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Abstract
High-fat diet (HFD) feeding in rodents has become an essential tool to critically analyze and study the pathological effects 
of obesity, including mitochondrial dysfunction and insulin resistance. Peroxisome proliferator–activated receptor γ 
coactivator-1α (PGC-1α) regulates cellular energy metabolism to influence insulin sensitivity, beyond its active role in 
stimulating mitochondrial biogenesis to facilitate skeletal muscle adaptations in response to HFD feeding. Here, some of the 
major electronic databases like PubMed, Embase, and Web of Science were accessed to update and critically discuss infor-
mation on the potential role of PGC-1α during metabolic adaptations within the skeletal muscle in response to HFD feeding 
in rodents. In fact, available evidence suggests that partial exposure to HFD feeding (potentially during the early stages of 
disease development) is associated with impaired metabolic adaptations within the skeletal muscle, including mitochondrial 
dysfunction and reduced insulin sensitivity. In terms of implicated molecular mechanisms, these negative effects are partially 
associated with reduced activity of PGC-1α, together with the phosphorylation of protein kinase B and altered expression 
of genes involving nuclear respiratory factor 1 and mitochondrial transcription factor A within the skeletal muscle. Notably, 
metabolic abnormalities observed with chronic exposure to HFD (likely during the late stages of disease development) may 
potentially occur independently of PGC-1α regulation within the muscle of rodents. Summarized evidence suggests the causal 
relationship between PGC-1α regulation and effective modulations of mitochondrial biogenesis and metabolic flexibility 
during the different stages of disease development. It further indicates that prominent interventions like caloric restriction 
and physical exercise may affect PGC-1α regulation during effective modulation of metabolic processes.
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Introduction

Pathophysiological mechanisms elucidating the develop-
ment of insulin resistance have been increasingly explored for 
their relevant in curbing metabolic diseases [45, 49, 70]. With  *	 Phiwayinkosi V. Dludla 
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accumulative evidence highlighting the significant role of high-
fat diet (HFD) feeding in driving the initiation and progression 
of both insulin resistance and mitochondrial dysfunction [45, 49, 
70]. Firstly, it has been argued that HFD feeding can interfere 
with mitochondrial oxidative capacity, which is mainly modulated 
through reduced expression of peroxisome proliferator–activated 
receptor γ coactivator-1α (PGC-1α) in rodents [74]. Secondly, 
others have indicated that HFD can instigate muscle insulin 
resistance by promoting mitochondrial biogenesis [21]. This was 
shown to be facilitated through activation of peroxisome pro-
liferator–activated receptor (PPAR)δ, which mediates the post-
transcriptional increase of PGC-1α [21]. Effective modulation of 
PGC-1α, together with related sirtuin 1 (SIRT1) and 5′ AMP-
activated protein kinase (AMPK) signaling mechanism, remains 
crucial to improve cellular metabolism and to promote skeletal 
muscle recovery [65, 69, 76]. Likewise, interaction of PGC-1α 
with transcriptional factors (PPARs) is required for effective con-
trol essential metabolic processes, involving cellular energy pro-
duction, thermogenic activities, and lipid metabolism [14, 16, 42].

Obviously, depending on the duration of feeding, different 
research groups have explored different perspectives in terms of 
how HFD contributes to the development of metabolic anoma-
lies and obesity, including insulin resistance, intramuscular lipid 
droplet accumulation, and mitochondrial function [4, 5, 20]. For 
example, it has been observed that enhanced muscle mitochon-
drial oxidative capacity could occur independent of PGC-1α 
regulation in response to HFD feeding, while prominent inter-
ventions like physical activity could promote metabolic health 
by effectively regulating PPAR proteins in rodents [21, 27, 35, 
47]. We have previously reviewed evidence on the implications 
of lipid overload and its potential contribution to the develop-
ment of skeletal muscle insulin resistance and pathological 
changes in mitochondrial oxidative capacity [60], without focus-
ing on the molecular mechanisms that could be involved in this 
process. Therefore, because of its significant role in controlling 
energy metabolism and involvement in insulin signaling [23, 
73, 86], it remains important to establish how HFD affects skel-
etal muscle function in preclinical models of obesity. Special 
attention falls on the causal relationship between regulation of 
PGC-1α in connection with the development of mitochondrial 
dysfunction and insulin resistance within the skeletal muscle.

This review also uniquely covers information related to the 
influence of prominent interventions like caloric restriction 
and physical exercise on skeletal muscle in response to HFD, 
especially elucidating the connection between PGC-1α regu-
lation and improved metabolic function. To identify relevant 
studies discussed in the review, a systematic search was con-
ducted by focusing on electronic databases such as PubMed, 
Embase, and Web of Science using medical subject heading 
(MeSH) terms such “insulin resistance,” “PGC-1α,” “mito-
chondria,” “skeletal muscle,” and “high fat-diet.” A similar and 
detailed method for study inclusion has already been explained 
in other publications [87].

A general overview of PGC‑1α and its 
potential role in regulating skeletal muscle 
function

PGC-1α was initially discovered as a cold-inducible tran-
scription coactivator of adaptive thermogenesis [42]. It is 
now widely known as a member of the family of transcrip-
tion coactivators that known to be instrumental in the reg-
ulation of cellular energy metabolism and mitochondrial 
biogenesis [82]. The regulation of PGC-1α is controlled 
by several signaling cascades, proteins, and several tran-
scription factors. For example, in skeletal muscle, PGC-1α 
interacts with numerous transcription factors involved in 
mitochondrial biogenesis such as mitochondrial transcrip-
tion factors (TFAM), nuclear respiratory factors (NRFs), 
estrogen-related receptors (ERRs), and PPARs ([14, 16, 
42]; [7, 64]). This extends to its regulation of cAMP 
response element-binding protein (CREB) and free fatty 
acid (FFA) oxidation in skeletal muscle in response to 
increased physical exercise [3, 36, 46, 82]. Essentially, 
PGC-1α in combination with these transcriptional factors 
plays a huge role in mitochondrial proliferation and cell 
respiration and regulation of lipid metabolism in many 
tissues [3, 26, 36, 46, 82].

During the physical exercise, calcium signaling cas-
cades in combination with CREB have been shown to 
activate this transcriptional factor within the skeletal mus-
cle in preclinical models [26, 37]. Some studies reported 
that overexpression of PGC-1α promotes glucose uptake, 
which directly improves insulin sensitivity, through 
enhanced expression of glucose transporter 4 (GLUT4) in 
cultured muscle cells [52, 66]. Alternatively, PGC-1α can 
also promote FFA oxidation while blocking glycolysis and 
utilization of glucose within skeletal muscle [56]. Besides 
regulating mitochondrial function in muscle, PGC-1α is 
pivotal for modulating other skeletal muscle processes, 
such as regulating protein degradation, autophagy, satellite 
cell function, endoplasmic reticular stress, and inflamma-
tory responses [17, 30, 71].

Over the past years, research revealed that PGC-1α 
expression is dysregulated in key metabolic tissues of ani-
mals and humans with insulin resistance and type 2 diabe-
tes (T2D) [68, 82]. In the skeletal muscle of humans with 
T2D and prediabetic individuals, PGC-1α expression and 
its co-transcription activity were reduced, in parallel with 
the suppressed mitochondrial biogenesis and mitochon-
drial oxidative capacity [55, 68, 82]. In vitro evidence has 
shown that the expression of PGC-1α is reduced in skel-
etal muscle cells with palmitate-induced insulin resistance 
and mitochondrial dysfunction [80]. The similar effect was 
also observed in mice and rats exposed to HFD feeding 
[72, 80]. Others have shown that skeletal muscle-specific 
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PGC-1α knockout reduces muscle endurance capacity 
and damage to muscle fibers following treadmill running 
[22]. Another hypothesis prevails that PGC-1α triggers the 
expression of genes involved in lipid transport or storage 
as well as their utilization, thus potentially reflecting its 
important physiological role in metabolic adaptations to 
physical exercise [37].

Increasing studies have certainly indicated that focusing 
in the PGC-1α for its potential role during the development 
of insulin resistance, mitochondrial dysfunction, and there-
fore of T2D metabolism [14, 16, 42, 46, 65]. Even though 
most studies acknowledge the important role of PGC-1α dur-
ing the regulation of mitochondrial substrate utilization and 
insulin resistance within the skeletal muscle [33, 52, 66], 
much remains to be discovered concerning disease devel-
opment and progression thereof, especially in response to 
HFD-feeding.

Potential regulation of PGC‑1α 
within the skeletal muscle in response 
to partial exposure to HFD feeding

It has become increasingly clear that besides determining 
the composition of a diet [75], the duration of feeding such 
diet remains important to induce the desired pathological 
effect(s). Others have even argued that implementation of 
standard protocols that better mimic effects on fetal growth 
seen in obese humans will improve clinical relevance of 

results [15]. Anyway, in most rodent-based preclinical mod-
els, a HFD contains 60% fat [54]. However, it is also true 
that animals can present with varied pathological features, 
depending on the duration to which animals they are exposed 
to HFD. Using C57BL/6 mice, Lee and colleagues showed 
that as early as 2 weeks of HFD feeding was enough to nega-
tively affect mitochondrial function, including decreasing 
citrate synthase activity, mitochondrial respiration, and 
mitochondrial DNA within the skeletal muscle [39]. Inter-
estingly, these results were consistent with reduced skel-
etal muscle insulin sensitivity in these mice, while no effect 
was observed in the liver. Verifying the already discussed 
hypothesis [2, 60], skeletal muscle insulin resistance and 
mitochondrial dysfunction are strongly interconnected and 
may develop rather early in mice, even before any other 
obvious pathological changes.

Table 1 gives an overview of preclinical studies reporting 
on the effects of acute or short-term (< 10 weeks) HFD on 
potential regulation of PGC-1α, comparing its pathological 
implication during the development of mitochondrial dys-
function within the skeletal muscle (Fig. 1). Interestingly, 
a study by Li and colleagues [41] reported that alternat-
ing HFD for 4 weeks could enhance mitochondrial enzyme 
activities and protein content in rat skeletal muscle, although 
there were no significant changes with muscle glycogen 
concentration or glucose transport. However, most of the 
summarized evidence suggest that an average time of 3–4 
weeks of HFD feeding in mice is sufficient to impair skeletal 
muscle mitochondrial function, and this is mainly through 

Table 1   Evidence on the potential regulation of peroxisome proliferator–activated receptor gamma coactivator 1-alpha (PGC-1α) in response to 
partial exposure to high-fat diet (HFD) feeding within the skeletal muscle in preclinical models

Author, year Experimental model and duration of HFD feeding Experimental outcome

Short-term exposure to HFD feeding (< 10 weeks)
Hong et al., 2016 [25] Male C57BL/6J mice fed a HFD for 8 weeks Caused insulin resistance (IR) and suppressed mitochon-

drial oxidative phosphorylation, fatty acid oxidation 
enzymes and uncoupling proteins, including protein 
expression of UCP2/3 and PGC-1α

Li et al., 2016 [41] Male Wistar rats fed a HFD for 4 weeks Increased mitochondrial enzyme activities and protein 
content of PGC-1α

Ju et al., 2017 [29] Female C57BL/6J mice were subjected to under-nutri-
tion and male offspring assigned to HFD for 21 days 
(3 weeks)

Caused glucose intolerance, IR, and suppressed the 
mRNA expression of mitochondrial DNA (mtDNA), 
PGC-1α, NRF1, and TFAM

Martins et al., 2018 [48] Male C57BL/6 mice were fed HFD supplemented with 
fish oil for 4 weeks

Inhibited protein kinase B (Akt) phosphorylation, reduced 
oxygen consumption, tricarboxylic acid cycle inter-
mediate contents (citrate, α-ketoglutarate, malate, and 
oxaloacetate), and reduced PGC1-α transcription. 

Miotto et al., 2018 [53] Male C57Bl6J mice were fed HFD for 4 weeks Caused IR, increased protein expression of PGC-1α, and 
reduced the sensitivity of ADP, leading to increased 
mitochondrial hydrogen peroxide (H2O2) emission

Xu et al., 2019 [80] Male C57BL6/J mice fed HFD for 8 weeks Caused glucose intolerance while suppressing the protein 
expression of PGC-1α and TFAM leading to muscle 
degeneration
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an alteration in cellular respiratory processes [29, 48, 53]. 
Certainly, the predominant molecular mechanisms involved 
during this process mainly involve reduced expression (both 
protein and mRNA) of PGC-1α, which may concomitantly 
suppress other mitochondrial function regulating transcrip-
tional factors like NRF1 and TFAM that are necessary for 
an efficient cellular respiration process. Interestingly, such 
detrimental effects within skeletal muscle are observed even 
if mice are exposed to HFD feeding for 8 weeks [25, 80], 
with reduced insulin sensitivity and increased ROS impair-
ing mitochondrial function or respiratory process within the 
skeletal muscle of these mice [25, 29, 48, 53, 80]. Block-
ing the phosphorylation of protein kinase B (Akt), which is 
normally required for modulating metabolic effects of insu-
lin within the skeletal muscle [28], appears to be the main 
mechanism causing reduced insulin sensitivity or driving 
the development of insulin resistance [48], further suggest-
ing that alterations in mitochondrial respiration and reduced 
insulin sensitivity drive pathological abnormalities of HFD 
feeding.

Potential regulation of PGC‑1α regulation 
within the skeletal muscle in response 
to chronic exposure to HFD feeding

Given that many facets of the metabolic disease are still 
not completely understood, animal models have undoubt-
edly become fundamental in providing a platform to uncover 
pathological mechanisms that may be involved during the 
early development or progression of this condition [19]. 
Acute or short-term HFD feeding (< 10 weeks) is already 

accredited with the development of many pathologies, 
including impairing mitochondrial respiration processes and 
initiating insulin resistance, which occurs in part through 
reducing the expression of PGC-1α within the skeletal 
muscle (Table 1). Even more essential to understand are 
the consequences of chronic or long-term HFD in rodents, 
especially since no single animal model comprehensibly 
mimics all pathophysiological features and natural history 
of the metabolic syndrome. In fact, accumulative research 
supports the notion that HFD feeding aggravates insulin 
resistance, alters eating behavior, exacerbates dyslipidemia, 
and can even lead to skeletal muscle wasting in rodents [1, 
4, 57]. Thus, it remains essential to decipher how HFD feed-
ing modulates PGC-1α expression or activity in relation to 
mitochondrial function or even insulin signaling within the 
skeletal muscle.

Table 2 gives an overview of preclinical studies reporting 
on the effects of chronic or long-term (≥ 10 weeks) HFD 
on the potential modulation of PGC-1α within the skeletal 
muscle, to decipher implicated pathological mechanisms 
that might contribute to skeletal muscle dysfunction (Fig. 1). 
Starting from 10 weeks, it is reported that HFD feeding sig-
nificantly reduced PGC-1α gene (mRNA) expression within 
the skeletal muscle of C57BL/6J mice, and this was linked 
with altered mitochondrial adaptation, impaired β-oxidation, 
and development of insulin resistant phenotype [24]. How-
ever, as from 12 weeks, HFD feeding did not affect or rather 
enhanced the expression (protein/mRNA) of PGC-1α within 
the skeletal muscle of Sprague–Dawley rats [81, 83]. These 
effects were also linked with reduced protein expression of 
AMPK, SIRT3, and mitochondrial biogenesis, which are 
important regulators of energy metabolism and oxidative 

Fig. 1   An overview of mecha-
nisms depicting the detrimental 
effects of high-fat diet (HFD) 
on skeletal muscle function in 
preclinical models of obesity. 
Briefly, HFD feeding (lipid 
overload) can hinder the effi-
ciency of the mitochondria by 
interfering with PGC-1α activ-
ity, driving reactive oxygen spe-
cies (ROS) production and oxi-
dative stress within the skeletal 
muscle. This process is further 
associated with intracellular 
antioxidant responses (through 
NRF1) and altered energy 
metabolism, through altered 
AMP-activated protein kinase 
(AMPK) and Sirt1 (member of 
the sirtuin family), leading to 
insulin resistance in response to 
HFD feeding in animals
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phosphorylation [44, 84]. What certainly became clear is 
that prolonged HFD feeding, from 16–18 weeks, certainly 
impedes the efficiency or activity of the mitochondrial chain 
function and leads to the development of insulin resistance 
within the skeletal muscle of mice [72, 79]. However, these 
pathological changes are not linked with PGC-1α expression 
or are rather associated with its enhanced activity within the 
skeletal muscle of these mice, further indicating the impor-
tance of this transcriptional factor in modulating an adaptive 
response, stimulating mitochondrial biogenesis, and favoring 
the recovery of skeletal muscle in conditions of stress, as 
reviewed elsewhere [31, 40].

Furthermore, it was even more clear that HFD feeding 
exceeding 24 weeks does not affect the protein or mRNA 
expression of PGC-1α or its associated peroxisome pro-
liferator–activated receptor (PPAR)δ in mice [39]. This 
may indicate that prolonged HFD feeding favors irrevers-
ible pathological modifications that severely affect skel-
etal muscle function and can even lead to muscle wasting 
[1]. Apparently, adding the essential amino acid leucine 
(at 1.5%) as part of HFD for at least 24 weeks led to an 
incompletely oxidized lipid species that contributed to 
mitochondrial dysfunction in skeletal muscle of HFD-fed 
Sprague-Dawley rats in the early stage of insulin resistance 
[43]. Interestingly, these effects can be reversed, and skel-
etal muscle mitochondrial function improved in offspring 
of Sprague-Dawley rats that were initially maintained in 
HFD for 10 days prior to mating and throughout pregnancy 
and lactation [67].

Therapeutic interventions that affect 
skeletal muscle function in response to HFD 
feeding

Table 3 gives an overview of preclinical studies on the poten-
tial effects of some interventions in modulating mitochondrial 
function, while also affecting targeting PGC-1α within the 
skeletal muscle in response to HFD feeding (Fig. 2). Starting 
with diet modification, protein restriction for 6 weeks before 
HFD feeding was effective in reducing body weight gain and 
fat accumulation, and this outcome was consistent with the 
activation and improvement of skeletal muscle energy expendi-
ture in C57BL/6 mice [10]. Alternatively, giving Wistar rats 
a diet containing omega (ω)-3 polyunsaturated fatty acids 
(PUFAs) for 6 weeks could promote lipid oxidation and 
decrease energy efficiency in subsarcolemmal mitochondria, 
while activating AMPK and reducing both endoplasmic reticu-
lum and oxidative stress in these animals [12]. Importantly, 
these effects were consistent with enhanced mitochondrial res-
piration and increased PGC-1α expression and mitochondrial 
biogenesis within the skeletal muscle in these Wistar rats fed 
a diet rich in PUFAs [12].

Notably, combining caloric restriction and endurance 
exercise (five times per week for 7 weeks) could improve 
mitochondrial biogenesis in skeletal muscles of Wistar rats 
fed with HFD for 27 weeks [63]. These effects were con-
sistent with modulation of PGC-1α expression, ameliora-
tion of insulin resistance, reduction in toxic levels of ROS 
and improvement in mitochondrial dynamics and skeletal 

Fig. 2   An overview of vari-
ous intervention strategies to 
improve mitochondrial function 
in skeletal muscle after high-fat 
diet (HFD) feeding in diet-
induced obesity (DIO) model. 
Briefly, combining caloric 
restriction and endurance exer-
cise can improve mitochondrial 
biogenesis within the skeletal 
muscles of Wistar rats fed with 
HFD. In addition to potentially 
affecting PGC-1α expression, 
these effects were consistent 
with the amelioration of insulin 
resistance and reduction in 
toxic levels of oxidative stress, 
including improved mitochon-
drial dynamics and skeletal 
muscle function. More studies 
are still required to confirm the 
potential role of bioactive sub-
stances like omega-3 rich foods, 
chicoric acid, and puerarin that 
targets PGC-1α to ameliorate 
HFD-induced skeletal muscle 
pathologies
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muscle function. These effects could also be observed inde-
pendent of caloric restriction in rodents subjected to regular 
physical exercise, either treadmill exercise or swimming for 
approximately 8 weeks [6, 85]. Where it was shown that 
regular physical exercise could stimulate PGC-1α expres-
sion within the skeletal muscle to enhance insulin sensitivity, 
improve mitochondrial ultrastructure, and increase intracel-
lular antioxidant response [6, 85]. The positive effects of 
caloric restriction and regular physical exercise on improv-
ing skeletal muscle function are widely acknowledged [38, 
51]. Evidence regarding the influence of physical exercise on 
maternal diet-induced metabolic dysregulations that involve 
PGC-1α regulation is very limited and remains inconclusive 
[18].

Antioxidants and natural products rich in these active 
ingredients are increasingly investigated for their role in 
alleviating HFD-induced skeletal muscle alterations in pre-
clinical models [32, 62]. Here, injection with the isoflavone 
puerarin, at 100 mg/kg for 4 weeks, could downregulate the 
expression of a range of genes involved in mitochondrial 
biogenesis and oxidative phosphorylation, such as PGC-1α, 
NRF1/2, and transcription factor A (TFAM) in HFD-fed 
Wistar rats [13], whereas treatment with HFD containing 
the phenylpropanoid chicoric acid, at 0.03%, w/w for 6 
weeks, was associated with improved glucose and insulin 
metabolism, while also reversing mitochondrial biogenesis 
and oxidative phosphorylation within the skeletal muscle 
in C57BL/6 mice fed HFD for 10 weeks [34]. Collabora-
tively, our group has increasingly reported on the potential 
therapeutic effects of bioactive compounds with abundant 
antioxidant effects, including polyphenols which are highly 
present in fruits and vegetables, in improving skeletal mus-
cle function by ameliorating insulin resistance and targeting 
improving mitochondrial function [58, 59].

Summary and concluding remarks

Animal models have undoubtedly become fundamental in 
providing a platform to uncover pathological mechanisms 
that may be involved during the early development or pro-
gression of this condition [19]. This review confirms that 
partial exposure to HFD feeding is associated with impair-
ments in mitochondrial respiration and initiating of insulin 
resistance. Apparently, these effects (during early develop-
ment of disease) can cause insulin resistance and mitochon-
drial dysfunction by obstructing skeletal muscle adaptations 
in part by reducing the activity of PGC-1α and insulin signal-
ing pathway. Notably, other PGC-1α-related transcriptional 
factors like TFAM and NRF1 were also suppressed during 
this process. Interestingly, it has already been proposed that 

stimulation of PGC-1α, together with associated factors like 
AMPK, SIRT1, and PPARγ are necessary for the skeletal 
muscle to handle FFA overload and improve insulin sign-
aling [37, 50]. These results further indicate that long-term 
exposure to lipid overload (likely during late development 
of disease) might severely affect the mitochondrial oxidative 
capacity, causing protein loss or muscle wasting, as previously 
reported [1, 4, 57], further indicating the importance of target-
ing PGC-1α in improving skeletal muscle adaptations through 
stimulating mitochondrial biogenesis and enhancing insulin 
sensitivity under toxic conditions of lipid overload. Impor-
tantly, summary of findings within this review are in line with 
research that has been published over the years indicating the 
central role of PGC-1α during the development of insulin 
resistance and mitochondrial dysfunction within the skeletal 
muscle in experimental models of HFD [9, 11, 77]. In fact, 
others have showed that overexpression of this transcriptional 
factor within the skeletal muscle is sufficient to improve insu-
lin sensitivity in rats [8]. However, more cellular mechanisms 
are controlled by PGC-1α and should be explored to better 
understand this paradigm in which HFD feeding provokes a 
disconnect between mitochondrial function and insulin signal-
ing, through the dysregulations in PGC-1α within the skeletal 
muscle. Also, beyond the use of physical exercise [61, 78], 
large scale studies are required to test whether pharmacologi-
cal stimulation or stimulation of this transcriptional factor can 
be beneficial in reversing pathological consequences of the 
metabolic disease.
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