
Vol.:(0123456789)1 3

Pflügers Archiv - European Journal of Physiology (2023) 475:561–568 
https://doi.org/10.1007/s00424-023-02801-3

REVIEW

Gamma oscillations provide insights into cortical circuit development

Sebastian H. Bitzenhofer1 

Received: 24 January 2023 / Revised: 20 February 2023 / Accepted: 22 February 2023 / Published online: 3 March 2023 
© The Author(s) 2023

Abstract
Rhythmic coordination in gamma oscillations provides temporal structure to neuronal activity. Gamma oscillations are 
commonly observed in the mammalian cerebral cortex, are altered early on in several neuropsychiatric disorders, and provide 
insights into the development of underlying cortical networks. However, a lack of knowledge on the developmental trajectory 
of gamma oscillations prevented the combination of findings from the immature and the adult brain. This review is intended 
to provide an overview on the development of cortical gamma oscillations, the maturation of the underlying network, and 
the implications for cortical function and dysfunction. The majority of information is drawn from work in rodents with 
particular emphasis on the prefrontal cortex, the developmental trajectory of gamma oscillations, and potential implications 
for neuropsychiatric disorders. Current evidence supports the idea that fast oscillations during development are indeed an 
immature form of adult gamma oscillations and can help us understand the pathology of neuropsychiatric disorders.
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Introduction

The temporal coordination of action potentials fired by 
a group of neurons is important for activity in neuronal 
networks. Particularly in networks with weak excitatory 
synapses, such as the mammalian cerebral cortex, 
synchronization of neurons is critical. Activation of an 
individual excitatory synapse rarely suffices to trigger an 
action potential in a cortical neuron and only the summation 
of several inputs close in time can push the membrane 
potential above the action potential threshold [51]. Non-
linear effects of synaptic integration in neuronal dendrites 
further enhance the impact of synchronous inputs [51]. 
Therefore, the impact of neuronal activity strongly depends 
on its temporal coordination within the local network.

Temporal organization of neuronal activity in 
oscillatory rhythms is a commonly observed phenomenon 
in the cerebral cortex [15]. Oscillatory rhythms can 
be detected in recordings of individual neurons, but 

more commonly they are investigated with extracellular 
recordings of field potentials, obtained by methods such as 
electroencephalography, electrocorticography or intracranial 
electrophysiology. These methods provide information about 
the activity of a neuronal network without the need to record 
from each individual neuron. The features of oscillatory 
rhythms provide information about the underlying network.

Considerable attention has been given to gamma 
oscillations, rhythmic activity with a frequency in the range 
of 30–100 Hz. Cortical gamma oscillations typically occur 
when an area is activated and they are generated by the 
interaction of excitatory neurons and specific populations 
of inhibitory interneurons [16].

Altered gamma oscillations in the adult cortex have been 
associated with several neuropsychiatric disorders and have 
been suggested as a diagnostic biomarker [43, 50, 53]. Many 
of these disorders have a developmental origin [31, 34, 44]. 
This raises the questions whether gamma oscillations are 
already impaired during development and whether they can 
be linked to the progression of these disorders. Addressing 
these questions requires a general understanding of the 
physiological development of gamma oscillations.

Oscillations in the low gamma frequency range have 
been reported for several cortical areas during postnatal 
development in rodents [3, 14, 37, 59]. Further, immature 
gamma oscillations are altered in mouse models of 
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neuropsychiatric disorders already during early postnatal 
development [21, 23]. However, some properties of these 
immature gamma oscillations are different from their adult 
counterpart: they appear in brief bursts of 100–300 ms, 
have a lower amplitude and a lower frequency compared 
to adult gamma oscillations in the cortex [59]. This raises 
the question whether fast oscillations during development 
represent an immature form of adult gamma oscillations or 
whether they are mechanistically different.

This review aims to summarize recent progress regarding 
the questions raised above with a focus on the development 
of gamma oscillations in the prefrontal cortex of mice. The 
review starts with a brief summary of the current knowledge 
on gamma oscillations in the adult cortex, followed by what 
is known about their development and their impairment in 
neuropsychiatric disorders. At the end, the role of gamma 
oscillations for the activity-dependent refinement of cortical 
networks is discussed.

Gamma oscillations in the adult cerebral 
cortex

The precise frequency of gamma oscillations depends 
on the network of interest but typically is in the range of 
30–100 Hz in the cerebral cortex. This corresponds to a 
cycle duration of 10 to 33 ms. Several excellent reviews 
discuss the mechanisms and the role of gamma oscillations 
in the adult cortex [16, 27, 52]. Briefly, typical cortical 
gamma oscillations occur at a frequency of ~ 60 Hz and are 
generated by interactions of excitatory pyramidal neurons 

and inhibitory fast-spiking interneurons that express 
parvalbumin  (PV+) (Fig. 1A) [6, 18]. Oscillatory activity in 
beta/low gamma frequency depends on interactions between 
pyramidal neurons and regular-firing somatostatin-expressing 
interneurons  (SOM+) [20]. Gamma oscillations evoked by 
gratings in the visual cortex have a peak frequency at ~ 40 Hz 
and depend on  SOM+ but not  PV+ interneurons indicating 
that the specific features of the activated microcircuit in each 
area can lead to variations in oscillatory frequency [1, 55].

The activity of specific neuronal populations is 
concentrated at specific phases of a gamma cycle (Fig. 1B) 
[27]. When a sufficiently large group of pyramidal neurons 
fires together, they activate nearby  PV+ interneurons which 
provide inhibitory feedback to the local network.  PV+ 
interneurons target the cell bodies of pyramidal neurons and 
are therefore ideally positioned to block the generation of 
action potentials. The high connectivity of  PV+ interneurons 
to nearby pyramidal neurons results in a break of firing that 
lasts until inhibition fades off, pyramidal neurons can fire 
again, and the cycle repeats. A key parameter defining the 
duration of this break and thereby the duration of a gamma 
cycle is the time constant of inhibitory synaptic potentials. 
This is largely determined by the decay time constant of 
GABA-A receptors, which is in the range of 10 ms in the 
adult cortex [32].

The temporal organization of neuronal firing to specific 
phases of each gamma cycle concentrates activity of the 
local excitatory population to a time window of about 
10 ms [27]. This synchronization allows for the temporal 
integration of excitatory synaptic inputs, mainly mediated 
by AMPA receptors, with a decay time constant of about 

Fig. 1  Gamma oscillations in the cerebral cortex. (A) Fast oscilla-
tory rhythms are generated by the interaction of excitatory pyramidal 
neurons and inhibitory interneurons. Gamma oscillations at ~ 60  Hz 
are associated with  PV+ interneurons, where slower beta oscillations 
are associated with  SOM+ interneurons. (B) The rhythmic interac-
tions of pyramidal neurons and  PV+ interneurons result in alternating 
windows of high and low excitability. The cycle duration is largely 

defined by the duration of inhibitory postsynaptic potentials which 
define the duration of a break in the firing of pyramidal neurons. 
PYRs — pyramidal neurons,  PV+ INs — parvalbumin-expressing 
interneurons,  SOM+ INs — somatostatin-expressing interneurons, 
EPSC — excitatory postsynaptic potential, IPSC — inhibitory post-
synaptic potential
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3 ms [51]. Pyramidal neurons optimally integrate inputs 
to their distal dendrites that are within ~ 10 ms, whereas 
inputs closer to the soma are optimally integrated for a time 
window of ~ 50 ms [56]. The dendrites of pyramidal neurons 
preferentially receive lateral and top-down inputs, indicating 
that gamma oscillations could provide the optimal temporal 
structure to integrate sensory information with contextual 
information [48, 54]. This indicates that pyramidal neurons 
might be particularly receptive to dendritic input during 
gamma oscillations. Thus, synchronization of neuronal 
activity in gamma frequency modulates the processing in 
cortical networks.

Development of cortical gamma oscillations

The molecular differentiation of diverse neuronal subtypes 
and their arrangement into cortical layers during embryonic 
development is mostly guided by molecular factors governed 
by genetic programs [12]. Excitatory neurons originate from 
the subventricular zone and undergo radial migration to form 
the cortex in an inside-out progression, whereas interneurons 
originate from the ganglionic eminence and migrate 
tangentially into the cortex [30, 41]. Once all cortical 
neurons have reached their final destination around birth in 
rodents, a crucial step in cortical development is completed. 
But another crucial phenomenon is just about to start: 
neurons become electrically active, expand their dendrites 
and axons, and form chemical synaptic connections [34, 
39]. This process transforms an accumulation of segregated 
neurons into a network capable of coordinating its activity.

Initially, cortical neurons possess low spontaneous 
activity and fire relatively slow action potentials which 
rapidly mature during the first postnatal weeks [39, 49]. 
Weak synaptic connections during early development result 
in weak coordination of neuronal activity, but the gradual 
increase of synapse density and strength during the first 
postnatal weeks leads to a steep rise of coordinated activity 
patterns in cortical networks [4, 5, 34, 39, 42]. Initially, 
temporally coordinated activity is short-lived, with brief 
bursts interrupting periods of electrical silence. These early 
activity patterns, so-called spindle bursts, emerge towards 
the end of the first postnatal week, have been described in 
several cortical areas, last for 2–3 s, and organize activity in 
oscillations with frequencies from 4 to 12 Hz [14, 42, 59]. 
Spindle bursts organize neuronal activity locally, but also 
coordinate activity between areas [2, 14].

However, it is only at the beginning of the second 
postnatal week that oscillations at faster frequencies start 
to emerge (Fig.  2A) [10, 14, 37]. Initially, short-lived 
rhythmic synchronization of neuronal activity at the low 
end of the gamma frequency range occurs nested into 
spindle bursts [14]. Simultaneous recordings of synaptic 
inputs to single neurons and local field potentials in the 
prefrontal cortex revealed that particularly excitatory inputs 
to interneurons strongly correlate with these developmental 
gamma oscillations [11]. Notably, in primary sensory areas 
of the cortex, there is a distinct pattern of high-frequency 
oscillations that occurs transiently during the first postnatal 
week, i.e. early gamma oscillations, that are driven by 
excitatory input from the thalamus and are mechanistically 
different from adult gamma oscillations [46].

Fig. 2  Gamma oscillations 
increase in frequency during 
postnatal development. (A) 
Recordings of the local field 
potential and unit activity in the 
prefrontal cortex of mice from 
postnatal day 7 to 40. The plot 
was made using data from a 
previous publication [10]. (B) 
Schema illustrating how the 
developmental increase in the 
frequency of gamma oscilla-
tions correlates with the matura-
tion of inhibition, particularly of 
fast-spiking  PV+ interneurons. 
PV — parvalbumin, SOM — 
somatostatin, IPSC — inhibi-
tory postsynaptic potential
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Layer-specific optogenetic activation identified pyramidal 
neurons in layer 2/3, but not layer 5/6, as the main driver 
of developmental gamma oscillations in the prefrontal 
cortex of mice [8]. The developmental trajectory of gamma 
oscillations triggered by such optogenetic stimulation is 
consistent with spontaneous gamma oscillations [10]. 
They emerge in the second postnatal week with initially 
low amplitude and frequency at about 15 Hz, which would 
be considered beta frequency according to the frequency 
bands defined for adults [8, 10, 14]. Amplitude and 
frequency consistently increase during development until 
they plateau at a level typical for adult gamma oscillations 
around postnatal day 25 (Fig. 2B) [10]. This increase in 
gamma frequency correlates well with the maturation of 
 PV+ fast-spiking interneurons [10]. It also matches the 
development of balanced ratios of excitatory and inhibitory 
inputs onto pyramidal neurons, which largely depends on 
 PV+ interneurons and might be required for the frequency 
modulation of gamma oscillations [6, 25, 58]. The frequency 
of gamma oscillations in the visual cortex shows a similar 
increase during postnatal development [19, 35].

Despite the slower frequency, similarities in the mechanism 
and the monotonic increase of frequency with age indicates 
that fast oscillatory activity during development represents 
an immature form of adult gamma oscillations. The exact 
mechanisms that lead to the increase in frequency are not 
entirely clear, but a dependency on the maturation of fast-
spiking  PV+ interneurons and the acceleration of the kinetics 
of inhibitory postsynaptic potentials can be postulated 
[10, 39]. In the adult cortex,  SOM+ and  PV+ interneurons 
are involved in the generation of slow and fast gamma 
oscillations [20]. While  SOM+ interneurons are relatively 
stable in numbers,  PV+ interneurons increase the expression 
of their typical marker PV and start to develop their fast-
spiking characteristics during postnatal development [10]. 
Therefore, a developmental shift of the relative contribution 
to inhibitory feedback from  SOM+ to  PV+ interneurons might 
also contribute to the increase in gamma frequency.

Developing gamma oscillations 
and neuropsychiatric disorders

Impaired gamma oscillations in the cortex are associated with 
a range of neuropsychiatric disorders in adults [43, 50, 53]. 
Dysfunctions of  PV+ interneurons and failed integration into 
cortical microcircuits underlie altered gamma oscillations [24, 
29, 50]. Deficient gamma oscillations in the prefrontal cortex 
have been linked to cognitive symptoms which are common 
in neuropsychiatric disorders and their rescue can alleviate 
cognitive impairment in mouse models [24, 50].

The onset of symptoms during childhood or adolescence 
for many neuropsychiatric disorders suggests a developmen-
tal component for their pathogenesis [21, 28, 44]. While 
disturbed gamma oscillations were shown for prodromal 
schizophrenia patients, investigations during earlier develop-
mental periods are difficult to perform in humans [40]. Stud-
ies in a mouse model of neuropsychiatric disorders revealed 
reduced oscillatory activity in low-gamma frequency range 
in the prefrontal cortex during development [23, 57]. This 
disturbance resulted from a reduced capability of layer 2/3 
pyramidal neurons to drive gamma oscillations, matched the 
frequency bands and the mechanisms of immature gamma 
oscillations, and correlated with cognitive abilities [10, 23]. 
Reduced gamma oscillations in this mouse model most 
likely arise from an excessive pruning of excitatory synapses 
due to microglial hyperfunction which results in impaired 
excitation-inhibition balance and decorrelated network activ-
ity [22, 23]. Restoring layer 2/3 microcircuits in the prefron-
tal cortex by inhibition of microglial hyperfunction rescued 
immature gamma oscillations and cognitive abilities [23].

These results suggest that the coordination of activity 
in fast oscillatory rhythms, particularly immature gamma 
oscillations, is impaired early during development in neu-
ropsychiatric disorders, probably before clinically relevant 
symptoms can be reliably detected. Further research on the 
specificity of these alterations is required, but the existing 
studies indicate a potential for cortical gamma oscillations as 
an early biomarker for neuropsychiatric disorders [31, 50]. 
Certainly, research on immature gamma oscillations holds 
great promise to further our understanding of the pathophys-
iology of neuropsychiatric disorders.

Gamma oscillations and activity‑dependent 
network refinement

While the initial formation of the cortex is largely controlled 
by molecular factors, activity-dependent mechanisms gain 
importance for the refinement of cortical networks [12, 33]. 
Genetic and activity-dependent mechanisms do not act in 
isolation, but activity takes a leading role during postna-
tal development [12]. Neuronal activity influences a wide 
range of developmental processes, such as dendritic growth, 
synapse formation and pruning, and the balancing of excita-
tory and inhibitory inputs [36, 38]. This raises the question 
whether altered immature gamma oscillations in neuropsy-
chiatric disorders are merely a consequence of a dysfunc-
tional cortical network or whether they actively contribute 
to the impairment and thereby to disease progression.

Several studies in mice provide new insight on the 
potential role of early activity for the maturation of 
cortical networks and cognitive abilities. Inhibition of the 
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mediodorsal thalamus during adolescence leads to long-
lasting impairments in prefrontal cortex function, whereas the 
same manipulation at older age has acute but no long-lasting 
impact [7, 47]. Along the same lines, a transient manipulation 
that increases the activity of cortical pyramidal neurons 
has long-lasting consequences for the development of the 
prefrontal cortex when it is performed at the beginning, but 
not at the end of the second postnatal week [9]. The transient 
manipulation increases the baseline activity and excitability 
of pyramidal neurons due to an imbalanced excitation-
inhibition ratio [9, 45]. This imbalance most likely results 
from a mismatch of  PV+ interneuron-mediated inhibition 
which balances neuronal activity levels and thereby excitatory 
inputs [9, 58]. Under physiological conditions, this balance 
is established during the third postnatal week [25, 58]. 
Notably, transiently increasing activity altered the number 
and composition of cortical interneurons, indicating that the 
network lacks the prerequisites to establish a physiological 
excitation-inhibition ratio after early manipulation [9]. This 
process might be regulated by an interplay of interneurons 
and oligodendrocyte precursor cells, which regulate the 
apoptosis of cortical interneurons in an activity-dependent 
manner [26].

These network alterations induced by the transient 
developmental stimulation of layer 2/3 pyramidal neurons 
result in impaired coordination of cortical activity in gamma 
oscillations later in life [9, 45]. Interestingly, the impairment 
of gamma oscillations only becomes prominent several weeks 
after the manipulation, when the circuit for the generation of 
gamma oscillations matures, and is most striking when the 
animals perform a task that requires the prefrontal cortex [9]. 
Ultimately, these changes result in impaired performance in 
cognitive tasks at older age, that are associated with cortical 
gamma oscillations [9, 45]. This is consistent with an 
impairment of cognitive flexibility and task associated gamma 
oscillations in adult mice after transient developmental 
inhibition of prefrontal PV + interneurons [17].

The stimulation of layer 2/3 pyramidal neurons during 
the second postnatal week did not simply increase activity 
but also enhanced the coordination of activity in immature 
gamma oscillations [9]. It is not yet known whether the long-
lasting changes in network activity and cognitive behavior 
are generally due to the transient increase of activity or spe-
cifically due to the synchronization of activity in immature 
gamma oscillations. However, the tight temporal coordina-
tion of neuronal activity during gamma oscillations are likely 
to have a strong influence on plasticity mechanisms during 
the refinement of neuronal networks [38]. Impaired gamma 
oscillations are associated particularly with alterations of the 
excitation-inhibition ratio in the cortex which is established 
during postnatal development [6, 25]. Whether immature 
gamma oscillations actively contribute to the formation of 

the tight matching of inhibitory inputs to excitatory inputs 
in individual pyramidal neurons remains to be investigated. 
Further studies are required to narrow down the develop-
mental periods critical for the establishment of excitation-
inhibition balance and to elucidate the mechanisms by which 
synchronization of neuronal activity in gamma oscillations 
might contribute to it.

In conclusion, these findings show that coordinated activ-
ity patterns do not only provide a valuable information about 
the development of cortical networks, but can also perturb 
their normal development. Maybe coordinated activity pat-
terns can even be used for targeted interventions to correct 
deviations from the normal developmental trajectory. Along 
these lines, a recent study showed that correcting develop-
mental deficits of glutamatergic transmission in layer 2/3 of 
the cortex rescues electrophysiological deficits and prevents 
the development of symptoms in a mouse model of Hunting-
ton’s disease later in life [13].

Conclusions and open questions

Immature gamma oscillations emerge in the cerebral cortex 
during the second postnatal week in mice and increase 
their frequency until adolescence. Despite having a slower 
frequency, similarities of the underlying mechanisms and the 
continuous developmental trajectory suggest that immature 
gamma oscillations are the precursor of adult gamma 
oscillations. This provides new insights on the development 
of cortical networks, particularly on the maturation of 
fast-spiking interneurons. Further, it mechanistically links 
findings on impaired gamma oscillations in mouse models of 
neuropsychiatric disorders during early life and in adulthood 
which raises several interesting questions:

• How does the developmental trajectory of gamma 
oscillations change in neuropsychiatric disorders? 
Knowing the type and the timeline of deviation from 
physiological development would help to narrow down 
the set of potential impairments underlying later-emerging 
symptoms. Further, it might help to identify developmental 
periods of particular vulnerability.

• Do the deviations of gamma oscillations differ for specific 
disorders? Considering the developmental trajectory of 
immature gamma oscillations increases the chances of 
identifying features that are specific to certain disorders 
and could therefore be used as early biomarkers to help 
with diagnosis.

• Are certain developmental windows better suited for 
intervention than others? The same intervention can 
result in very different outcomes when it is performed at 
different time points in a continuously changing system. 
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Comparison of the physiological and pathological 
development of gamma oscillations could help identify 
optimal time windows for specific interventions.

There is a continuously improving understanding of cortical 
gamma oscillations, their development, and how they relate 
to the structures of the underlying neuronal networks. With 
the current knowledge it is hard to predict whether gamma 
oscillations will be of clinical importance as early biomarkers 
or for therapeutic intervention. Promising results come from a 
human study, which identified specific developmental changes 
of auditory-evoked gamma oscillations in individuals at high 
genetic risk for psychosis [43]. Irrespective of their potential 
as biomarkers, understanding the development of gamma 
oscillations will certainly expand our knowledge on the 
maturation of cortical networks, as well as the mechanisms 
underlying pathological deviations.
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