Additionally, it's probably important to 
consider an animal's behavioural strategies beyond its diur-
nal or nocturnal nature. ALAN may play a role in alter-
ing predator-prey dynamics, thus contributing to the stress 
experienced by the animal. Heterogeneity in study outcomes 
highlights the need for standardised experimental protocols 
and continuous monitoring throughout a 24-h cycle to draw 
more definitive conclusions.

Molecular changes in the heart and vessels

Catecholamines and glucocorticoids significantly affect the 
heart and blood vessels, possibly modulating the expression 
of proteins within tissues.

Diurnal animals

In humans, the effects of ALAN on cardiovascular morphol-
ogy have only been studied on carotid artery intima-media 
thickness. Carotid artery intima-media thickness is generally 
used as a marker of subclinical atherosclerosis burden [62, 
63]. The increase in intima-media thickness was related to 
ALAN intensity. The authors of the study estimate that an 
increase of only 0.083 mm (95% CI, 0.037–0.129) in the 
maximum carotid intima-media thickness due to ALAN can 
lead to a 10.0% (95% CI, 3.4–16.4) increase in the prob-
ability of myocardial infarction and an 11.6% (95% CI, 
4.0–19.2) increase in the probability of ischaemic stroke. 
However, the authors only point to the effects and do not 
address the mechanisms [62, 63]. In addition, these results 
cannot be generalised to the whole population, as the effects 
of ALAN were studied in older people in an urban home 
environment, where additive factors may have interacted 
simultaneously.

In diurnal zebra finches, only males exposed to ALAN 
(1.5 lx; 10 days) exhibited increased cardiac weight by one-
quarter. On the other hand, the authors did not observe left 
ventricular fibrosis, changes in the expression of transform-
ing growth factor beta, or alterations in the phosphorylation 
of extracellular signal-regulated kinases and c-Jun N-termi-
nal kinases. These findings suggest that the cardiac hyper-
trophy was physiological rather than pathological, probably 
caused by the increased locomotor activity observed [2].

Nocturnal animals

In mice and rats, ALAN after four (5 lx) and five weeks 
(1–2 lx) did not affect heart weight, respectively [25, 81]. 
However, in normotensive and hypertensive male rats, short-
term exposure to ALAN (1–2 lx; 2 weeks) resulted in a sig-
nificantly decreased expression of angiotensin II receptor 
type 1 in the heart [81] and an increased expression of eNOS 
in the thoracic aorta, whereas the vascular expression of 
endothelin-1 remained unchanged [55]. Prolonged exposure 
to ALAN (1–2 lx; 5 weeks) resulted in the decreased cardiac 
expression of the sarco/endoplasmic reticulum Ca2+-ATPase 
and endothelin-1 [81]. However, in the thoracic aorta, eNOS 
and endothelin-1 expression remained unchanged [55].

In summary, ALAN exhibits distinct impacts on diurnal 
and nocturnal animals. Nocturnal animals exposed to ALAN 
typically exhibit vasodilation, along with a decrease in heart 
rate and contractility. Conversely, diurnal animals respond 
to ALAN with an increased heart rate, which may reflect 
increased locomotor activity.

Locomotor activity

Locomotor activity is one of the basic parameters that are 
often used to describe the activity of the SCN (reviewed in 
[48]). Furthermore, it plays a significant role in modulating 
the activity of the cardiovascular system (Fig. 2). However, 
especially in nocturnal animals, light directly affects ani-
mal behaviour and locomotion (masking effect, reviewed 
in [88]), thereby making the influence of the SCN less pro-
nounced [5].

Diurnal animals

In male great tits, exposure to ALAN (0.5 lx; 1.5 lx and 5 lx; 
22 days) significantly influenced their daily activity. The 
group exposed to 5 lx ALAN displayed increased activity 
6–7 h before daylight, with up to 40% of their daily activity 
occurring at night. In comparison, in the control group, noc-
turnal activity accounted for 1% of the total daily activity. In 
the 0.5-lx group, 11% of the activity occurred at night and 
in the 1.5-lx group, it was 14% [19]. In wild-caught male 
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songbird baya weaver, exposure to ALAN (5 lx; 4 weeks) 
significantly increased night-time activity, with the most 
significant behavioural and physiological changes being 
observed during the first week of ALAN. However, dur-
ing the fourth week, the birds adapted to ALAN, and their 
behaviour and physiology returned to almost the original 
state [92].

Nocturnal animals

Wild wood mice are active mainly during darkness. When 
they were exposed to ALAN (6 weeks, 8 lx at ground level), 
a decrease in their locomotor activity during the dark phase 
was observed, which the authors justified as a masking 
effect of the fear of the predator [80]. Hiding and a prefer-
ence for darker places have also been shown in the beach 
mouse, which naturally prefers to collect seeds in areas with-
out artificial light [8]. Hiding from a predator in the wild 
is well-known and has a feedback effect on the predator's 
behaviour. For example, the activity of bats increased dur-
ing ALAN exposure because the light attracted more insects 
[80]. An altered natural photoperiod significantly affects the 
behaviour of cane toads, which are predominantly noctur-
nal (their physical activity negatively correlates with the 
intensity of the moonlight). In another study, ALAN (5 lx, 
12 days) delayed their nocturnal activity by 4.5 h compared 
to the control group, whereas the number of movements 
recorded during nocturnal activity was reduced by a fifth 
due to ALAN. Individuals exposed to ALAN shifted from 
crepuscular (active primarily during the twilight period) to a 
more uniform nocturnal activity [77]. A decrease in activity 
by almost 60% and 75%, depending on ALAN intensity (5 lx 
vs 20 lx; 10 days), was also observed in male common toads. 
In addition, ALAN modified the time spent in activity only 
during the nocturnal period [87].

Conversely, in some studies, ALAN had no effects on 
physical activity. For example, in adult female Siberian ham-
sters (crepuscular), ALAN (5 lx; one week) did not alter 
locomotor activity [7]. Similarly, in male Swiss-Webster 
mice (5 lx; 8 weeks) and diurnal male Nile grass rats (5 lx; 
3 weeks), ALAN did not affect locomotor activity [27, 29]. 
Moreover, ALAN did not affect total daily wheel running in 
Swiss-Webster mice, but some animals became arrhythmic 
[28].

Overall, ALAN exposure can lead to alterations in the 
locomotor activity in both diurnal and nocturnal animals. 
Since blood pressure and heart rate depend on locomotor 
activity, its temporal pattern is important from the point of 
circadian and SCN-independent regulation of the cardiovas-
cular system (Fig. 2). In nocturnal animals, locomotor activ-
ity is reduced if light is present during the dark phase likely 
due to positive masking. On the other hand, diurnal animals 
are less sensitive to ALAN, but their locomotor activity may 

increase during the dark phase at the expense of daytime 
activity [2, 55]. Moreover, the variability of the cardiovascu-
lar system and locomotor activity is modified by food intake, 
another strong synchronising stimulus [12]. In the context 
of food intake and masking effects, restoring the day-night 
variability of blood pressure, heart rate and locomotor activ-
ity after more weeks of ALAN is not surprising.

Limitations

The literature regarding the effects of ALAN on the cardio-
vascular system, mainly at the molecular level, is limited. 
We did not find work that addresses the impact of inter-
mittent (over several days) ALAN. If we assume that there 
are time-dependent changes in the cardiovascular system, 
intermittent ALAN can significantly affect cardiovascular 
health. However, respective studies mainly examined the 
impacts of short-term ALAN exposure, lacking data con-
cerning the effects of chronic ALAN exposure. Furthermore, 
we did not find data from experimental pathophysiological 
models exposed to ALAN, such as a failing heart or cardio-
renal complications, that would mimic older adults exposed 
to ALAN. Additionally, there is insufficient evidence of a 
relationship between ALAN intensity and cardiovascular 
changes.

Conclusions

There is substantial evidence that ALAN reduces the day-
night variability of cardiovascular parameters in both diur-
nal and nocturnal animals, indicating a weakened circadian 
coordination among physiological systems, a worsened pre-
dictability of the cardiovascular load and future cardiovas-
cular complications. Short-term ALAN exposure increases 
the daily averages of blood pressure and heart rate in diurnal 
animals, whereas, in nocturnal animals, the daily averages of 
cardiovascular parameters decrease. Based on limited data, 
the daily variability of cardiovascular parameters seems to 
gradually restore after several weeks of ALAN compared to 
SCN and melatonin levels. The effects of ALAN are trans-
mitted from the SCN, most likely through the autonomic 
nervous and endocrine (catecholamines and glucocorticoids) 
systems, whereas the role of melatonin is unlikely. To some 
extent, the changes observed in the cardiovascular system 
after ALAN exposure can be explained by alterations in 
locomotor activity, which changes differently during ALAN 
in diurnal and nocturnal animals.
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