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Abstract
Skeletal muscle relies on mitochondria for sustainable ATP production, which may be impacted by reduced oxygen avail-
ability (hypoxia). Compared with long-term hypoxia, the mechanistic in vivo response to acute hypoxia remains elusive. 
Therefore, we aimed to provide an integrated description of the Musculus gastrocnemius response to acute hypoxia. Fasted 
male C57BL/6JOlaHsd mice, fed a 40en% fat diet for six weeks, were exposed to 12% O2 normobaric hypoxia or normoxia 
(20.9% O2) for six hours (n = 12 per group). Whole-body energy metabolism and the transcriptome response of the M. gas-
trocnemius were analyzed and confirmed by acylcarnitine determination and Q-PCR. At the whole-body level, six hours 
of hypoxia reduced energy expenditure, increased blood glucose and tended to decreased the respiratory exchange ratio 
(RER). Whole-genome transcriptome analysis revealed upregulation of forkhead box-O (FOXO) signalling, including an 
increased expression of tribbles pseudokinase 3 (Trib3). Trib3 positively correlated with blood glucose levels. Upregulated 
carnitine palmitoyltransferase 1A negatively correlated with the RER, but the significantly increased in tissue C14-1, C16-0 
and C18-1 acylcarnitines supported that β-oxidation was not regulated. The hypoxia-induced FOXO activation could also be 
connected to altered gene expression related to fiber-type switching, extracellular matrix remodeling, muscle differentiation 
and neuromuscular junction denervation. Our results suggest that a six-hour exposure of obese mice to 12% O2 normobaric 
hypoxia impacts M. gastrocnemius via FOXO1, initiating alterations that may contribute to muscle remodeling of which 
denervation is novel and warrants further investigation. The findings support an early role of hypoxia in tissue alterations in 
hypoxia-associated conditions such as aging and obesity.
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Introduction

Oxygen is vital for mammalian life due to its role in cellu-
lar ATP production, mainly in the mitochondria via oxida-
tive phosphorylation. Mitochondria consume over 90% of 

oxygen in the body of which over 80% is used for ATP pro-
duction [82]. Next to ATP production, mitochondria perform 
other essential functions such as cellular calcium handling, 
metabolic coordination, programmed cell death, regulating 
redox balance and signaling, and various biosynthesis reac-
tions, including heme and iron-sulfur cluster biosynthesis 
[14, 39]. In doing this, mitochondria are highly adaptive, 
allowing them to align these processes to cellular needs. 
Skeletal muscle, the largest tissue in the body, contributes 
to approximately 21% of oxygen consumption in rest [102]. 
Mitochondrial adaptivity is also evident in skeletal muscle, 
where oxygen demand increases substantially during activ-
ity, with a ten-fold increase in oxygen dependent ATP pro-
duction during exercise [38]. Therefore, it is not surprising 
that reduced tissue oxygen availability, also called hypoxia, 
impacts on skeletal muscle mitochondria.

Jingyi Song and Loes P. M. Duivenvoorde contributed equally to 
this work.

 *	 Jaap Keijer 
	 jaap.keijer@wur.nl

1	 Human and Animal Physiology, Wageningen University, 
Wageningen, The Netherlands

2	 Laboratory of Metabolism of Bioactive Lipids, Institute 
of Physiology, Czech Academy of Sciences, 14220 Prague 4, 
Czech Republic

http://crossmark.crossref.org/dialog/?doi=10.1007/s00424-023-02854-4&domain=pdf


1266	 Pflügers Archiv - European Journal of Physiology (2023) 475:1265–1281

1 3

Hypoxia occurs in organisms at high-altitude and in 
peripheral tissues when tissue oxygen delivery is impaired, 
for example, due to diseases such as pulmonary disease, 
cancer and obesity [74]. Additionally, pulmonary dysfunc-
tion in COVID-19 infection is characterized by hypoxia [2]. 
The consequential reduced blood oxygen level of COVID-19 
results in dysfunction of the diaphragm muscle and a reduc-
tion in limb skeletal muscle mass [56, 80]. Generally, condi-
tions of long-term hypoxia can cause loss of body mass (fat 
and lean mass) in human [50], and enhanced lipid catabo-
lism in obese mice [93]. In addition to long-term hypoxia, 
acute hypoxia can occur, for example, during sleep apnea 
[71], on air flights [51] or with short bouts of moderate exer-
cise, especially in overweight, older and pregnant individu-
als [63]. Long-term hypoxia comes with various long-term 
tissue adaptations, but whether skeletal muscle also adapts 
to acute hypoxia is poorly investigated.

Skeletal muscle mitochondria can use different sub-
strates to produce ATP, such as pyruvate, fatty acids, amino 
acids and ketone bodies. During short bouts of intensive 
exercise, ATP can also be derived from glycolysis in the 
cytosol in an oxygen-independent manner [5]. Thus, skel-
etal muscle possesses the metabolic flexibility to maintain 
cellular energetics, also during hypoxia. Indeed during short 
(1–14 days), medium (14–42 days) and long-term hypoxia 
(> 42 days), oxidative phosphorylation is attenuated whilst 
glucose uptake is maintained or increased [40]. At the same 
time pyruvate dehydrogenase kinase (PDK) is upregulated, 
inhibiting pyruvate dehydrogenase and reducing the entry 
of pyruvate into the TCA cycle. In addition, hypoxia low-
ered mitochondrial density especially in the subsarcolemmal 
population of the skeletal muscle mitochondria [60, 73], and 
switched complex IV subunits to improve electron transfer 
efficiency and oxygen usage for oxidative ATP production 
in cells [30]. Together, these data suggest that ATP synthe-
sis in the hypoxic environment in muscle is optimized by 
an increase in glycolysis to compensate the downregulation 
of oxidative metabolism and/or an optimization of oxida-
tive metabolism. In addition to these metabolic adaptations, 
skeletal muscle structure was also shown to be affected by 
hypoxia. In the M. soleus, intermittent hypoxia for 42 days 
resulted in increased type I and decreased type IIa fibers and 
the total cross sectional area and the size of neuromuscu-
lar junctions (NMJ) decreased, but these changes were not 
observed in the M. gastrocnemius [4].

Several transcription factors are involved in the adapta-
tion of skeletal muscle to long-term hypoxia, of which the 
best known transcription factor is hypoxia-inducible factor 
(HIF)1A. HIF1A regulates the expression of a large number 
of target genes involved in restoring cellular energy home-
ostasis [87]. Additionally, the Forkhead Box-O (FOXO) 

family of transcription factors, of which FOXO1, FOXO3, 
FOXO4 and FOXO6 are all expressed in skeletal muscle 
[84]. FOXO has been reported to promote hypoxia toler-
ance in Drosophila, skeletal muscle of fish and hippocam-
pus of mice [6, 18, 61]. Highly conserved across animals, 
FOXO is upregulated in skeletal muscle in energy-deprived 
states, such as fasting and severe diabetes, and modulates 
autophagy and energy homeostasis [84]. More specifically, 
during fasting FOXO1 reduced glycolysis, presumably via 
regulating PDK4 [7, 31]. In addition, FOXO seems to upreg-
ulate fatty acid oxidation by regulating the levels of lipopro-
tein lipase, fatty acid translocase, and adiponectin receptors 
[7, 47, 97]. This suggests that FOXO1 can act as a metabolic 
switch [29, 84]. Conversely, in hypoxic conditions, increased 
Foxo3a expression was related to reduced mitochondrial res-
piration and increased glycolysis suggesting a dual meta-
bolic role [44]. FOXO1 also plays a role in skeletal muscle 
development. FOXO1 inhibits myoblast differentiation in the 
early phase, but stimulates myotube formation in the later 
phase of myogenesis. Increased expression of FOXO1 and 
FOXO3 in vivo resulted in decreased body size and skeletal 
muscle mass [12, 41, 54]. Together, this suggests a role of 
FOXOs in controlling both metabolic and structural adapta-
tions in skeletal muscle to hypoxia.

Since most studies focused on long-term hypoxic expo-
sure, the mechanism of skeletal muscle adaptation to acute 
hypoxia, representing sleep apnea [71], air flights [51] or 
short bouts of moderate exercise [63] remains elusive. An 
insight into acute in vivo responses to hypoxia will also help 
to understand the role of hypoxia in skeletal muscle adaption 
during aging and obesity, which are long-term conditions 
that are characterized by reduced tissue oxygen availabil-
ity. Therefore, in this study, we aimed to better understand 
the in vivo effect of acute normobaric hypoxia on skeletal 
muscle. We studied the M. gastrocnemius as it is a major 
calf muscle that provides the force behind propulsion for 
walking, running, jumping and flexing the leg at the knee 
joint and the foot at the ankle joint [76]. M. gastrocnemius 
is composed of mixed fiber types with approximately 16% 
slow fibers [70] and is well suited to study the overall envi-
ronmental responses on skeletal muscles. We exposed adult 
male C57BL/6JOlaHsd mice, fed a 40en% fat diet for six 
weeks, for six hours to 12% O2 normobaric hypoxia, similar 
to the ambient oxygen level of Pikes Peak (4302 m high). Six 
hours of hypoxia condition was chosen to allow us to exam-
ine the effects of this physiologically relevant acute hypoxia 
challenge at the transcriptome level. In addition, whole body 
energy expenditure and the respiratory exchange ratio (RER) 
were determined, as well as fasting blood glucose, serum 
insulin levels, and skeletal muscle acylcarnitines to function-
ally characterize muscle lipid metabolism.
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Materials and methods

Experimental design

Twenty-four male C57BL/6JOlaHsd mice were purchased 
from Harlan Laboratories (Horst, The Netherlands). Mice 
arrived at ten weeks of age and were individually housed 
and maintained under environmentally controlled condi-
tions (21 ± 1 °C, 12 h/12 h light–dark cycle, 50 ± 10% 
humidity) and had ad libitum access to food and water. 
During the first three weeks, mice adapted to the new envi-
ronment and received the purified low-fat BIOCLAIMS 
standard diet that contains 10% energy from fat [37]. 
Thereafter, mice received a purified BIOCLAIMS diet for 
six weeks with 40% energy from fat, corresponding to the 
average fat percentage in the human diet in the Nether-
lands [28, 101]. Body weight and body composition were 
monitored weekly by EchoMRI Whole Body Composition 
Analyser (EchoMRI, Houston, FL, USA). Adiposity was 
calculated as (total fat mass / body weight) × 100%. For the 
study, the then 18 weeks old mice were randomly allocated 
to the experimental hypoxia (Hypox) group or the control 
normoxia (Norm) group (n = 12 per group) and housed in 
the indirect calorimetry (InCa) system (see below). After 
exposure to normobaric hypoxic (12% O2) or normoxic 
(20.9% O2) air during six hours, mice were immediately 
killed by decapitation. Six hours exposure to normobaric 
hypoxia was chosen because VO2 was stable (after an ini-
tial increase) after 5 h [27]. Blood was collected in Mini 
collect serum tubes (Greiner Bio-one, Longwood, FL, 
USA). Serum tubes were centrifuged at 3000 g for 10 min 
at 4 °C to obtain serum and then aliquoted and stored at 
-80 °C until analyses. Tissues were excised, snap frozen in 
liquid nitrogen and stored at -80 °C until analyses.

Indirect calorimetry and hypoxia exposure

The InCa system (PhenoMaster system, TSE Systems, 
Bad Homburg, Germany) was used to measure whole-
body energy metabolism and create a hypoxic environ-
ment as described above, which includes incorporation of 
a hypoxia pump (B-Cat, Tiel, The Netherlands) [27, 28]. 
In short, mice adapted in normoxia to the InCa system for 
24 h. All feed was removed at the start of the dark phase, 
and mice received a restricted amount of feed (1.5 g) to 
ensure a fasting state at the start of the following light 
phase. One hour after the start of the light phase, oxygen 
concentration was decreased in each animal cage from 
20.9% to 12% in the Hypox group and VO2 and VCO2 were 
recorded every 13 min for the following six hours. Mice 
in the Norm group were treated in the same manner, but 

remained under normoxic conditions (ambient air; 20.9% 
O2). Normobaric air pressure is standard in all situations.

Blood measurements

After killing the mice, blood glucose concentration was 
measured in whole blood using a Freestyle blood glucose 
system (Abbott Diabetes Care, Hoofddorp, The Netherlands) 
according to the manufacturer’s instructions. Serum insulin 
concentration was measured with an Ultra-Sensitive Mouse 
Insulin ELISA Kit (Crystal Chem, Zaandam, The Nether-
lands) following the manufacturer’s instructions. Samples 
were tested in duplicate and averaged when coefficient of 
variation was less than 5%.

RNA isolation and whole genome transcriptome 
analysis

The whole M. gastrocnemius was grinded for RNA isolation 
of which ten milligram was homogenized using the Tissue 
lyser II (Qiagen) for 3 min at 30 Hz, after which total RNA 
was isolated with the RNeasy Fibrous Tissue Mini Kit fol-
lowing the manufacturer’s instruction (Qiagen, Venlo, Neth-
erlands). RNA concentration and integrity were measured by 
Nanodrop (IsoGen Life Science, Maarssen, Netherlands) and 
the Experion automated electrophoresis system (Bio-Rad).

For whole genome transcriptome analysis, 8 × 60 K Agilent 
whole-mouse genome microarrays (G4852A, Agilent Tech-
nologies Inc., Santa Clara, CA, USA) were used according 
to the manufacturer’s protocol with a few modifications as 
described previously [36]. All arrays were deposited in Gene 
Expression Omnibus (GEO) with accession ID: GSE228719. 
In total, 33,845 of the 59,305 probes on the array had a fluo-
rescent signal twice above the background signal and were 
included for statistical analysis. Gene expression data was 
based on a two group comparison: 12 Hypox mice and 12 
Norm mice. Statistical analyses of gene expression data 
were performed using GeneMaths XT version 2.12 (Applied 
Maths, Sint-Martens-Latem, Belgium), and P-values were cal-
culated with the Student’s t-test based on Log2-normalized 
expression values. Transcripts with P-value < 0.05 were con-
sidered significantly regulated and used for further analysis.

Gene set enrichment analysis (GSEA) was performed in 
R version 4.1.0 with package clusterProfiler [107]. Gene 
sets with Benjamini–Hochberg adjusted P-value < 0.05 were 
considered as significantly enriched. With Gene Ontology 
(GO) gene set, GSEA was performed with all three aspects 
(biological process, cellular component and molecular func-
tion) and cellular component separately. The most signifi-
cant 25 pathways were clustered together based on semantic 
similarities in GO description of the genes in each pathway, 
using the GoSEMSim package [108]. Kyoto Encyclopedia of 
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Genes and Genomes (KEGG) [49], the mouse MitoCarta 3.0 
gene set [81], and the MatrisomeDB gene set [89] were used 
as reference inventory for biological pathways, mitochon-
drial genes and extracellular matrix (ECM) genes respec-
tively. For synaptic gene analysis, genes were first converted 
to matched human genes by BioMart on Ensembl [22, 53] 
after that an analysis with SynGO platform was performed 
[55]. Based on literature, a set specific of genes involved in 
NMJ was created [9, 26, 42, 43, 52, 68, 78].

Quantitative reverse transcription polymerase chain 
reaction (Q‑PCR)

cDNA synthesis and real-time Q-PCR were performed as 
described [27], using DEPP1 autophagy regulator (Depp1) 
and titin (Ttn) as target genes. Beta-2 microglobulin (B2m), 
calnexin (Canx), and ribosomal protein S15 (Rps15) were 
used as reference genes. Primers were designed by NCBI 
Primer BLAST. Sequences and product length of target 
and reference genes can be found in Table S1. Data were 
expressed as relative gene expression based on reference 
genes.

Tissue acylcarnitine determination

M. gastrocnemius free carnitine and acylcarnitine lev-
els were determined using an ultra-high performance liq-
uid chromatography coupled with a mass spectrometry 
(UHPLC-MS) (UltiMate3000 RSLC, Thermo Scientific, 
Sunnyvale, CA, USA; QTRAP 5500, AB-Sciex, Framing-
ham, MA, USA) as described previously [99]. A reference 
standard with labeled free (L-)carnitine and acylcarnitines 
(Chromsystems Instruments and Chemicals GmbH, Gräfelf-
ing, Germany) was added to each sample for quantification. 
The identity of the metabolites was determined by retention 
time (tR) correlation. Moreover, the concentration of indi-
vidual metabolites was calculated with the peak area of the 
metabolite of interest and the peak area of the corresponding 
standard.

Statistics

The data were expressed as mean ± SD, geometric 
mean ± geometric SD for lognormal distribution data, and 
median (IQR) for non-normal data. All analyses were based 
on the data of 12 Hypox mice and 12 Norm mice; except 
for the measurement of physical activity which was based 
on 8 random selected mice per experimental group. Statisti-
cal analyses were performed using GraphPad Prism version 
9.3.1 (Graphpad, San Diego, CA, USA), except for microar-
ray data (see above). Data were checked for normality using 
the D’Agostino normality test. All normal data and lognor-
mal data were analyzed by independent Student’s unpaired 

t-tests, except for free carnitine and acylcarnitines where 
Welch t-test was used. Non-normal data were analyzed with 
a Mann–Whitney test. P-values < 0.05 were considered sta-
tistically significant.

Results

Whole body effects of six hours hypoxia exposure

Prior to the hypoxia (12% O2) exposure, mice with similar 
body weight (Fig. 1a, Table S2) and body composition were 
the assigned to the Hypox group and the Norm group (Norm 
mice: total fat mass 9.35 ± 2.86 g, adiposity 27.6% ± 5.7%, 
total lean mass 22.34 ± 1.25 g; Hypox mice: total fat mass 
10.40 ± 1.88 g, adiposity 30.3% ± 4.7%, total lean mass 
22.42 ± 0.84 g, Table S2). During the six hours hypoxic 
exposure, the average oxygen consumption (Fig. S1) and 
energy expenditure (Fig. 1b) were significantly lower in the 
Hypox group. RER, already being low due to the fasted con-
dition, tended to be further decreased in the Hypox group 
(P-value = 0.0585) (Fig. 1c). Physical activity was similar 
in both groups (Fig. 1d). Due to the tendency towards a 
decreased physical activity, we correlated energy expendi-
ture and RER with physical activity and found no correlation 
(Fig. S2), indicating that the lower energy expenditure and 
RER is not caused by a lower physical activity of the mice. 
Blood glucose levels (Fig. 1e) were significantly increased in 
the Hypox group, but not the serum insulin levels (Fig. 1f).

Effects of six hours of hypoxia on skeletal muscle 
whole genome gene expression

The transcriptome analysis of M. gastrocnemius was investi-
gated to gain molecular insight in the consequences of acute 
hypoxia exposure for skeletal muscle. In total, 11,771 genes 
with unique Entrez annotation were detected, of which 335 
genes were significantly upregulated and 432 genes were 
significantly downregulated in the Hypox group (Fig. 2a). 
Depp1 was the most upregulated transcript (fold change 
in Hypox/Norm (FC) = 2.17; Fig. 2a) while Ttn was the 
most downregulated transcript (FC = -1.95; Fig. 2a). Depp1 
upregulation and Ttn downregulation were confirmed with 
Q-PCR (Fig. 2b and c; Table S3).

The gene cluster analysis, using all three aspects of GO 
GSEA (biological process, cellular component and molec-
ular function), classified all significantly regulated genes 
into seven clusters (Fig. S3). Four of the seven clusters 
were based solely on the cellular component. Therefore, 
we performed GSEA solely with the cellular component, 
which resulted in five clusters (Fig. 2d). The first two clus-
ters mainly includes terms concerning mitochondria that are 
organelle envelope inner membrane (36 regulated genes) 
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and mitochondrion protein-containing matrix complex (190 
regulated genes). The other three clusters are large riboso-
mal subunit (11 regulated genes), actin-based cell apparatus 
compartment (173 regulated genes), and postsynaptic asym-
metric synapse neuron (25 regulated genes). These results 
suggest that six hours hypoxia mainly affects skeletal muscle 
mitochondria, skeletal muscle mitochondrial metabolism, 
and skeletal muscle structure, including the postsynaptic 
NMJ structure.

Metabolic mitochondrial genes were significantly 
regulated after six hours of hypoxia

Based on the outcome of the cluster analysis, we focused on 
significantly regulated mitochondrial genes, using the Mito-
Carta 3.0 gene list. From a total of 1,184 Mitocarta genes, 
899 genes were found to be expressed. Fifty-nine of these 
genes were significantly regulated, of which 49 genes were 
significantly upregulated, and 10 genes were downregulated 
(Table S4). Using a normalized enrichment score, MitoCarta 
GSEA showed a significant upregulation of 5 out of 7 mito-
chondrial pathways (Fig. 3a), which were: metabolism (29 

regulated genes), mitochondrial central dogma (13 regulated 
genes), protein import, sorting and homeostasis (6 regulated 
genes), OXPHOS (5 regulated genes), and mitochondrial 
dynamics and surveillance (6 regulated genes). MitoCarta 
GSEA confirmed the GO GSEA result that mitochondrial 
genes were regulated by hypoxia (Figs. 2d and 3a).

To obtain a better insight in the most prominently reg-
ulated mitochondrial pathway (metabolism), we sorted 
all regulated genes of this pathway based on their FC in 
descending order (Fig. 3b). Nine out of 29 genes, bold in 
Fig. 3b, were involved in lipid metabolism. Carnitine pal-
mitoyltransferase 1 (CPT1) together with carnitine-acylcar-
nitine translocase (CACT) and CPT2 compose the carnitine 
shuttle. Cpt1a (FC = 1.23), encoding an isoform of CPT1, 
and Slc25a20 (FC = 1.23), encoding CACT were upregu-
lated in Hypox. In contrast, Cpt1b, the main CPT1 isoform 
expressed in muscle, and Cpt2 were not changed. Correla-
tion analysis of the normalized log intensity of muscle Cpt1a 
against whole body RER showed a negative correlation 
(Pearson r = -0.498, P-value = 0.013; Fig. 3C). Likewise, a 
negative correlation was also found between muscle Cpt1a 
expression and whole body energy expenditure (Pearson 

Fig. 1   Whole body effects of six hours exposure to normoxia (Norm) 
and mild hypoxia (Hypox; 12% O2). (a) Body weight of the mice 
before exposure, (b) average levels of body energy expenditure and 
(c) RER during Norm or Hypox, (d) physical activity determined as 

total beam breaks, (e) blood glucose levels and (f) serum insulin lev-
els directly after Norm or Hypox, n = 12 per group, n = 8 for physical 
activity, * p-value < 0.05, *** p-value < 0.001
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r = -0.495, P-value = 0.014; Fig. S4). To further investigate 
whether lipid catabolism is affected during hypoxia, acylcar-
nitines in the M. gastrocnemius were analyzed.

Increased C12‑C16 acylcarnitines after six hours 
of hypoxia

Table 1 shows the quantification of M. gastrocnemius free 
carnitine and 39 types of acylcarnitine. Generally, hypoxia 
tended to increase the amount of total acylcarnitines 
(FC = 1.88, P-value = 0.066). Especially, most C14 (C14-0, 
C14-1, C14-2, C14-1OH, C14-2OH), C16 (C16-0, C16-1, 
C16-2 and C16-1OH) and C18-1 acylcarnitines were signifi-
cantly upregulated. Moreover, C18-2, C18-3, C18-1OH and 
C18-2OH all showed an increasing trend (P-value < 0.1). 

Additionally, concentrations of C20 acylcarnitine showed 
a striking increase (FC > 1.4), but without statistical sig-
nificance (P-value > 0.1), between Hypox and Norm. Over-
all, total long-chain (C14-C20) acylcarnitines tended to be 
increased in the Hypox group (FC = 1.90; P-value = 0.065). 
Moreover, C14-1, C16-0 and C18-1 are clinical markers for 
an impaired beta oxidation, and these were individually and 
jointly, significantly upregulated. This accumulation of acyl-
carnitines in muscle is in line with upregulated Cpt1a with-
out concomitant upregulation of downstream β-oxidation 
genes. Exposure to hypoxia did not affect free carnitine, nei-
ther most short-chain (C2-C5) and medium-chain (C6-C12) 
acylcarnitine levels, except for C5-1 carnitine (downregu-
lated), and C5DC and C12-1 carnitine (upregulated). Alto-
gether, the changes in acylcarnitine levels, and in particular 

Fig. 2   Volcano plot (a), confir-
mation (b, c) and cluster analy-
sis (d) of differential expressed 
genes in M. gastrocnemius after 
Hypox (12% O2) versus Norm. 
(a) All expressed genes with an 
Entrez annotation are displayed 
in a volcano plot based on their 
FC and t-test P-value. Dashed 
lines indicate P-value < 0.05 
cutoff and FC = -1/1. Non-reg-
ulated, upregulated, and down-
regulated genes are labelled in 
grey, red, and blue respectively. 
Q-PCR analysis of (b) Depp1 
and (c) Ttn. Values are repre-
sented as mean ± SD, n = 12 per 
group, ** P-value < 0.01, **** 
P-value < 0.0001. (d) Cluster 
analysis using gene ontology 
gene set enrichment using the 
cellular component GO-aspect 
(adjusted P-value < 0.05)
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the alterations in C16, can be considered a functional con-
firmation of our gene expression data.

FOXO signaling pathway was activated by six hours 
of hypoxia

KEGG pathway enrichment analysis revealed that the 
FOXO signaling pathway was the only one being signifi-
cantly regulated (adjusted P-value = 0.022) with a total of 
15 regulated genes that are shown in a heatmap (Fig. 4a). 
FOXOs have a role in proteolysis and skeletal muscle atro-
phy [100], which is compensated by the upregulation of 
ribosomal genes as identified with GO GSEA (Fig. 2d). The 
hypoxia exposure regulated Foxo1 and Foxo4 gene expres-
sion in opposite directions, with an upregulation of Foxo1 
and downregulation of Foxo4. The integrated pathway map 
of the FOXO signaling pathway including regulated and 
non-regulated genes upstream of FOXO is shown in Fig. 4b. 
The function of Foxo1 and Foxo4 is inhibited by serum/
glucocorticoid regulated kinase 1 (Sgk1), thymoma viral 

proto-oncogene 3 (Akt3) and conserved helix-loop-helix 
ubiquitous kinase (Chuk), of which the gene expression of 
Akt3 (FC = -1.19) and Chuk (FC = -1.16) were downregu-
lated and Sgk1 (FC = 1.62) was upregulated. Addition-
ally, insulin-like growth factor 1 (Igf1; FC = -1.19), insulin 
receptor (Insr; FC = -1.20) and insulin receptor substrate 3 
(Irs3; FC = -1.20) which are involved in the activation of 
Akt3 and Chuk were also downregulated. In addition, pro-
tein arginine N-methyltransferase 1 (Prmt1), stimulating 
FOXO, was upregulated (FC = 1.35). These results sug-
gest that FOXO and particularly Foxo1, was upregulated. 
Since the FOXO pathway in the KEGG database is based 
on literature until 2013 and only included growth arrest and 
DNA-damage-inducible 45α (Gadd45a), cyclin-depend-
ent kinase inhibitor 1A (Cdkn1a) and Kruppel-like factor 
2 (Klf2), we also included the established FOXO targets: 
DNA-damage-inducible transcript 4 (Ddit4), Depp1 and 
Trib3 [77] (Fig. 4a) to investigate the downstream genes. 
Remarkably, the expression of all these genes were signifi-
cantly increased, of which Depp1 is the most upregulated 

Fig. 3   Analysis of mitochon-
drial genes affected by six hours 
Hypox (12% O2) versus Norm, 
(a) Gene set enrichment analy-
sis of Hypox versus Norm using 
the MitoCarta 3.0 gene sets with 
adjusted P-value < 0.05 and (b) 
heatmap showing all signifi-
cantly regulated genes under six 
hours hypoxia involved in mito-
chondrial metabolism using the 
MitoCarta 3.0 gene set, genes 
specifically involved in lipid 
metabolism are marked in bold. 
(c) Correlation between RER 
and Cpt1a expression (n = 24, 
combined Hypox and Norm)



1272	 Pflügers Archiv - European Journal of Physiology (2023) 475:1265–1281

1 3

Table 1   Overview of 
acylcarnitines and free carnitine 
levels in skeletal muscle after 
six hours Hypox (12% O2) 
versus Norm

Metabolites Norm (nmol/g) Hypox (nmol/g) FC P-value 95% confidence interval

Free carnitine
  L-carnitine 97.67 ± 25.25 92.78 ± 18.27 −1.05 0.593 −23.65, 13.88

Short-chain acylcarnitines
  C2-0 44.04 ± 5.15 44.44 ± 5.85 1.01 0.863 −4.28, 5.06
  C3-0 0.55 ± 1.23 0.54 ± 1.43 −1.03 0.795 −0.14, 0.14
  C4-0 2.78 ± 0.99 2.68 ± 0.62 −1.04 0.750 −0.82, 0.60
  C4OH 1.99 ± 0.76 2.30 ± 0.57 1.16 0.264 −0.26, 0.89
  C5-0 0.18 ± 0.05 0.15 ± 0.05 −1.21 0.128 −0.07, 0.10
  C5-1 0.02 ± 1.36 0.01 ± 1.65 −1.83 0.002 −0.01, 0.00
  C2-C5 49.58 ± 4.81 50.15 ± 5.82 1.01 0.798 −3.96, 5.10

Medium-chain acylcarnitines
  C4DC 3.09 ± 1.19 2.76 ± 1.11 −1.12 0.076 −0.64, 0.04
  C6-0 0.74 ± 0.31 0.76 ± 0.25 1.02 0.884 −0.22, 0.05
  C6-1 0.03 ± 1.46 0.03 ± 1.5 1.07 0.659 −0.01, 0.01
  C5DC 0.44 ± 0.09 0.61 ± 0.15 1.37 0.004 0.06, 0.27
  C8-0 0.37 ± 0.15 0.38 ± 0.13 1.05 0.756 −0.10, 0.13
  C8-1 0.15 ± 0.05 0.15 ± 0.05 −1.02 0.859 −0.05, 0.04
  C7DC 0.09 ± 0.04 0.13 ± 0.05 1.37 0.072 −0.00, 0.07
  C10-0 0.32 ± 0.15 0.41 ± 0.15 1.28 0.161 −0.04, 0.22
  C10-1 0.15 ± 0.07 0.18 ± 0.07 1.18 0.355 −0.03, 0.09
  C10-2 0.04 ± 0.02 0.03 ± 0.01 −1.08 0.674 −0.01, 0.01
  C12-0 0.96 ± 0.35 1.34 ± 0.57 1.40 0.064 −0.02, 0.78
  C12-1 0.21 ± 0.10 0.31 ± 0.13 1.49 0.048 0.00, 0.20
  C6-C12 6.64 ± 1.49 7.11 ± 1.42 1.07 0.434 −0.76, 1.70

Long-chain acylcarnitines
  C12DC 0.06 ± 0.03 0.09 ± 0.04 1.60 0.031 0.00, 0.06
  C14-0 2.46 ± 1.10 3.79 ± 1.73 1.54 0.037 0.09, 2.57
  C14-1 1.19 ± 0.47 1.89 ± 0.71 1.59 0.010 0.19, 1.22
  C14-2 0.46 ± 0.21 0.74 ± 0.30 1.61 0.016 0.06, 0.50
  C14OH 0.2 ± 1.77 0.32 ± 1.78 1.62 0.051 0.00, 0.33
  C14-1OH 0.16 (0.13, 0.17) 0.52 (0.27, 0.55) 2.41 0.014 0.10, 0.40
  C14-2OH 0.14 (0.09, 0.18) 0.46 (0.27, 0.54) 2.36 0.012 0.09, 0.41
  C16-0 10.21 ± 5.88 18.26 ± 8.70 1.79 0.015 1.72, 14.40
  C16-1 3.62 ± 1.93 6.89 ± 3.47 1.90 0.011 0.86, 5.69
  C16-2 2.07 ± 1.17 3.52 ± 1.77 1.70 0.030 0.16, 2.73
  C16OH 0.71 ± 1.95 1.06 ± 2.01 1.50 0.161 −0.11, 1.18
  C16-1OH 0.38 (0.25, 0.46) 1.03 (0.67, 1.23) 2.12 0.014 0.21, 0.85
  C16-2OH 0.15 ± 1.77 0.22 ± 1.79 1.47 0.117 −0.01, 0.21
  C16DC 2.22 ± 1.86 2.33 ± 1.99 1.05 0.856 −0.88, 1.84
  C18-0 276.6 ± 2.2 451.4 ± 2.23 1.63 0.146 −46.49, 608.62
  C18-1 885.7 ± 2.23 1755 ± 2.24 1.98 0.049 3.90, 2576.77
  C18-2 631.3 ± 2.4 1313 ± 2.37 2.08 0.051 −1.53, 2107.98
  C18-3 66.35 ± 2.12 122.5 ± 2.27 1.85 0.069 −3.43, 172.18
  C18OH 34.78 ± 2.28 44.61 ± 2.22 1.28 0.460 −12.31, 53.74
  C18-1OH 101.6 ± 2.26 199.1 ± 2.24 1.96 0.054 −1.37, 293.85
  C18-2OH 90.06 ± 2.3 161.8 ± 2.2 1.80 0.091 −8.61, 231.26
  C20-0 24.29 ± 2.5 37.58 ± 2.6 1.55 0.265 −7.26, 58.60
  C20-1 141 ± 2.54 250.5 ± 2.59 1.78 0.149 −28.07, 414.54
  C20-2 182 ± 2.42 314.7 ± 2.5 1.73 0.150 −35.07, 492.02
  C20-3 35.56 ± 2.13 53.43 ± 2.28 1.50 0.221 −8.22, 68.90
  C20-4 19.02 ± 1.91 26.85 ± 2.06 1.41 0.231 −3.99, 28.94
  C14-C20 2547 ± 2.26 4852 ± 2.24 1.90 0.065 −106.44, 7096.37

Total acylcarnitines 2621 ± 2.22 4924 ± 2.22 1.88 0.066 −113.23, 7045.45
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gene in the volcano plot (Fig. 2a). In addition, Trib3 expres-
sion was strongly correlated to blood glucose levels (Pearson 
r = 0.718, P-value < 0.001; Fig. 4c). Target genes of HIF1 
were also analyzed based on the study of Benita et al. [10]. 
Results showed that of the 159 reported HIF1 genes, only 
10 genes were regulated (Fig. S5). Among these 10 regu-
lated genes, Ddit4 and Cdkn1a are also FOXO target genes. 
Together, these results suggest an activation of the FOXO 
signaling pathway after six hours hypoxia exposure.

Six hours of hypoxia tended to cause denervation 
of NMJ and affect contractile fiber on gene 
expression

Based on the cluster of ‘postsynaptic asymmetric synapse 
neuron’ in the GO GSEA (Fig. 2d), we investigated the effect 
of six hours hypoxia exposure on genes involved in the NMJ. 
In total, 50 significantly regulated genes were mapped to 

unique SynGO annotated genes. Forty-four genes could be 
mapped to cellular component (Fig. 5a), and 41 genes could 
be mapped to the biological processes (Table S5). SynGO 
GSEA showed that 2 terms (modulation of chemical synap-
tic transmission and structural constituent of postsynapse) 
in biological processes and 3 terms (postsynaptic specializa-
tion, postsynaptic density and postsynaptic density, intracel-
lular component) in cellular components were significantly 
regulated (adjusted P-value < 0.05, Table S6). Additionally, 
based on the NMJ gene list [9, 26, 42, 43, 52, 68, 78], 4 
genes were upregulated in the Hypox versus Norm: cho-
linergic receptor nicotinic alpha polypeptide 1 (Chrna1; 
FC = 1.37), cadherin 15 (Cdh15; FC = 1.31), muscle-specific 
receptor tyrosine kinase (Musk; FC = 1.25) and myogenin 
(Myog; FC = 1.21; Fig. 5b).

The most downregulated gene Ttn (Fig. 2c) and the iden-
tification of the clusters actin-based cell apparatus compart-
ment (Fig. 2d) indicated that a six hours hypoxia exposure 

Table 1   (continued) Data were shown as mean ± SD, geometric mean ± geometric SD for lognormal distribution data, or 
median (IQR). FC representing in Hypox/Norm (n = 12 per group), P-value < 0.05 in Welch t-test or 
Mann–Whitney tests are marked in bold. 95% confidence interval was calculated for the difference in 
means (Hypox – Norm)

Fig. 4   The effect of six hours 
hypoxia on the FOXO signaling 
pathway. (a) Heatmap showing 
all significantly regulated genes 
involved in the FOXO pathway 
in Hypox (12% O2) versus 
Norm. (b) Schematic presenta-
tion of the FOXO pathway. 
(c) Correlation between blood 
glucose and Trib3 expression 
(n = 24, combined Hypox and 
Norm)



1274	 Pflügers Archiv - European Journal of Physiology (2023) 475:1265–1281

1 3

Fig. 5   The effect of six hour Hypox versus Norm on the muscle 
structure, ECM and NMJ. (a) SynGO sunburst of the genes involved 
in synapse based on the cellular components including child terms (b) 
Heatmap showing significantly regulated NMJ genes after hypoxia. 

(c) Heatmap showing significantly regulated genes under hypoxia 
based on the GO term contractile fiber and collagen genes. (d) Sche-
matic presentation of regulated genes (bold in c) that are involved in 
the ECM and contractile fiber
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also affected expression of genes involved in muscle struc-
ture. All regulated genes of the contractile fiber GO term and 
the collagen genes, which are important components of the 
ECM are schematically shown in Fig. 5a. Key genes related 
to ECM and muscle contractile fiber structure are shown in 
an heatmap (Fig. 5d), of which the highlighted genes are reg-
ulated by the hypoxia exposure. Of all genes involved in the 
thick filament, Ttn and myosin heavy polypeptide 6 (Myh6) 
were downregulated, while Myh7b was upregulated. How-
ever, in the thin filament, only 2 genes of troponin complex, 
troponin I1 (Tnni1) and troponin T1 (Tnnt1), were upregu-
lated. Notably, an upregulation of Tnni1, Tnnt1 and Myh7b 
and downregulation of Myh6 are all features of a slow fiber 
type, which may suggest a muscle fiber change to type I. 
Additionally, integrin β1 (Itgb1) which forms the receptor of 
collagen IV, were downregulated. Some collagen IV genes 
were altered, being Col4a1 and Col4a2 upregulated and 
Col4a6 downregulated. Other regulated genes involved in 
the ECM, based on MatrisomeDB are shown in Table S7. 
These results indicate that six hours of hypoxia tended to 
affect the ECM and contractile fibers, possibly shifting to 
oxidative, slow fibers, and denervate NMJ.

Discussion

Six hours of hypoxia impairs mitochondrial 
oxidative metabolism

In this study, we investigated the in vivo effects in the M. 
gastrocnemius upon a six hours environmental normobaric 
hypoxia (12% O2) exposure of male C57BL/6JOlaHsd adult 
obese mice. On whole body level, the six hours of hypoxia 
reduced energy expenditure, increased blood glucose and 
tended to further increase fat and decrease glucose oxidation 
as shown by a decreased tendency of RER. In M. gastrocne-
mius, C14-1, C16-0 and C18-1 acylcarnitines were signifi-
cantly increased, suggesting decreased tissue lipid oxidation, 
and transcriptomic analysis revealed the FOXO signaling 
pathway as the only pathway being significantly upregulated. 
Interestingly, the data suggest that the FOXO signaling path-
way is connected to the above described processes, but also 
to alterations in processes involved in skeletal muscle struc-
ture, ECM, tissue remodeling, and NMJ.

The decrease in oxygen consumption at the whole body 
level indicates a decrease in mitochondrial OXPHOS 
and subsequent metabolic rate. However, no decrease in 
OXPHOS gene expression was seen. This is different from 
long-term studies showing decreased expression levels of 
complex I and complex IV in human after 66 days at high 
altitude hypoxia exposure [60] and decreased complex I and 
IV activity and complex I protein levels in heart mitochon-
dria of rats exposed to 11% oxygen for two weeks [34]. The 

switch from oxidative (mitochondrial) to glycolytic ATP 
production may underlie the observed decreased oxygen 
consumption, but the increase in blood glucose levels sug-
gests that this is not the case. As the mice in the current 
study were exposed to acute hypoxia in a fasted state, the 
observed increased blood glucose could be triggered by a 
raised hepatic gluconeogenesis [20], an increased glyco-
gen degradation and/or a decreased glucose uptake and use 
by skeletal muscle [33]. Part of this could be mediated by 
FOXO [7, 31].

FOXOs play a critical role in hepatic glucose homeo-
stasis. Liver specific knockout of either FOXO1 alone or 
FOXO1/3/4 together led to lower blood glucose levels under 
both fasting and non-fasting conditions in mice [72], which 
also indicates FOXO may play an important role in obe-
sity. To regulate blood glucose, FOXOs activate the hepatic 
gluconeogenic program transcriptionally [25, 72]. In con-
trast, FOXOs inhibit glycolysis, likely through suppression 
of glucokinase and pyruvate kinase gene expression [84, 
109]. However, our results did not show a gene regulation 
of rate-limiting enzymes of glycolysis although FOXO sign-
aling was increased in muscle (Fig. 4b). The significantly 
increased blood glucose levels without changes in serum 
insulin levels suggests a glucose intolerance state, as it was 
also seen in our previous hypoxia studies [27, 28]. This may 
be due to the strong upregulation of the FOXO target Trib3. 
TRIB3 is known to suppress insulin-stimulated glucose 
uptake in skeletal muscle [58]. Furthermore, Trib3 expres-
sion positively correlated with blood glucose levels (Fig. 4c). 
Together with increased blood glucose levels, unaffected 
insulin levels (Fig. 1e) and decreased muscle expression lev-
els of Insr, this suggests that a six hours hypoxia exposure 
decreased insulin signaling in muscle. This data is consistent 
with experiments with isotope-labeled glucose in humans 
after 2–10 days exposure to very high altitude and with stud-
ies showing that first 2 days exposure of very high altitude 
initially increased fasting blood glucose in humans [15, 59, 
104].

The tendency of a decreased whole body RER corre-
lated with the increased expression of Cpt1a, suggesting a 
compensatory response to elevate lipid catabolism. In addi-
tion to Cpt1a, Slc25a20 (Cact) and Enoyl CoA hydratase-1 
(Ech1; FC = 1.58) were upregulated on the transcriptome 
level. ECH1 metabolizes unsaturated fatty acids with dou-
ble bonds in odd-numbered positions along the carbon 
chain [66]. However, expression of other genes involved 
in β-oxidation, including the major muscle CPT1, Cpt1b, 
were not changed. Since six hours hypoxia accumulated 
C12-C16 acylcarnitines, especially the clinical diagnostic 
tissue C14-1, C16-0 and C18-1 acylcarnitines, in the muscle 
tissue, this suggests an incomplete β-oxidation. Therefore, 
the upregulation of Cpt1a and Slc25a20 was most likely 
an attempt to amend the reduced ATP availability and the 
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decreased RER might reflect a strong reduction in glucose 
oxidation rather than an increased lipid oxidation, together 
with reduced metabolic rate (energy expenditure). This is 
in line with other studies of hypoxia exposure that showed 
suppressed fatty acid catabolism in skeletal muscle [74]. 
These results contrasted with other long-term studies that 
showed the opposite results, with hypoxia enhancing fatty 
acid β-oxidation in mouse after 8-week high-fat-diet (HFD) 
at 4300 m [93] and in humans after a 16-day high-altitude 
hypoxia (5260 m) [19].

Upon hypoxia exposure, the most upregulated transcript 
in the M. gastrocnemius was Depp1 (Fig. 2b). Depp1 was 
previously shown to be upregulated by hypoxia in kidney and 
brain [94], and to be mediated by FOXO1 in endothelial cells 
and skeletal muscle [77, 94]. DEPP1 is a critical stimulator 
of autophagy, a highly conserved catabolic process, which 
removes damaged and redundant cell components to pro-
mote survival and to counteract nutrient and energy shortage 
[83]. DEPP1 was shown to upregulate autophagy via the 
induction of reactive oxygen species (ROS) [83]. Interest-
ingly, mild hypoxia has been associated with increase ROS 
production, while ROS production is decreased with severe 
hypoxia in cells [85]. Although it was not evident from our 
data, possibly because of the short duration of hypoxic expo-
sure, it is tempting to speculate that the observed increase 
in Depp1, likely mediated by FOXO signaling, occurred to 
protect skeletal muscle against energy shortage, by alter-
ing ROS-mediated signaling and concomitantly increasing 
autophagy.

Overall, our results show that six hours hypoxia (12% O2) 
exposure of mice significantly decreased energy expenditure, 
with a concomitant increase in plasma glucose. The upregu-
lation of Depp1 and mitochondrial pathways may possibly 
be a response to restore energy status (Fig. 3a). However, no 
major alterations in core energy metabolic gene expression 
were observed.

The central role of FOXO signaling

Our transcriptome-based KEGG pathway analysis identi-
fied the FOXO signaling pathway as the only significantly 
regulated pathway that was affected in the M. gastrocnemius 
upon a six hours exposure of mice to environmental normo-
baric hypoxia (12% O2). This agrees with a study in skeletal 
muscle of fish, where the FOXO signaling pathway was sig-
nificantly enriched in the hypoxia tolerant group, with Foxo1 
being upregulated [18]. In mouse skeletal muscle, Gan et al. 
showed that after 2-h hypoxic (8% O2) exposure, AKT was 
dephosphorylated, which may promote downstream acti-
vation of FOXO [32]. Likewise, we found downregulated 
upstream genes related to phosphorylation state of FOXO, 
such as Igf1, Insr, Irs3, Akt3 and Chuk. Indeed, acute liver-
specific knockout of Insr enhanced FOXO1 activity and 

glucose intolerance [96]. Next to phosphorylation, FOXO1 
can be methylated by PRMT1, which promotes the nuclear 
retention of FOXO1 by blocking the insulin/AKT-mediated 
phosphorylation at adjacent serine residues [106]. Similar 
to our result of increased Prmt1 expression, Bayen et al. 
found increased PRMT1 expression, which in turn increased 
FOXO1 nuclear translocation and caused a decrease in glu-
cose uptake and hyperglycemia in rats exposed to hypobaric 
hypoxia [8]. Importantly, we found that Trib3, Depp1, Ddit4, 
Gadd45a, Cdkn1a, and Klf2, all key downstream genes of 
FOXO are being upregulated after 6 h hypoxia exposure. 
Previously, TRIB3 was shown to be induced by hypoxia 
(0.1–0.5% O2) in breast cancer cells [13] and in rat pulmo-
nary artery smooth muscle cells (5% O2) [16], Expression of 
Ddit4 and Gadd45a were previously shown to be increased 
under hypoxia and oxidative stress [62, 64, 88]. Though 
Ddit4 and Cdkn1a can be regulated by HIF1, analysis of 
HIF1 target genes supports that not HIF1, but FOXO1 may 
be the main regulator of skeletal muscle gene expression 
after 6 h hypoxia, which agrees to the results of Gan et al. 
[32]. Together our results indicates that six hours of normo-
baric hypoxia resulted in increased FOXO1 signaling in skel-
etal muscle, of which several regulated FOXO downstream 
genes are connected to blood glucose regulation (Trib3) and 
lipid handling as discussed previously. Strikingly, FOXO can 
also regulate muscle regeneration (via Cdkn1a and Klf2), the 
ECM [105] and NMJ (Chrna1) [11], which cumulatively 
suggests FOXO being involved in regulating all these pro-
cesses. Long-term hypoxia, on the contrary, activated AKT 
and thereby inhibited FOXO1 in obese mice [93, 103]. It 
would therefore be interesting to study the effects of longer 
exposure and well as earlier timepoints on FOXO signal-
ing. Due to the 6-week 40en% fat diet to mimic human fat 
consumption, adiposity of these mice was 30% at the time of 
hypoxia exposure. Therefore, these mice may be considered 
obese according to the WHO definition of human obesity 
and the lack of a specific definition for mouse obesity [24] 
and our results may not represent effects of acute hypoxia 
exposure in lean mice.

Hypoxia, FOXO and skeletal muscle structure

In this study, we observed regulation of several genes 
featured in thin and thick filaments of type I (oxidative) 
muscle fiber (Fig. 5c), of which the upregulation of Tnni1, 
Tnnt1 and Myh7b indicated that six hours hypoxia stimu-
lated a switch to type I muscle fiber. Our findings agreed 
with observations in longer-term hypoxia exposure. For 
example, three-day hypoxia (4% O2) treatment remark-
ably elevated gene and protein expression of oxidative 
type I myosin heavy chain isoform in C2C12 cells [92]. 
Studies also found that high-altitude native deer mice 
have more type I fibers in the M. gastrocnemius [17, 65, 
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86]. Mechanistically, increased Foxo1, Cpt1a or Trib3 has 
shown to significantly alter type I and type II muscle fiber 
proportions in mice [57]. Consistent with our results, over-
expression of Trib3 increased the number of type I fibers 
threefold in M. soleus and increased expression of Myh7 
and Myh7b in M. gastrocnemius [3]. Moreover, overex-
pression of Cpt1a showed a 28% increase in succinate 
dehydrogenase positive fibers indicating more oxidative 
capacity of the fibers [35]. However, overexpression of 
Foxo1 reduced the number of type I fibers and the size of 
type I and type II fibers in skeletal muscle [48].

Long-term hypoxia-induced changes of muscle fibers 
and excessive accumulation of ECM were observed in 
skeletal muscle [95, 98]. In addition, FOXO1/3 have been 
shown to ameliorate fibrosis characterized by ECM depo-
sition in various organs, including the heart, liver, lung, 
and kidney [105]. In skeletal muscle, FOXO was found 
to be necessary for the cancer-induced downregulation of 
ECM genes [46]. Here we observed an increased FOXO 
signaling (Fig. 4b) as well as ECM alterations (Table S7). 
Our results strongly suggested six hour hypoxia indicated 
long-term hypoxia effect on ECM.

Maintenance of muscle mass and function also depends 
on other processes, including differentiation, regeneration 
and innervation and hypoxia was shown to represses dif-
ferentiation of myoblasts [79]. FOXO also has a role in 
skeletal muscle differentiation since it is a regulator of 
myoblast fusion and of the skeletal muscle terminal dif-
ferentiation program [1]. We observed links of FOXO with 
skeletal muscle regeneration since the downstream genes 
of FOXO signaling [67, 69] are upregulated (Klf2 and 
Cdkn1a). KLF2 plays a central role in the activation and 
phenotypic determination of various immune cell types, 
particularly those related to skeletal muscle regeneration 
[23]. Under hypoxia, transcription of Cdkn1a that inhibits 
differentiation and cell cycle can be enhanced by hypoxia 
response elements [45]. Next to FOXO, Cdkn1a can also 
be activated by myogenin (MYOG) which is activated by 
hypoxia in C2C12 cells [110] and involved in skeletal 
muscle differentiation by promoting cell cycle exit [67, 
91]. In this study, Cdkn1a and Myog were upregulated. 
MYOG was increased in denervated skeletal muscle, and 
MYOG inhibition could alleviate denervation-induced 
muscle atrophy [67]. Therefore, the activated downstream 
gene of FOXO1, Cdkn1a, can be linked to NMJ dener-
vation. This NMJ link was strengthened by the observed 
upregulation of Chrna1, encoding the acetylcholine recep-
tor subunit alpha, which has been identified as a FOXO 
target in muscle [11]. Notably, expression of NMJ genes 
Chrna1, Cdh15, Musk and Myog has also been observed 
in denervated skeletal muscle [21, 67, 75, 90]. Thus, our 
results indicates that hypoxia inhibits muscle regeneration 
and results in denervated NMJ via FOXO signaling.

Conclusion

Six hours exposure to normobaric hypoxia (12% O2) activates 
FOXO signaling in M. gastrocnemius of adult obese mice, 
which may link to the observed reduced oxidative metabo-
lism and concomitant increase in serum glucose levels with-
out increased fatty acid catabolism in muscle. Moreover, a 
possible impact on autophagy exists via the most upregulated 
transcript Depp1. Importantly, the hypoxia-induced FOXO 
activation may also be connected to fiber type shift, ECM 
remodeling, muscle differentiation and the NMJ, which are 
all involved in skeletal muscle structure. These observations, 
despite being descriptive, suggests that even a six hours expo-
sure to 12% O2 environmental hypoxia can initiate alterations 
in skeletal muscle function and remodeling with a central role 
for FOXO. Thus, as it is observed in sleep apnea, aging, dia-
betes, and bouts of hypoxia during moderate activity, hypoxia 
may contribute to tissue remodeling, ultimately contributing 
to a lower quality of life. In particular, since intact NMJ are 
a key to muscle activation and essential to prevent muscle 
wasting, the observed impact on innervation of the NMJ is a 
novel result that deserves further investigation.
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