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Potential regulatory role of PGC-1a within the skeletal muscle
during metabolic adaptations in response to high-fat diet feeding
in animal models
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Abstract

High-fat diet (HFD) feeding in rodents has become an essential tool to critically analyze and study the pathological effects
of obesity, including mitochondrial dysfunction and insulin resistance. Peroxisome proliferator—activated receptor y
coactivator-1a (PGC-1a) regulates cellular energy metabolism to influence insulin sensitivity, beyond its active role in
stimulating mitochondrial biogenesis to facilitate skeletal muscle adaptations in response to HFD feeding. Here, some of the
major electronic databases like PubMed, Embase, and Web of Science were accessed to update and critically discuss infor-
mation on the potential role of PGC-1a during metabolic adaptations within the skeletal muscle in response to HFD feeding
in rodents. In fact, available evidence suggests that partial exposure to HFD feeding (potentially during the early stages of
disease development) is associated with impaired metabolic adaptations within the skeletal muscle, including mitochondrial
dysfunction and reduced insulin sensitivity. In terms of implicated molecular mechanisms, these negative effects are partially
associated with reduced activity of PGC-1a, together with the phosphorylation of protein kinase B and altered expression
of genes involving nuclear respiratory factor 1 and mitochondrial transcription factor A within the skeletal muscle. Notably,
metabolic abnormalities observed with chronic exposure to HFD (likely during the late stages of disease development) may
potentially occur independently of PGC-1a regulation within the muscle of rodents. Summarized evidence suggests the causal
relationship between PGC-1a regulation and effective modulations of mitochondrial biogenesis and metabolic flexibility
during the different stages of disease development. It further indicates that prominent interventions like caloric restriction
and physical exercise may affect PGC-1a regulation during effective modulation of metabolic processes.
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Introduction

Pathophysiological mechanisms elucidating the develop-
ment of insulin resistance have been increasingly explored for
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accumulative evidence highlighting the significant role of high-
fat diet (HFD) feeding in driving the initiation and progression
of both insulin resistance and mitochondrial dysfunction [45, 49,
70]. Firstly, it has been argued that HFD feeding can interfere
with mitochondrial oxidative capacity, which is mainly modulated
through reduced expression of peroxisome proliferator—activated
receptor y coactivator-la (PGC-1a) in rodents [74]. Secondly,
others have indicated that HFD can instigate muscle insulin
resistance by promoting mitochondrial biogenesis [21]. This was
shown to be facilitated through activation of peroxisome pro-
liferator—activated receptor (PPAR)S, which mediates the post-
transcriptional increase of PGC-1a [21]. Effective modulation of
PGC-1a, together with related sirtuin 1 (SIRT1) and 5" AMP-
activated protein kinase (AMPK) signaling mechanism, remains
crucial to improve cellular metabolism and to promote skeletal
muscle recovery [65, 69, 76]. Likewise, interaction of PGC-1a
with transcriptional factors (PPARs) is required for effective con-
trol essential metabolic processes, involving cellular energy pro-
duction, thermogenic activities, and lipid metabolism [14, 16, 42].

Obviously, depending on the duration of feeding, different
research groups have explored different perspectives in terms of
how HFD contributes to the development of metabolic anoma-
lies and obesity, including insulin resistance, intramuscular lipid
droplet accumulation, and mitochondrial function [4, 5, 20]. For
example, it has been observed that enhanced muscle mitochon-
drial oxidative capacity could occur independent of PGC-1a
regulation in response to HFD feeding, while prominent inter-
ventions like physical activity could promote metabolic health
by effectively regulating PPAR proteins in rodents [21, 27, 35,
47]. We have previously reviewed evidence on the implications
of lipid overload and its potential contribution to the develop-
ment of skeletal muscle insulin resistance and pathological
changes in mitochondrial oxidative capacity [60], without focus-
ing on the molecular mechanisms that could be involved in this
process. Therefore, because of its significant role in controlling
energy metabolism and involvement in insulin signaling [23,
73, 86], it remains important to establish how HFD affects skel-
etal muscle function in preclinical models of obesity. Special
attention falls on the causal relationship between regulation of
PGC-1a in connection with the development of mitochondrial
dysfunction and insulin resistance within the skeletal muscle.

This review also uniquely covers information related to the
influence of prominent interventions like caloric restriction
and physical exercise on skeletal muscle in response to HFD,
especially elucidating the connection between PGC-1a regu-
lation and improved metabolic function. To identify relevant
studies discussed in the review, a systematic search was con-
ducted by focusing on electronic databases such as PubMed,
Embase, and Web of Science using medical subject heading
(MeSH) terms such “insulin resistance,” “PGC-1a,” “mito-
chondria,” “skeletal muscle,” and “‘high fat-diet.” A similar and
detailed method for study inclusion has already been explained
in other publications [87].

@ Springer

A general overview of PGC-1a and its
potential role in regulating skeletal muscle
function

PGC-1a was initially discovered as a cold-inducible tran-
scription coactivator of adaptive thermogenesis [42]. It is
now widely known as a member of the family of transcrip-
tion coactivators that known to be instrumental in the reg-
ulation of cellular energy metabolism and mitochondrial
biogenesis [82]. The regulation of PGC-1a is controlled
by several signaling cascades, proteins, and several tran-
scription factors. For example, in skeletal muscle, PGC-1a
interacts with numerous transcription factors involved in
mitochondrial biogenesis such as mitochondrial transcrip-
tion factors (TFAM), nuclear respiratory factors (NRFs),
estrogen-related receptors (ERRs), and PPARs ([14, 16,
42]; [7, 64]). This extends to its regulation of cAMP
response element-binding protein (CREB) and free fatty
acid (FFA) oxidation in skeletal muscle in response to
increased physical exercise [3, 36, 46, 82]. Essentially,
PGC-1a in combination with these transcriptional factors
plays a huge role in mitochondrial proliferation and cell
respiration and regulation of lipid metabolism in many
tissues [3, 26, 36, 46, 82].

During the physical exercise, calcium signaling cas-
cades in combination with CREB have been shown to
activate this transcriptional factor within the skeletal mus-
cle in preclinical models [26, 37]. Some studies reported
that overexpression of PGC-1a promotes glucose uptake,
which directly improves insulin sensitivity, through
enhanced expression of glucose transporter 4 (GLUT4) in
cultured muscle cells [52, 66]. Alternatively, PGC-1a can
also promote FFA oxidation while blocking glycolysis and
utilization of glucose within skeletal muscle [56]. Besides
regulating mitochondrial function in muscle, PGC-1a is
pivotal for modulating other skeletal muscle processes,
such as regulating protein degradation, autophagy, satellite
cell function, endoplasmic reticular stress, and inflamma-
tory responses [17, 30, 71].

Over the past years, research revealed that PGC-1a
expression is dysregulated in key metabolic tissues of ani-
mals and humans with insulin resistance and type 2 diabe-
tes (T2D) [68, 82]. In the skeletal muscle of humans with
T2D and prediabetic individuals, PGC-1a expression and
its co-transcription activity were reduced, in parallel with
the suppressed mitochondrial biogenesis and mitochon-
drial oxidative capacity [55, 68, 82]. In vitro evidence has
shown that the expression of PGC-1a is reduced in skel-
etal muscle cells with palmitate-induced insulin resistance
and mitochondrial dysfunction [80]. The similar effect was
also observed in mice and rats exposed to HFD feeding
[72, 80]. Others have shown that skeletal muscle-specific
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PGC-1a knockout reduces muscle endurance capacity
and damage to muscle fibers following treadmill running
[22]. Another hypothesis prevails that PGC- 1« triggers the
expression of genes involved in lipid transport or storage
as well as their utilization, thus potentially reflecting its
important physiological role in metabolic adaptations to
physical exercise [37].

Increasing studies have certainly indicated that focusing
in the PGC-1a for its potential role during the development
of insulin resistance, mitochondrial dysfunction, and there-
fore of T2D metabolism [14, 16, 42, 46, 65]. Even though
most studies acknowledge the important role of PGC-1a dur-
ing the regulation of mitochondrial substrate utilization and
insulin resistance within the skeletal muscle [33, 52, 66],
much remains to be discovered concerning disease devel-
opment and progression thereof, especially in response to
HFD-feeding.

Potential regulation of PGC-1a
within the skeletal muscle in response
to partial exposure to HFD feeding

It has become increasingly clear that besides determining
the composition of a diet [75], the duration of feeding such
diet remains important to induce the desired pathological
effect(s). Others have even argued that implementation of
standard protocols that better mimic effects on fetal growth
seen in obese humans will improve clinical relevance of

results [15]. Anyway, in most rodent-based preclinical mod-
els, a HFD contains 60% fat [54]. However, it is also true
that animals can present with varied pathological features,
depending on the duration to which animals they are exposed
to HFD. Using C57BL/6 mice, Lee and colleagues showed
that as early as 2 weeks of HFD feeding was enough to nega-
tively affect mitochondrial function, including decreasing
citrate synthase activity, mitochondrial respiration, and
mitochondrial DNA within the skeletal muscle [39]. Inter-
estingly, these results were consistent with reduced skel-
etal muscle insulin sensitivity in these mice, while no effect
was observed in the liver. Verifying the already discussed
hypothesis [2, 60], skeletal muscle insulin resistance and
mitochondrial dysfunction are strongly interconnected and
may develop rather early in mice, even before any other
obvious pathological changes.

Table 1 gives an overview of preclinical studies reporting
on the effects of acute or short-term (< 10 weeks) HFD on
potential regulation of PGC-1a, comparing its pathological
implication during the development of mitochondrial dys-
function within the skeletal muscle (Fig. 1). Interestingly,
a study by Li and colleagues [41] reported that alternat-
ing HFD for 4 weeks could enhance mitochondrial enzyme
activities and protein content in rat skeletal muscle, although
there were no significant changes with muscle glycogen
concentration or glucose transport. However, most of the
summarized evidence suggest that an average time of 3—4
weeks of HFD feeding in mice is sufficient to impair skeletal
muscle mitochondrial function, and this is mainly through

Table 1 Evidence on the potential regulation of peroxisome proliferator—activated receptor gamma coactivator 1-alpha (PGC-1a) in response to
partial exposure to high-fat diet (HFD) feeding within the skeletal muscle in preclinical models

Author, year

Experimental model and duration of HFD feeding

Experimental outcome

Short-term exposure to HFD feeding (< 10 weeks)
Hong et al., 2016 [25]

Lietal., 2016 [41] Male Wistar rats fed a HFD for 4 weeks
Juetal., 2017 [29]
(3 weeks)

Martins et al., 2018 [48]
fish oil for 4 weeks

Miotto et al., 2018 [53]

Xu et al., 2019 [80] Male C57BL6/J mice fed HFD for 8 weeks

Male C57BL/6]J mice fed a HFD for 8 weeks

Female C57BL/6] mice were subjected to under-nutri-
tion and male offspring assigned to HFD for 21 days

Male C57BL/6 mice were fed HFD supplemented with

Male C57B16J mice were fed HFD for 4 weeks

Caused insulin resistance (IR) and suppressed mitochon-
drial oxidative phosphorylation, fatty acid oxidation
enzymes and uncoupling proteins, including protein
expression of UCP2/3 and PGC-1a

Increased mitochondrial enzyme activities and protein
content of PGC-1la

Caused glucose intolerance, IR, and suppressed the
mRNA expression of mitochondrial DNA (mtDNA),
PGC-1a, NRF1, and TFAM

Inhibited protein kinase B (Akt) phosphorylation, reduced
oxygen consumption, tricarboxylic acid cycle inter-
mediate contents (citrate, a-ketoglutarate, malate, and
oxaloacetate), and reduced PGC1-« transcription.

Caused IR, increased protein expression of PGC-1a, and
reduced the sensitivity of ADP, leading to increased
mitochondrial hydrogen peroxide (H,0,) emission

Caused glucose intolerance while suppressing the protein
expression of PGC-1a and TFAM leading to muscle
degeneration
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an alteration in cellular respiratory processes [29, 48, 53].
Certainly, the predominant molecular mechanisms involved
during this process mainly involve reduced expression (both
protein and mRNA) of PGC-1a, which may concomitantly
suppress other mitochondrial function regulating transcrip-
tional factors like NRF1 and TFAM that are necessary for
an efficient cellular respiration process. Interestingly, such
detrimental effects within skeletal muscle are observed even
if mice are exposed to HFD feeding for 8 weeks [25, 80],
with reduced insulin sensitivity and increased ROS impair-
ing mitochondrial function or respiratory process within the
skeletal muscle of these mice [25, 29, 48, 53, 80]. Block-
ing the phosphorylation of protein kinase B (Akt), which is
normally required for modulating metabolic effects of insu-
lin within the skeletal muscle [28], appears to be the main
mechanism causing reduced insulin sensitivity or driving
the development of insulin resistance [48], further suggest-
ing that alterations in mitochondrial respiration and reduced
insulin sensitivity drive pathological abnormalities of HFD
feeding.

Potential regulation of PGC-1a regulation
within the skeletal muscle in response
to chronic exposure to HFD feeding

Given that many facets of the metabolic disease are still
not completely understood, animal models have undoubt-
edly become fundamental in providing a platform to uncover
pathological mechanisms that may be involved during the
early development or progression of this condition [19].
Acute or short-term HFD feeding (< 10 weeks) is already

@ Springer

) (Acut e
(Acute exposure) \ - TEAM,

Lipid — akT
overload
| PGC-1a

< 10 weeks NRF1 §

- V3 mtDNA « +Rrosft
eleta

muscle
Mitochondrial dysfunction

Reduced insulin sensitivity

" Lipid | AMPK
overload

\ v
{SIRT1-» PGC-1a ‘
210 weeks

(Chronic exposure) | NRF1 §
. . ¥
‘ JEAM
v

Skeletal p-oxidation §
muscle Mitochondrial biogenesis §

Y
Mitochondrial dysfunction
Insulin resistance

accredited with the development of many pathologies,
including impairing mitochondrial respiration processes and
initiating insulin resistance, which occurs in part through
reducing the expression of PGC-1a within the skeletal
muscle (Table 1). Even more essential to understand are
the consequences of chronic or long-term HFD in rodents,
especially since no single animal model comprehensibly
mimics all pathophysiological features and natural history
of the metabolic syndrome. In fact, accumulative research
supports the notion that HFD feeding aggravates insulin
resistance, alters eating behavior, exacerbates dyslipidemia,
and can even lead to skeletal muscle wasting in rodents [1,
4, 57]. Thus, it remains essential to decipher how HFD feed-
ing modulates PGC-1a expression or activity in relation to
mitochondrial function or even insulin signaling within the
skeletal muscle.

Table 2 gives an overview of preclinical studies reporting
on the effects of chronic or long-term (> 10 weeks) HFD
on the potential modulation of PGC-1a within the skeletal
muscle, to decipher implicated pathological mechanisms
that might contribute to skeletal muscle dysfunction (Fig. 1).
Starting from 10 weeks, it is reported that HFD feeding sig-
nificantly reduced PGC-1a gene (mRNA) expression within
the skeletal muscle of C57BL/6J mice, and this was linked
with altered mitochondrial adaptation, impaired B-oxidation,
and development of insulin resistant phenotype [24]. How-
ever, as from 12 weeks, HFD feeding did not affect or rather
enhanced the expression (protein/mRNA) of PGC-1a within
the skeletal muscle of Sprague—Dawley rats [81, 83]. These
effects were also linked with reduced protein expression of
AMPK, SIRT?3, and mitochondrial biogenesis, which are
important regulators of energy metabolism and oxidative
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Fig.2 An overview of vari-
ous intervention strategies to
improve mitochondrial function
in skeletal muscle after high-fat
diet (HFD) feeding in diet-
induced obesity (DIO) model.
Briefly, combining caloric
restriction and endurance exer-
cise can improve mitochondrial
biogenesis within the skeletal

muscles of Wistar rats fed with AT
HED. In addition to potentially

affecting PGC-1a expression, —
these effects were consistent 2Wimming
with the amelioration of insulin

resistance and reduction in

toxic levels of oxidative stress,

including improved mitochon- :j@\/\(ooj?j\y\mm

drial dynamics and skeletal 80 S
muscle function. More studies
are still required to confirm the
potential role of bioactive sub-
stances like omega-3 rich foods,
chicoric acid, and puerarin that
targets PGC-1a to ameliorate
HFD-induced skeletal muscle
pathologies
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phosphorylation [44, 84]. What certainly became clear is
that prolonged HFD feeding, from 16—18 weeks, certainly
impedes the efficiency or activity of the mitochondrial chain
function and leads to the development of insulin resistance
within the skeletal muscle of mice [72, 79]. However, these
pathological changes are not linked with PGC-1a expression
or are rather associated with its enhanced activity within the
skeletal muscle of these mice, further indicating the impor-
tance of this transcriptional factor in modulating an adaptive
response, stimulating mitochondrial biogenesis, and favoring
the recovery of skeletal muscle in conditions of stress, as
reviewed elsewhere [31, 40].

Furthermore, it was even more clear that HFD feeding
exceeding 24 weeks does not affect the protein or mRNA
expression of PGC-1a or its associated peroxisome pro-
liferator—activated receptor (PPAR)S in mice [39]. This
may indicate that prolonged HFD feeding favors irrevers-
ible pathological modifications that severely affect skel-
etal muscle function and can even lead to muscle wasting
[1]. Apparently, adding the essential amino acid leucine
(at 1.5%) as part of HFD for at least 24 weeks led to an
incompletely oxidized lipid species that contributed to
mitochondrial dysfunction in skeletal muscle of HFD-fed
Sprague-Dawley rats in the early stage of insulin resistance
[43]. Interestingly, these effects can be reversed, and skel-
etal muscle mitochondrial function improved in offspring
of Sprague-Dawley rats that were initially maintained in
HFD for 10 days prior to mating and throughout pregnancy
and lactation [67].
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Therapeutic interventions that affect
skeletal muscle function in response to HFD
feeding

Table 3 gives an overview of preclinical studies on the poten-
tial effects of some interventions in modulating mitochondrial
function, while also affecting targeting PGC-1a within the
skeletal muscle in response to HFD feeding (Fig. 2). Starting
with diet modification, protein restriction for 6 weeks before
HFD feeding was effective in reducing body weight gain and
fat accumulation, and this outcome was consistent with the
activation and improvement of skeletal muscle energy expendi-
ture in C57BL/6 mice [10]. Alternatively, giving Wistar rats
a diet containing omega (w)-3 polyunsaturated fatty acids
(PUFAs) for 6 weeks could promote lipid oxidation and
decrease energy efficiency in subsarcolemmal mitochondria,
while activating AMPK and reducing both endoplasmic reticu-
lum and oxidative stress in these animals [12]. Importantly,
these effects were consistent with enhanced mitochondrial res-
piration and increased PGC-1a expression and mitochondrial
biogenesis within the skeletal muscle in these Wistar rats fed
a diet rich in PUFAs [12].

Notably, combining caloric restriction and endurance
exercise (five times per week for 7 weeks) could improve
mitochondrial biogenesis in skeletal muscles of Wistar rats
fed with HFD for 27 weeks [63]. These effects were con-
sistent with modulation of PGC-1a expression, ameliora-
tion of insulin resistance, reduction in toxic levels of ROS
and improvement in mitochondrial dynamics and skeletal
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muscle function. These effects could also be observed inde-
pendent of caloric restriction in rodents subjected to regular
physical exercise, either treadmill exercise or swimming for
approximately 8 weeks [6, 85]. Where it was shown that
regular physical exercise could stimulate PGC-1a expres-
sion within the skeletal muscle to enhance insulin sensitivity,
improve mitochondrial ultrastructure, and increase intracel-
lular antioxidant response [6, 85]. The positive effects of
caloric restriction and regular physical exercise on improv-
ing skeletal muscle function are widely acknowledged [38,
51]. Evidence regarding the influence of physical exercise on
maternal diet-induced metabolic dysregulations that involve
PGC-1a regulation is very limited and remains inconclusive
[18].

Antioxidants and natural products rich in these active
ingredients are increasingly investigated for their role in
alleviating HFD-induced skeletal muscle alterations in pre-
clinical models [32, 62]. Here, injection with the isoflavone
puerarin, at 100 mg/kg for 4 weeks, could downregulate the
expression of a range of genes involved in mitochondrial
biogenesis and oxidative phosphorylation, such as PGC-1a,
NRF1/2, and transcription factor A (TFAM) in HFD-fed
Wistar rats [13], whereas treatment with HFD containing
the phenylpropanoid chicoric acid, at 0.03%, w/w for 6
weeks, was associated with improved glucose and insulin
metabolism, while also reversing mitochondrial biogenesis
and oxidative phosphorylation within the skeletal muscle
in C57BL/6 mice fed HFD for 10 weeks [34]. Collabora-
tively, our group has increasingly reported on the potential
therapeutic effects of bioactive compounds with abundant
antioxidant effects, including polyphenols which are highly
present in fruits and vegetables, in improving skeletal mus-
cle function by ameliorating insulin resistance and targeting
improving mitochondrial function [58, 59].

Summary and concluding remarks

Animal models have undoubtedly become fundamental in
providing a platform to uncover pathological mechanisms
that may be involved during the early development or pro-
gression of this condition [19]. This review confirms that
partial exposure to HFD feeding is associated with impair-
ments in mitochondrial respiration and initiating of insulin
resistance. Apparently, these effects (during early develop-
ment of disease) can cause insulin resistance and mitochon-
drial dysfunction by obstructing skeletal muscle adaptations
in part by reducing the activity of PGC-1a and insulin signal-
ing pathway. Notably, other PGC-1a-related transcriptional
factors like TFAM and NRF1 were also suppressed during
this process. Interestingly, it has already been proposed that

@ Springer

stimulation of PGC-1a, together with associated factors like
AMPK, SIRT1, and PPARY are necessary for the skeletal
muscle to handle FFA overload and improve insulin sign-
aling [37, 50]. These results further indicate that long-term
exposure to lipid overload (likely during late development
of disease) might severely affect the mitochondrial oxidative
capacity, causing protein loss or muscle wasting, as previously
reported [1, 4, 57], further indicating the importance of target-
ing PGC-1a in improving skeletal muscle adaptations through
stimulating mitochondrial biogenesis and enhancing insulin
sensitivity under toxic conditions of lipid overload. Impor-
tantly, summary of findings within this review are in line with
research that has been published over the years indicating the
central role of PGC-1a during the development of insulin
resistance and mitochondrial dysfunction within the skeletal
muscle in experimental models of HFD [9, 11, 77]. In fact,
others have showed that overexpression of this transcriptional
factor within the skeletal muscle is sufficient to improve insu-
lin sensitivity in rats [8]. However, more cellular mechanisms
are controlled by PGC-1a and should be explored to better
understand this paradigm in which HFD feeding provokes a
disconnect between mitochondrial function and insulin signal-
ing, through the dysregulations in PGC-1a within the skeletal
muscle. Also, beyond the use of physical exercise [61, 78],
large scale studies are required to test whether pharmacologi-
cal stimulation or stimulation of this transcriptional factor can
be beneficial in reversing pathological consequences of the
metabolic disease.
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