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Abstract
Eccentric muscle loading encompasses several unique features compared to other types of contractions. These features 
include increased force, work, and performance at decreased oxygen consumption, reduced metabolic cost, improved energy 
efficiency, as well as decreased muscle activity. This review summarises explanatory approaches to long-standing questions 
in terms of muscular contraction dynamics and molecular and cellular mechanisms underlying eccentric muscle loading. 
Moreover, this article intends to underscore the functional link between sarcomeric components, emphasising the fundamental 
role of titin in skeletal muscle. The giant filament titin reveals versatile functions ranging from sarcomere organisation and 
maintenance, providing passive tension and elasticity, and operates as a mechanosensory and signalling platform. Structurally, 
titin consists of a viscoelastic spring segment that allows activation-dependent coupling to actin. This titin-actin interaction 
can explain linear force increases in active lengthening experiments in biological systems. A three-filament model of skeletal 
muscle force production (mediated by titin) is supposed to overcome significant deviations between experimental observations 
and predictions by the classic sliding-filament and cross-bridge theories. Taken together, this review intends to contribute 
to a more detailed understanding of overall muscle behaviour and force generation—from a microscopic sarcomere level to 
a macroscopic multi-joint muscle level—impacting muscle modelling, the understanding of muscle function, and disease.
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Introduction

Versatile muscle functions in eccentric loading

Skeletal muscles represent fascinating and complex machin-
ery, enabling active force production, movement and sta-
bility of the skeleton, storage and transport of substances 
within the body, and generation of heat (1, 2). These multi-
ple functions are based on the way muscles work. Muscles 
perform concentric, isometric, and eccentric contractions 
and the combinations thereof. The fundamental understand-
ing of skeletal muscle contraction is central to muscle physi-
ology. While the molecular and cellular mechanisms under-
lying concentric (force generation during muscle shortening) 
and isometric (at constant muscle length) contractions are 

quite well described by the classic sliding-filament (3, 4) 
and cross-bridge theories (5), at least for a particular length 
range (6), the mechanisms underpinning eccentric contrac-
tions remain to be elucidated. Eccentric contractions refer to 
muscle actions that occur when the external force applied to 
the muscle exceeds the force produced by the muscle itself, 
resulting in a lengthening action (i.e. when work is done on 
the muscle) (7, 8). Lengthening actions are an essential part 
of everyday movements involving deceleration, e.g. after a 
jump or walking downstairs, support the weight of the body 
against gravity, serving as shock absorbers and struts dur-
ing locomotion (9). Another important feature of eccentric 
contractions is their ability to absorb mechanical energy 
during muscle lengthening, recover that stored energy and 
increase the active force generated during subsequent short-
ening contractions compared to pure muscle shortening (10, 
11). This coupling of eccentric immediately followed by 
concentric contractions is referred to as stretch-shortening 
cycles (SSCs; Fig. 1)—an important phenomenon associated 
with powerful and efficient movements at reduced metabolic 
energy expenditure (11–13).
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Compared to concentric and isometric muscle actions, 
eccentric contractions show some further unique features 
responsible for the high efficiency observed. Fewer motor 
unit activation (14, 15), reduced cardiorespiratory and hemo-
dynamic reactions, and less metabolic consumption for a 
given force (7), are associated with eccentric muscle actions 
(9, 16). These features yielded a growing interest over the 
last decades. Particularly in light of the health-related 
effects, an increased number of investigations focused on 
the beneficial outcomes of eccentric resistance training (for 
reviews see (9, 17, 18)). But how exactly can muscles exert 
high forces with little energy expenditure during lengthening 
actions? Two major sources have been proposed to account 
for unexplained observations during and after eccentric con-
tractions, (I) the nervous system (14, 15) and (II) the mus-
cle itself (19, 20). While recently published evidence has 
greatly improved our understanding of the control strategies 
driven by the nervous system during muscle lengthening (i.e. 
reduced spinal and corticospinal excitability; for reviews see 
(14, 15)), a substantial gap remains in our understanding of 
the cellular and molecular mechanisms underlying eccentric 
loading, in particular during long stretch contractions.

There are becoming piles of literature on the mecha-
nosensing contributions of cross-bridge activation and 
force-dependent cross-bridge recruitment upon muscle 
stretch in the past decade (21–25). Moreover, several model 

approaches (26–29) and ample experimental evidence (30, 
31) point to a strong contribution of the giant protein titin 
to force generation during and after eccentric contractions.

Therefore, this review aims to discuss recent investi-
gations—from single muscle fibre to whole muscles—to 
explain the mechanistic basis underlying eccentric contrac-
tions. Additionally, this article intends to underscore the 
functional link between sarcomeric components, emphasis-
ing the role of titin in skeletal muscle.

Physiological and mechanical phenomena 
associated with eccentric muscle loading

I. Force-velocity-relation

A fundamental principle of skeletal muscle physiology 
and a main determinant of muscle force production is the 
force-velocity relationship (FVR). The concentric (shorten-
ing contractions) part of the FVR has been first observed 
and described mathematically based on pioneering studies 
on isolated frog muscles by Hill (32). The FVR describes 
the relation between the maximum muscle force and its 
instantaneous rate of change in length. If a muscle shortens 
during contraction, the shortening velocity depends on the 
load, while the contraction velocity decreases with increas-
ing load in a hyperbolic manner (23; Fig. 2 magenta line). 
On the contrary, the FVR upon muscle stretch does not 
follow the classic hyperbolic FVR for concentric contrac-
tions (Fig. 2 black line) (32, 33). The ability to exert high 
maximum forces during lengthening contractions is much 
less at slow velocities compared to fast eccentric velocities. 
However, there is a much greater potentiation of force (rang-
ing from 1.0 to 1.5 F0) at very slow lengthening velocities 
with only marginal change in velocity (less than 0.1 v0). In 
this range, the eccentric part of the FVR was observed to 
be nearly constant (Fig. 2, almost vertical section of black 
line). In contrast, at forces between 1.5 and 1.8 F0, velocity 
changes were progressively larger, with smaller increases 
(and plateauing) in force (34, 35). Early studies by Katz 
(36) on electrically stimulated sartorius muscles from frogs 
found that the force produced by the muscle during rapid 
lengthening exceeded the isometric force (Fig. 2 blue dot) 
substantially by factor ×1.8 F0. Thereby, the slope in force is 
significantly greater (by factor ×4–6) for eccentric than for 
concentric contractions (36, 37). This observation is consist-
ent with recent studies on intact and skinned muscle samples 
(mammalian and amphibian) over a wide range of veloci-
ties (12, 38–40). The experimental findings of these studies 
demonstrated an increase in peak force in eccentric muscle 
loading as a function of increasing stretching velocity (Fig. 3 
right plot, Fig. 4A).

Fig. 1  Representative force-time (upper row) and length-time (lower 
row) trace of a single skinned EDL muscle fibre (n = 1) performing a 
stretch-shortening-cycle (SSC, black-magenta line) and a pure short-
ening contraction (magenta line). The mechanical work is signifi-
cantly larger for the SSC condition compared with the active shorten-
ing condition (cf. dashed rectangle)
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This muscle behaviour strongly deviates from the clas-
sic hyperbolic shape of the FVR observed for concentric 
contractions and depicts a distinct feature of eccentric con-
tractions (cf. magenta and black line of Fig. 2). Classic 
Hill-type model approaches (32, 33) suggest cross-bridges 
(XBs) (formed by actomyosin interaction) as the only acti-
vation-dependent force-generating components in muscles. 
However, recent studies show that there is an additional 
parallel ‘non-cross-bridge’ (non-XB) component (e.g. titin) 
contributing to the total force response—particularly dur-
ing eccentric muscle loading (12, 26, 31, 39). Consequently, 
both XB and non-XB components are involved in eccentric 
contractions (Fig. 3).

Anyhow, the proportion of their contributions to force pro-
duction, especially the role of titin in the FVR, is not yet clear 
(12). Contrary to the prevailing assumption that XB-forces 
increase with increasing stretch velocities up to a certain 
level (33, 41), recent results by Tomalka et al. (12) showed 
decreasing XB-forces for increasing stretch velocities at the 
end of the lengthening contraction (Fig. 3 middle plot). They 
performed in vitro isovelocity ramp experiments with varying 
ramp velocities (30, 60, and 85% of maximum contraction 
velocity [vmax]) on single-skinned soleus muscle fibres from 
rats. The different contributions of XB (Fig. 3 middle plot) 

and non-XB structures (Fig. 3 left plot) to total force produc-
tion (Fig. 3 right plot) were identified using the XB-inhibitor 
Blebbistatin. This photosensitive chemical has rather complex 
actions on XB function. As suggested by (42, 43), Blebbi-
statin inhibits the force-producing transition of the bound 
actomyosin complex that traps myosin heads in a weakly 
actin-attached state without exerting any force (44). However, 
long stretches applied to muscles treated with Blebbistatin are 
likely to result in detachment of weakly bound XBs, inferring 
only a marginal XB contribution to the force response upon 
muscle stretch. These findings suggest a central role for titin 
in the eccentric FVR (for a detailed review see (35)).

 II. Muscle ‘give’

Numerous studies have shown that fibre kinetics in eccen-
tric muscle loading are characterised by a steep rise in force 
during the early phase of the stretch, immediately followed 
by a relatively compliant transient phase (Fig. 4A, middle 
and right subplot). The initial linear phase (Fig. 4B, orange 
lines) is biphasic with a steep force slope (P1, Fig. 4B) 
followed by a more gradual change in slope (P2, Fig. 4B) 
(39). This observation is following recent investigations 
of stretch-induced force responses (5% L0 stretch ampli-
tude) in intact and skinned muscle fibres across a wide 
range of velocities (38–40, 45–47). Both transitions have 
been related to XB characteristics and are attributed to the 
extension of all attached myosin heads to actin (12, 37, 
39, 40, 45). P1 (termed S1 by Flitney & Hirst (48)) occurs 
in a short time immediately after the onset of the stretch 
between 0.14–0.20% L0 (39). P2 is reached for extensions of 
1.16–1.34% L0 (39, 48). Recent experimental findings sug-
gest that the transition P1 is mainly due to the extension of 
all originally attached myosin heads, while P2 occurs when 
the ‘switchover from original to new heads is essentially 
complete’ (39). Thus, between the P1 and P2 transitions, the 
original myosin heads quickly detach, leaving only the newly 
attached heads. Recent findings demonstrate that the shape 
of the eccentric force response changes with increasing stretch 
velocity (40, 49) (Fig. 4A). The impact of stretch velocity 
has been observed in a series of studies for comparatively 
short stretch amplitudes (mainly about 2% to 5% L0). The 
force occurring at both transitions increased with increasing 
stretch velocity (37, 39, 40). Continuous stretching beyond 
P2 resulted in a force peak (S2, Fig. 4B; (48)) followed by 
a negative force slope until the force recovers by the end 
of the stretching phase. S2 also increased with increasing 
stretch velocity (12, 39, 40, 48). The phase of negative force 
slope after S2 was termed muscle ‘give’ (Fig. 4) (48). This 
term refers to the displacement of the filaments in the axial 
direction exceeding 11–12 nm, while the XBs are forcibly 
detached (50–52) and sarcomeres are no longer able to resist 
the rise in force upon active muscle lengthening (48).

Fig. 2  Representative sarcomere force-velocity relationship (FVR)—
illustrated by a maximally  Ca2+-activated skinned single fibre of a rat 
soleus muscle (n = 1). The experiments are conducted at a constant 
temperature of 12°C. The magenta curve shows the typical hyperbolic 
shape of the concentric FVR observed by Hill (32). The black curve 
depicts the eccentric FVR during active muscle lengthening. Velocity 
is zero at maximum isometric force F0 (blue dot)



424 Pflügers Archiv - European Journal of Physiology (2023) 475:421–435

1 3

These findings are supported by a previous study by 
Tomalka et al. (12). They investigated the effect of varying 
velocity of the length changes during SSCs on the power 
output in skinned fibres of rat soleus muscles. Addition-
ally, they used the molecular myosin inhibitor Blebbi-
statin to differentiate between XB and non-XB contribu-
tions to the mechanical responses. They found increased 
power output with increased SSC-ramp velocities. Based 
on evidence for increased storage and release of energy 
in non-XB conditions, the authors conclude that energy 
stored in titin during eccentric contraction contributes 
to the increase in power output with increased velocity. 
For all tested velocities in the control experiments (30%, 
60%, 85% vmax), fibre kinetics were characterised by mus-
cle ‘give’ during the stretching phase of SSCs ((12), their 
Fig. 4). In the presence of Blebbistatin (20 µmol l−1), it 
has been found a quasi-linear force response during the 
SSCs’ stretch phase for all tested velocities ((12), their 
Fig.  5) with no muscle ‘give’ upon active stretching. 
However, it cannot be taken for granted that Blebbistatin 
completely eliminates XB-based force production, since 
Blebbistatin (and similar drugs as butanedione monoxime 
(BDM) (53, 54) and benzyl-toluene sulfonamide (BTS) 
(37)) seems to affect the contractile apparatus in a complex 
manner (42, 55, 56). There are indications that Blebbista-
tin leads, among other things, to a considerable reduction 

of vmax under certain conditions (42, 57). An effect that 
is explainable by the potential influence of an increased 
population of weakly bound XBs, which are suggested to 
contribute to an increase in stiffness and non-XB-based 
force while strained during muscle stretch (39, 42, 53, 56). 
Consequently, regardless of the effect of Blebbistatin on 
the contractile apparatus, a contribution of weakly bound 
XBs to force during the stretch (53, 56) seems to be likely 
for small stretch amplitudes (≈ 1.5% L0) only. For rather 
extensive ramp amplitudes weakly bound XBs rapidly 
detach (58, 59), so the strain of XBs only contributes to 
the initial rise in force.

Muscle ‘give’ occurred during stretch amplitudes of 1.2 
to 2.1% optimal sarcomere length (32, 34–37). Therefore, 
‘give’ would be expected when XBs contribute to force pro-
duction during sufficiently long eccentric ramps. Continuous 
muscle stretching beyond the local force minimum results 
in a force redevelopment (Fig. 4A, force-time traces to the 
right of the vertical lines). This rise in force is attributed to 
the continuous stretch of non-XB elements (39, 60). Thus, 
elastic energy stored in viscoelastic structures, such as titin, 
increases with increasing stretching velocity (39, 61, 62)—
suggesting an important role for titin, particularly in long 
eccentric contractions (12, 37, 39, 40, 63). Consequently, 
XB dynamics seem to dominate the first part of the stretch, 
while titin dynamics dominate the second part.

Fig. 3  Different contributions of XB- and non-XB-components to 
total muscle force during eccentric contractions. Eccentric force-sar-
comere length traces were obtained in SSC contractions with varying 
velocities. Data reproduced from (12). Lines depict mean force values 
obtained by skinned single muscle fibres of rat soleus muscles at 30% 
vmax (black), 60% vmax (medium grey), and 85% vmax (light grey) (n = 

13 fibres from five rats). FBleb; depressed force induced by the XB-
inhibitor Blebbistatin, FXB; ‘Isolated XB’ forces depict the difference 
between the total force Ftot and FBleb (11). Consequently, the total 
force Ftot is composed of non-XB structures (mainly titin) and XB-
structures (contractile proteins like actin and myosin)
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 III. Force enhancement—muscles act like linear springs

A quasi-linear increase in force during eccentric ramp 
contractions (force enhancement, FE) for small to mod-
erate changes in length (2–20% L0) has been reported by 
several studies (12, 37, 39, 64–66). More recently, experi-
mental observations on rats demonstrated a spring-like 
behaviour of single muscle fibres from the musculus exten-
sor digitorum longus (EDL) during long, eccentric contrac-
tions of 0.45 LO (30, 40) and 0.75 L0 (30)—nearly over the 
entire force-length-relation (FLR). Thereby, muscle forces up 
to ×2.5 of the maximum isometric force can be generated 
(Fig. 5). This exceeds the maximum active forces produced 
by XBs at these lengths, which is in strong contrast to the 
classic isometric FLR. This is a surprising result because the 
underlying non-linear FLR consists of linear segments that 
decrease in slope with increasing fibre length. These changes 
in slope are the result of variations in myofilament overlap 
(Fig. 5, sarcomere configuration schematics (A)–(E)). The 
classic sliding filament (3, 4) and XB-theories (5) cannot 
explain these observations. Ignoring the low passive force up 

to 3 µm, the classic theories predict that, aside from an initial 
force increase, the force during an isovelocity stretch follows 
the shape of the FLR scaled with a factor greater than one 
(due to the eccentric FVR). In particular, this means that the 
expected force in the plateau should be constant, and should 
decline on the descending limb due to a decreasing number 
of available XBs. In contrast, in the second half of the stretch 
(Fig. 5) the force is constantly increasing. In addition, the 
positive slopes increase with velocity instead of decreasing 
as the classic theories would predict. Thus, for long-stretch 
contractions, the active isometric FLR is no longer visible 
during eccentric muscle loading. Moreover, it could be dem-
onstrated that both XBs and non-XBs contribute nonlinearly 
to the resulting linear total muscle force response (30). The 
spring-like and viscous non-XB effects observed are likely 
attributed to titin. This suggestion is in line with recent work 
(67, 68), which measured heat production and force of mus-
cle fibres from frogs during ramp stretches. They suggested 
that XBs account for only ≈ 12% of the total energy stor-
age during the active stretch. Accordingly, more than 85% 
of energy storage upon muscle stretch cannot be explained 
by XB mechanisms, particularly since attached XBs detach 
quickly from actin filaments (50), and their stored elastic 
energy is lost (12, 69, 70).

Fig. 4  A Force-time plots of eccentric ramp experiments of skinned 
single muscle fibres of rat EDL muscles at 1% vmax, 10% vmax and 
100% vmax (from left to right). Data reproduced from (40). The fibres 
were stretched from about 2.0 to 2.9 µm sarcomere length. The black 
(n = 18), mid grey (n = 7) and light grey lines (n = 8) depict mean 
values. The vertical dashed lines represent the point in time where 
force reaches a local minimum. The horizontal dashed line indicates 
the increase in S2 with increasing stretch velocity. B Zoom in on the 
initial force response upon eccentric contractions. Muscle ‘give’ is 
defined as the difference between the first local force maximum (S2) 
and the force minimum. P1 and P2 depict characteristic transitions 
during the initial rise in force following stretching

Fig. 5  Extensive ramp contractions with a stretch amplitude of 0.75 
L0 show a linear increase in force. The solid line depicts the mean 
and the shaded regions around the solid line indicate the correspond-
ing s.d. during active stretching. Measurements of skinned skeletal 
fibres from EDL muscles are shown. Data reproduced from (30). The 
active isometric FLR can be directly explained by actin and myosin 
filament overlap. Quantitative changes in overlap (see correspond-
ing sarcomere configuration schematics (A)–(E) to the right) lead to 
slope changes of the FLR. Bottom: representative picture of a perme-
abilized single muscle fibre of a rat EDL working like a linear spring
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 IV. Residual force enhancement

A further distinguishing feature of eccentric muscle load-
ing is that striated skeletal muscles generate higher active 
forces after stretch (residual force enhancement, RFE) if 
compared to the muscles’ corresponding isometric force at 
constant length (Fig. 6). This fact has been known for about 
70 years (71) and has been investigated across all muscle 
structural levels, from in vitro isolated (half-) sarcomeres 
(72–74), myofibrils (75–79), single muscle fibres (47, 54, 
80–84), muscle fibre bundles (39, 85, 86), single muscles 
(49, 66, 87–90) and in vivo single and multi-joint move-
ments ((91–99); for review see (100)). RFE increases with 
the amplitude of stretch (61, 71, 80), and is almost inde-
pendent of stretch velocity (101, 102), except for fast stretch 
velocities associated with muscle ‘give’ (forcibly detach-
ment of attached XBs, see chapter II. Muscle ‘give’) (12, 
40, 48, 49). (R)FE is long-lasting (minutes in skinned fibres 
and single myofibrils) and can be stopped immediately by 
deactivating the muscle (71, 103). However, RFE observed 
in the activated muscle often persisted following deactiva-
tion in the passive muscle, which is called passive force 
enhancement ((87, 92, 104–106); for a detailed review see 
(107)). Additionally, RFE exists at almost all muscle lengths 
(82, 108). Although experimental data in the literature are 
somewhat controversial regarding the appearance of RFE in 

different regions of the FLR. While some studies show that 
RFE exists at all muscle lengths (82, 87), other studies show 
little or no RFE on the ascending limb of the FLR (61, 104). 
However, there seems to be general agreement in the litera-
ture that the magnitude of RFE is greatest, particularly in 
the range of the descending limb of the FLR (26, 109, 110). 
Figure 7 shows an overview of the magnitude of RFE scaling 
with muscle size. Despite a high inter- and intraindividual 
variability of the data compared, there is an apparent trend 
for the decrease of RFE in magnitude—at least for in vitro 
muscle samples—from the smallest functional contractile 
unit of the muscle (the (half-) sarcomere) towards isolated 
muscle fibre bundles. Despite clear evidence of RFE across 
all structural muscle levels, the contraction modalities and 
applied methods (such as e.g. the stretch amplitude, contrac-
tion velocity, activation levels and experimental temperature, 
studied animal model, and titin isoform) might have impor-
tant implications for experimental findings of comparable 
studies in the literature. These different methodological 
boundary conditions likely explain considerable variability 
in stretch-induced force responses ((R)FE). Since the struc-
tural and mechanistic complexity increases with muscle size, 
it is challenging to compare the findings of in vitro animal 
studies with multi-joint muscle actions in vivo. Therefore, 
when analysing RFE at different muscle levels, the superpo-
sition of multiple effects (e.g. interaction with surrounding 
tissues, synergistic muscle actions, three-dimensional mus-
cle architecture [pennation angle, fascicle rotation], complex 
activation patterns, a mixture of muscle fibre types, neuro-
muscular fatigue) should be considered (111, 112).

Although a substantial gap remains in our understanding 
of mechanisms underlying eccentric contractions (113, 114), 
(R)FE is a well-acknowledged and fundamental property of 
muscle behaviour (26, 74, 113, 115, 116).

Fig. 6  Representative force–time (upper graph) and length–time traces 
(lower graph) of a skinned single EDL muscle fibre (n = 1). The fibre is 
maximally  Ca2+-activated (pCa = 4.5) at t = 0 s for 21 s. The blue line 
is the isometric reference contraction at optimum fibre length 1.0 L0. The 
black line depicts an eccentric contraction from 0.8 to 1.0 L0 (between 
7 and 9.5 s). The force is enhanced by about 10% F0 in the isometric 
steady-state phase after the active stretch compared to the pure isometric 
force (RFE). The stretch velocity is 0.1 L0/s 

V. Ultrastructural changes

Besides the well-known benefits, eccentric muscle con-
tractions have been associated with potentially inducing 
various damage on the muscle fibre contractile and cytoskel-
etal structures. High mechanical loading of involved tissue 
structures can lead to microlesions and partial necrosis, 
disruption of the excitation-contraction coupling or the 
extracellular matrix, Z-disc streaming, sarcolemma dam-
age, swelling of mitochondria, dilatation of the T-tubule 
system, and delayed onset muscle soreness [DOMS]. These 
degenerative changes have several functional consequences 
for health and disease and were suggested to contribute to 
muscle weakness in Duchenne muscular dystrophy (117), 
or after eccentric exercise (118). These topics have been 
thoroughly reviewed recently (8, 9, 119) and will not be 
further discussed here.
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Cellular and molecular mechanisms

i. The role of mechanosensitive properties of cross-bridges
A potential mechanism to explain eccentric muscle 

behaviour within the sarcomere might be explained with 
force-dependent or stress-dependent XB recruitment upon 
stretch. The thick filament operates as a regulatory mecha-
nosensory for the regulation of force generation in skeletal 
muscles (22, 120, 121). Recent X-ray diffraction studies 
on actively contracting fibres from striated skeletal mus-
cle (21, 22, 25, 122) suggest that the myosin filament can 
exist in one of two possible states: a relaxed state (OFF) 
and an activated state (ON). In the ‘OFF’ (22) or ‘super 
relaxed’ state (123), seen in resting muscle, the great major-
ity of myosin motors is made unavailable for actin binding 

or ATP hydrolysis (22). However, a small fraction of ON 
motors ‘allows the muscle to respond immediately to cal-
cium activation when the external load is low (22)’. At high 
loads, the myosin filaments are switched ON by mechanical 
stress due to stretch-dependent activation accompanied by 
the mobilization of more myosin motors that generate more 
force (21, 22). These results suggested that this regulatory 
mechanism of thick filament mechanosensing in striated 
muscles acts independently of the well-known thin filament-
mediated calcium-signalling pathway (21) and might have 
broad implications on the force generation in lengthening 
contractions (21). However, for long magnitudes of stretch, 
the majority of XBs are likely to detach (see chapters II and 
III), while only a fraction of bound XBs is capable to con-
tribute to enhanced forces observed during long eccentric 

Fig. 7  Overview of the magnitude of residual force enhancement in 
percent [%] of various mammalian and amphibian muscles from the 
literature, categorised by the muscle structural level. Note that only 
statistically significant values different for pure isometric reference 
contractions and steady-state isometric force/torque after stretch are 
included. To enable comparisons between experiments on animal and 
human muscles, all data are for electrically evoked contractions or 
calcium-activated samples (skinned preparations). For studies report-

ing different stretching velocities, activation levels, or stretch ampli-
tudes, data were pooled to generate a mean with a corresponding 
standard deviation (error bars). SOL, musculus soleus; GAS, muscu-
lus gastrocnemius; PLA, musculus plantaris; GM, musculus gastroc-
nemius medialis; SAR, musculus sartorius; CF, musculus caudofemo-
ralis; FDI, first dorsal interosseus; PF, plantar flexors; QF, musculus 
quadriceps femoris; TA, musculus tibialis anterior
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contractions (12, 30, 40, 67, 68). There are several hints that 
these enhanced forces are due to increased non-XB forces. A 
series of experiments, in which XB formation is hampered 
by actomyosin inhibitors, enabled the estimation of non-XB 
contributions to FE (30, 78, 124, 125).

To date, there is no single accepted mechanism that 
explains the high force generation upon muscle stretch. A 
recent study by Fusi et al. (21) suggests a possible role of 
titin in the regulation of muscle contractility due to thick 
filament activation mediated by the mechanosensory path-
way in the myosin filament (22, 126).

 ii. The role of titin

Albeit extensive experimental research has been done on 
isolated muscles for over 100 years (127), underlying force-
generating mechanisms are not fully understood at this time. 
Even the generally accepted and groundbreaking Hill (32) 
and Huxley-type models (3–5) are not capable to describe 
muscle force during and after eccentric contractions.

Despite several explanatory approaches for the unique 
properties of eccentric muscle loading, no generally 
accepted model exists. Mechanisms discussed include modi-
fied XB kinetics (128, 129), the contribution of sarcomere 
length dynamics (80, 115, 116, 130, 131), and non-XB 
contributions to muscle force (103). Some of these mecha-
nisms or explanations can be partially ruled out based on 
the following criteria. The proposed modifications of the 
XB cycle have not yet been confirmed experimentally (132). 
Moreover, only a fraction (0.05 F0) of the experimentally 
observed dynamics can be described by sarcomere length 
inhomogeneities (104, 115). Other authors prefer explana-
tory approaches in which non-XB structures play a crucial 
role in eccentric muscle loading (113, 133). In addition to 
the XB components (containing contractile [actin and myo-
sin] and regulatory proteins [i.a. troponin, tropomyosin]), 
muscle fibres consist of several non-XB components (con-
taining structural proteins [i.a. titin, nebulin, desmin]). These 
structural proteins have versatile and complex functions in 
muscle contraction. They contribute to stability, elasticity, 
alignment, and even active force production—although in 
a supportive manner (133). Titin is known to play a key 
role in eccentric muscle loading and has an integral function 
as a modulator of muscle contraction (133). Functionally, 
this protein has been reported to serve as a scaffold for the 
biogenesis of sarcomeres (134), alignment of the myosin 
filament (133), maintenance of sarcomere length (135), and 
preservation of passive force and (visco-)elastic recoil in the 
sarcomere (12, 134). Titin also modulates the actin-myosin-
based force production via non-XB formation (26, 30, 136).

Structurally, skeletal muscle titin is referred to as the third 
myofilament and is the most abundant protein in skeletal 
muscles with a molecular mass between 3800 and 4200 kDa 
(137, 138). Titin spans half a sarcomere from the Z-disc to 

the M-line. It firmly anchors to myosin in the A-band region 
and then runs freely across the I-band region of the sarcomere 
until it attaches to actin (approx. 50–100 nm away from the 
Z-disc) before finally entering the Z-disc. Thereby, this giant 
protein forms a ‘permanent’ interconnection between the thin 
and thick filaments of muscle sarcomeres (133, 136, 139). 
This filamentous protein consists of two segments, a free 
spring segment located in the sarcomeric I-band with highly 
variable elastic properties (133, 140) and a less compliant part 
of titin in the A-band (141). Titin at the Z-disc, A-band, and 
M-band has primarily structural roles by binding to other main 
components of the sarcomere (i.a. α-actinin and actin at the 
Z-disc, myosin heavy chain protein and myosin-binding pro-
tein C in the A-band, and myomesin within the M-band) (133, 
142). It effectively interacts with more than 30 muscle pro-
teins. Titin’s I-band consists of a proximal and distal immuno-
globulin domain, a PEVK region (abundant in the amino acids 
proline (P), glutamate (E), valine (V), and lysine (K)), and an 
N2A region (141). Different skeletal muscles express differ-
ent isoforms of titin, with large variations in length observed 
in the N2A and PEVK regions (139, 143). These different 
expressions correlate with the mechanical properties of dif-
ferent muscle types (133, 139, 140). Fast skeletal muscles 
(containing predominately high proportions of fast myosin 
heavy chains [MHCs]) express short titin N2A isoforms. In 
contrast, slow skeletal muscles express longer N2A isoforms. 
Considering this, a functional implication might be that fast 
muscles are more prone to show an increase in titin-induced 

Fig. 8  Representative trajectories of force development in a slow 
muscle fibre (soleus, SOL; grey line) and fast muscle fibre (exten-
sor digitorum longus, EDL; black line) during eccentric contractions 
with comparable stretch velocity (1.5% vmax) and amplitude (0.45 L0). 
After an initial increase in force (short-range stiffness (180)), the SOL 
fibre shows a pronounced yielding (muscle ‘give’ (48)). In both mus-
cle fibres, the force increases monotonically during slow stretch con-
tractions, while the force response of the EDL fibre is about an order 
of magnitude larger at the end of the stretch
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force generation during and after stretch contractions com-
pared to slow muscles (Fig. 8, cf. black vs grey trace) (79, 
113, 139). Titin in skeletal muscle is known to become stiffer 
upon muscle activation in the presence of  Ca2+ (≈ 20%) (59, 
144–146). More important, however, seems to be the property 
to contribute to spring-like force generation during an active 
stretch from any resting length, likely by attaching to actin 
during  Ca2+ activation. This filamentous spring protein titin 
is known to significantly reduce its persistence length upon 
activation (147–150). Novel three-filament model approaches 
have been proposed that explain mechanisms underlying 
eccentric loading in skeletal muscle based on an adjustable 
titin spring (26–29). These approaches are backed up by a 
large number of experimental evidence for titin-actin interac-
tions upon muscle activation (148, 151–154). In particular, 
a recent study by Dutta et al. (148) demonstrated titin-N2A 
interaction with actin upon  Ca2+ activation. This interaction 
was likely impaired in muscles from muscular dystrophy with 
myositis (mdm) mice exhibiting an 83 amino acid deletion at 
the N2A-PEVK intersection, resulting in no increase in titin 
stiffness and reduced RFE (148).

 iii. Posttranslational modifications of titin

It is widely known that titin stiffness plays a fundamental 
role in regulating muscle performance in cardiac and skeletal 
muscle (133). Alterations in titin stiffness affect the contrac-
tile properties of the muscle—particularly during eccentric 
muscle actions. Several posttranslational modifications of titin 
mediate the rapid modulation of titin stiffness. The stiffness 
of titin can be acutely modulated by  Ca2+ (144) and chaper-
one binding (155), titin-actin interaction (148, 151–154), and 
oxidation (156, 157). Another mechanism that contributes 
to the modulation of titin stiffness is regulated by phospho-
rylation (158, 159). The modulation depends on the location 
where protein kinases phosphorylate the elastic titin regions. 
At both ends of the titin molecule, the phosphorylation sta-
tus regulates the binding of titin to many Z-disc and M-band 
proteins (159). The majority of the phosphorylation studies 
has been done on the cardiac N2B and PEVK elements (160, 
161). There is general agreement that phosphorylation of the 
cardiac N2B region increases the persistence length of the 
elastic titin spring, which results in reduced overall titin-based 
stiffness and force. Whereas phosphorylation of the cardiac 
PEVK domain reduces the effective free spring length yield-
ing increased stretch-dependent stiffness and force. Only a few 
studies have investigated the phosphorylation of the two titin 
domains N2A and PEVK in skeletal muscle (162–165). The 
findings reveal a titin modification detected in eccentrically 
exercised skeletal muscles of adult rats, resulting in an overall 
increase in titin-based stiffness (164, 165).

These results suggest that titin’s posttranslational modi-
fications in cardiac and skeletal muscles may act differently 
upon exercise-induced mechanical stress. The observed 

changes in titin-based stiffness are thought to play an impor-
tant role in adjusting the passive and active properties of car-
diac and skeletal muscle in health and disease. For detailed 
reviews on posttranslational modifications of titin see (133, 
158–160).

Future challenges in muscle modelling

A precise knowledge of molecular and cellular mechanisms 
underlying eccentric contractions is also required for the 
improvement of muscle models. Muscle models—designed 
to facilitate realistic predictions of muscle force production 
during dynamic contractions over the entire working range 
of the muscle—are used to answer a variety of questions in 
biology, medicine, biomechanics and physiology (166–168). 
A precise prediction of muscular forces is needed to gain 
detailed knowledge of (i) the structure and functioning of 
the muscle, (ii) neuromuscular relationships in locomotor 
systems, (iii) the optimization of medical diagnostic and/
or treatment methods, but also (iv) to address unresolved 
issues related to mechanical/metabolic movement principles 
or physiological processes. By modelling titin as a viscoe-
lastic spring segment with an activation-dependent coupling 
to actin, computational models will be able to mimic active 
lengthening experiments in biological muscle. A three-fila-
ment model of skeletal muscle force production (mediated by 
titin) is supposed to overcome significant deviations between 
experimental observations and predictions by the classic 
sliding-filament (3, 4) and cross-bridge theories (5) (two-
filament models). This will improve the accuracy of muscle 
models (27) as well as multi-body models (169) concerning 
the control of movements and efficiency of locomotion.

Hence, the development of data-driven numerical meth-
ods for the simulation of biological systems (hollow organs 
[stomach (170, 171), urinary bladder (172, 173)], and skel-
etal muscles (174)) are of great importance. Due to novel 
research approaches together with computer simulations, 
possible binding mechanisms (e.g. actin-titin, titin-tropo-
myosin) can be tested. The predictive power of complex 
3D muscle models is only as good as the physical accuracy 
comprising each of its components, generally the properties 
of certain muscle structures, boundary conditions, and/or 
underlying geometries (169). Such predictions also depend 
on the correct characterisation of their smallest unit—the 
(half-) sarcomere. Errors in their description inevitably 
lead to deviations of the muscular force and thus to issues 
and misinterpretations of all model-based research. Conse-
quently, the prediction of realistic muscle forces in dynamic 
contractions allows a better understanding of e.g. overall 
muscular force production, functional morphology, mechan-
ical principles of locomotion, prosthetics, and robotics or 
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provides a detailed insight into the functionality and motility 
of hollow organs.

Conclusion and future perspectives

The long-standing problem in muscle physiology of 
how muscles operate in eccentric contractions has been 
intensely studied for the past 70 years—with remarkable 
progress. Skeletal muscle behaviour during and following 
active stretches is associated with increased performance 
at decreased oxygen consumption, reduced metabolic cost 
(ATP), improved energy efficiency, as well as decreased 
muscle activity (175–178). Stretch-induced force potentia-
tion exists during voluntary contractions and is relevant for 
movement generation in daily activities (179). The versatile 
and unique characteristics driven by eccentric muscle load-
ing represent important determinants of active force produc-
tion. The progressive force development and linear spring-
like muscle behaviour during stretch contractions are not 
accounted for in existing Hill- or Huxley-type muscle mod-
els so far, and might significantly reduce the control effort. 
Additionally, this distinct manner might offer high-impact 
shock absorption strategies during eccentric movements 
such as landing after jumps or downhill running (30). The 
features discussed above could be demonstrated at the small 
microscopic scale up to the gross macroscopic scale. Ample 
evidence supports the idea of a cumulative mechanism that 
combines non-linear XB and non-XBs contributions to result 
in a linear force response during muscle-lengthening con-
tractions. Findings suggest that titin is a fundamental regula-
tor in eccentric loading in striated muscle, although its role 
is still evolving. The mechanical properties of titin continu-
ally adapt to cover prevailing conditions of skeletal muscle 
performance. For all mechanisms noted above, modulation 
in titin-based stiffness plays an essential role. Titin stiffness 
alters as a function of titin-isoforms (139), other sarcomeric 
proteins (such as molecular chaperones) targeting the titin 
springs (155), the interaction of titin-spring elements with 
the thin filament actin (26), phosphorylation-mediated regu-
lation (158, 160), and mechanosignalling (120). Current and 
future findings are likely to improve the understanding of 
overall muscle behaviour and force generation on different 
scales touching health, rehabilitation, physical and applied 
sciences, robotics, and foundations of muscle contraction.
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