Skip to main content
Log in

Ginkgolide B caused the activation of the Akt/eNOS pathway through the antioxidant effect of SOD1 in the diabetic aorta

  • Integrative Physiology
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Ginkgo biloba extract (GBE) helps lower cardiovascular disease risk. Diabetes mellitus (DM)-induced endothelial dysfunction is a critical and initiating factor in the beginning of diabetic vascular complications. It was reported that GBE causes an endothelial-dependent relaxation. This study was designed to figure out the molecular basis on which GBE protects from endothelial dysfunction in diabetes because the underlying mechanisms are unclear. Studies were performed in a normal control group and streptozotocin/nicotinamide-induced DM group. In aortas, notably diabetic aortas, GBE, and ginkgolide B (GB), a constituent of GBE, produced a dose-dependent relaxation. The relaxation by GB was abolished by prior incubation with L-NNA (an endothelial nitric oxide synthase (NOS) inhibitor), LY294002 (a phosphoinositide 3-kinase (PI3K) inhibitor), and Akt inhibitor, confirming the essential role of PI3K/Akt/eNOS signaling pathway. We also demonstrated that GB induced the phosphorylation of Akt and eNOS in aortas. The superoxide dismutase1 (SOD1) expression level decreased in DM aortas, but GB stimulation increased SOD activity and SOD1 expression in DM aortas. Our novel findings suggest that in DM aortas, endothelial-dependent relaxation induced by GB was mediated by activation of SOD1, resulting in activation of the Akt/eNOS signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Supporting data will be made available to readers upon request to the corresponding authors.

References

  1. Abeyrathna P, Su Y (2015) The critical role of Akt in cardiovascular function. Vascul Pharmacol 74:38–48. https://doi.org/10.1016/j.vph.2015.05.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Anwar MA, Samaha AA, Ballan S, Saleh AI, Iratni R, Eid AH (2017) Salvia fruticosa induces vasorelaxation in rat isolated thoracic aorta: role of the PI3K/Akt/eNOS/NO/cGMP signaling pathway. Sci Rep 7:686. https://doi.org/10.1038/s41598-017-00790-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Avogaro A, Albiero M, Menegazzo L, de Kreutzenberg S, Fadini GP (2011) Endothelial dysfunction in diabetes: the role of reparatory mechanisms. Diabetes Care 34:S285–S290. https://doi.org/10.2337/dc11-s239

    Article  PubMed  PubMed Central  Google Scholar 

  4. Azul L, Leandro A, Boroumand P, Klip A, Seiça R, Sena CM (2020) Increased inflammation, oxidative stress and a reduction in antioxidant defense enzymes in perivascular adipose tissue contribute to vascular dysfunction in type 2 diabetes. Free Radic Biol Med 146:264–274. https://doi.org/10.1016/j.freeradbiomed.2019.11.002.

  5. Chen X, Salwinski S, Lee TJ (1997) Extracts of Ginkgo biloba and ginsenosides exert cerebral vasorelaxation via a nitric oxide pathway. Clin Exp Pharmacol Physiol 24:958–959. https://doi.org/10.1111/j.1440-1681.1997.tb02727.x

    Article  CAS  PubMed  Google Scholar 

  6. Davel AP, Wenceslau CF, Akamine EH, Xavier FE, Couto GK, Oliveira HT, Rossoni LV (2011) Endothelial dysfunction in cardiovascular and endocrine-metabolic diseases: an update. Braz J Med Biol Res 44:920–932. https://doi.org/10.1590/s0100-879x2011007500104

    Article  CAS  PubMed  Google Scholar 

  7. De Smet PA (2002) Herbal remedies. N Engl J Med 347:2046–2056. https://doi.org/10.1056/NEJMra020398

    Article  PubMed  Google Scholar 

  8. Diamond BJ, Shiflett SC, Feiwel N, Matheis RJ, Noskin O, Richards JA, Schoenberger NE (2000) Ginkgo biloba extract: mechanisms and clinical indications. Arch Phys Med Rehabil 81:668–678. https://doi.org/10.1016/s00039993(00)90052-2

    Article  CAS  PubMed  Google Scholar 

  9. Dimmeler S, Fleming I, Fisslthaler B, Hermann C, Busse R, Zeiher AM (1999) Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation. Nature 399:601–605. https://doi.org/10.1038/21224

    Article  CAS  PubMed  Google Scholar 

  10. Duarte J, Perez-Palencia R, Vargas F, Ocete MA, Perez-Vizcaino F, Zarzuelo A, Tamargo J (2001) Antihypertensive effects of the flavonoid quercetin in spontaneously hypertensive rats. Br J Pharmacol 133:117–124. https://doi.org/10.1038/sj.bjp.0704064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Fetterman JL, Holbrook M, Westbrook DG, Brown JA, Feeley KP, Breton-Romero R, Linder EA, Berk BD, Weisbrod RM, Widlansky ME, Gokce N, Ballinger SW, Hamburg NM (2016) Mitochondrial DNA damage and vascular function in patients with diabetes mellitus and atherosclerotic cardiovascular disease. Cardiovasc Diabetol 15:53. https://doi.org/10.1186/s12933-016-0372-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Fleming I, Fisslthaler B, Dixit M, Busse R (2005) Role of PECAM-1 in the shear-stress-induced activation of Akt and the endothelial nitric oxide synthase (eNOS) in endothelial cells. J Cell Sci 118:4103–4111. https://doi.org/10.1242/jcs.02541

    Article  CAS  PubMed  Google Scholar 

  13. Förstermann U, Münzel T (2006) Endothelial nitric oxide synthase in vascular disease: from marvel to menace. Circulation 113:1708–1714. https://doi.org/10.1161/CIRCULATIONAHA.105.602532

    Article  CAS  PubMed  Google Scholar 

  14. Fraccarollo D, Widder JD, Galuppo P (2008) Improvement in left ventricular remodeling by the endothelial nitric oxide synthase enhancer AVE9488 after experimental myocardial infarction. Circulation 118:818–827. https://doi.org/10.1161/CIRCULATIONAHA.107.717702

    Article  CAS  PubMed  Google Scholar 

  15. Fulton D, Gratton JP, McCabe TJ, Fontana J, Fujio Y, Walsh K, Franke TF, Papapetropoulos A, Sessa WC (1999) Regulation of endothelium-derived nitric oxide production by the protein kinase Akt. Nature 399:597–601. https://doi.org/10.1038/21218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gadkari TV, Cortes N, Madrasi K (2013) Agmatine induced NO dependent rat mesenteric artery relaxation and its impairment in salt-sensitive hypertension. Nitric Oxide 35:65–71. https://doi.org/10.1016/j.niox.2013.08.005

    Article  CAS  PubMed  Google Scholar 

  17. Giacco F, Brownlee M (2010) Oxidative stress and diabetic complications. Circ Res 107:1058–1070. https://doi.org/10.1161/CIRCRESAHA.110.223545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Heistad DD (2006) Oxidative stress and vascular disease: 2005 Duff lecture. Arterioscler Thromb Vasc Biol 26:689–695. https://doi.org/10.1161/01.ATV.0000203525.62147.28

    Article  CAS  PubMed  Google Scholar 

  19. Ishida K, Taguchi K, Matsumoto T, Kobayashi T (2014) Activated platelets from diabetic rats cause endothelial dysfunction by decreasing Akt/endothelial NO synthase signaling pathway. PLoS One 9:e102310. https://doi.org/10.1371/journal.pone.0102310.

  20. Kleijnen J, Knipschild P (1992) Ginkgo biloba. Lancet 340:1136–1139. https://doi.org/10.1016/0140-6736(92)93158-j

    Article  CAS  PubMed  Google Scholar 

  21. Kim JH, Auger C, Kurita I, Anselm E, Rivoarilala LO, Lee HJ, Lee KW, Schini-Kerth VB (2013) Aronia melanocarpa juice, a rich source of polyphenols, induces endothelium-dependent relaxations in porcine coronary arteries via the redox-sensitive activation of endothelial nitric oxide synthase. Nitric Oxide 35:54–64. https://doi.org/10.1016/j.niox.2013.08.002

    Article  CAS  PubMed  Google Scholar 

  22. Kobayashi T, Taguchi K, Yasuhiro T, Matsumoto T, Kamata K (2004) Impairment of PI3-K/Akt pathway underlies attenuated endothelial function in aorta of type 2 diabetic mouse model. Hypertension 44:956–962. https://doi.org/10.1161/01.HYP.0000147559.10261.a7

    Article  CAS  PubMed  Google Scholar 

  23. Kubota Y, Tanaka N, Umegaki K, Takenaka H, Mizuno H, Nakamura K, Shinozuka K, Kunitomo M (2001) Ginkgo biloba extract-induced relaxation of rat aorta is associated with increase in endothelial intracellular calcium level. Life Sci 69:2327–2336. https://doi.org/10.1016/s0024-3205(01)01303-0

    Article  CAS  PubMed  Google Scholar 

  24. Li R, Chen B, Wu W, Li J, Qi R (2009) Ginkgolide B suppresses intercellular adhesion molecule-1 expression via blocking nuclear factor κB activation in human vascular endothelial cells stimulated by oxidized low-density lipoprotein. J Pharmacol Sci 110:362–369. https://doi.org/10.1254/jphs.08275fp

    Article  CAS  PubMed  Google Scholar 

  25. Liu J, Wu P, Xu Z, Zhang J, Liu J, Yang Z (2020) Ginkgolide B inhibits hydrogen peroxide-induced apoptosis and attenuates cytotoxicity via activating the PI3K/Akt/mTOR signaling pathway in H9c2 cells. Mol Med Rep 22:310–316. https://doi.org/10.3892/mmr.2020.11099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Liu Q, Jin Z, Xu Z, Yang H, Li L, Li G, Li F, Gu S, Zong S, Zhou J, Cao L, Wang Z, Xiao W (2019) Antioxidant effects of ginkgolides and bilobalide against cerebral ischemia injury by activating the Akt/Nrf2 pathway in vitro and in vivo. Cell Stress Chaperones 24:441–452. https://doi.org/10.1007/s12192-019-00977-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Liu X, Zhao G, Yan Y, Bao L, Chen B, Qi R (2012) Ginkgolide B reduces atherogenesis and vascular inflammation in ApoE(-/-) mice. PLoS One 7:e36237. https://doi.org/10.1371/journal.pone.0036237.

  28. Madamanchi NR, Vendrov A, Runge MS (2005) Oxidative stress and vascular disease. Arterioscler Thromb Vasc Biol 25:29–38. https://doi.org/10.1161/01.ATV.0000150649.39934.13

    Article  CAS  PubMed  Google Scholar 

  29. Masiello P, Broca C, Gross R, Roye M, Manteghetti M, Hillaire-Buys D, Novelli M, Ribes G (1998) Experimental NIDDM: development of a new model in adult rats administered streptozotocin and nicotinamide. Diabetes 47:224–229. https://doi.org/10.2337/diab.47.2.224

    Article  CAS  PubMed  Google Scholar 

  30. Meza CA, La Favor JD, Kim D, Hickner RC (2019) Endothelial dysfunction: is there a hyperglycemia-induced imbalance of NOX and NOS? Int J Mol Sci 20:3775. https://doi.org/10.3390/ijms20153775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Morgenstern C, Biermann E (2002) The efficacy of Ginkgo special extract EGb 761 in patients with tinnitus. Int J Clin Pharmacol Ther 40:188–197. https://doi.org/10.5414/cpp40188

    Article  CAS  PubMed  Google Scholar 

  32. Muir AH, Robb R, McLaren M, Daly F, Belch JJ (2002) The use of Ginkgo biloba in Raynaud’s disease: a double-blind placebo-controlled trial. Vasc Med 7:265–267. https://doi.org/10.1191/1358863x02vm455oa

    Article  PubMed  Google Scholar 

  33. Ndiaye M, Chataigneau M, Lobysheva I, Chataigneau T, Schini-Kerth VB (2004) Red wine polyphenols-induced, endothelium-dependent NO-mediated relaxation is due to the redox-sensitive PI3-kinase/Akt-dependent phosphorylation of endothelial NO-synthase in the isolated porcine coronary artery. FASEB J 19:455–457. https://doi.org/10.1096/fj.04-2146fje

    Article  CAS  PubMed  Google Scholar 

  34. Ou HC, Lee WJ, Lee SD, Huang CY, Chiu TH, Tsai KL, Hsu WC, Sheu WH (2010) Ellagic acid protects endothelial cells from oxidized low-density lipoprotein-induced apoptosis by modulating the PI3K/Akt/eNOS pathway. Toxicol Appl Pharm 248:134–143. https://doi.org/10.1016/j.taap.2010.07.025

    Article  CAS  Google Scholar 

  35. Roviezzo F, Cuzzocrea S, Lorenzo AD, Brancaleone V, Mazzon E, Paola RD, Bucci M, Cirino G (2007) Protective role of PI3-kinase-Akt-eNOS signaling pathway in intestinal injury associated with splanchnic artery occlusion shock. Br J Pharmacol 151:377–383. https://doi.org/10.1038/sj.bjp.0707233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Taguchi K, Matsumoto T, Kamata K, Kobayashi T (2012) Inhibitor of G protein-coupled receptor kinase 2 normalizes vascular endothelial function in type 2 diabetic mice by improving β-arrestin 2 translocation and ameliorating Akt/eNOS signal dysfunction. Endocrinology 153:2985–2996. https://doi.org/10.1210/en.2012-1101

    Article  CAS  PubMed  Google Scholar 

  37. Taguchi K, Hida M, Hasegawa M, Matsumoto T, Kobayashi T (2016) Dietary polyphenol morin rescues endothelial dysfunction in a diabetic mouse model by activating the Akt/eNOS pathway. Mol Nutr Food Res 60:580–588. https://doi.org/10.1002/mnfr.201500618

    Article  CAS  PubMed  Google Scholar 

  38. Taguchi K, Hida M, Narimatsu H, Matsumoto T, Kobayashi T (2017) Glucose and angiotensin II-derived endothelial extracellular vesicles regulate endothelial dysfunction via ERK1/2 activation. Pflugers Arch 469:293–302. https://doi.org/10.1007/s00424-016-1926-2

    Article  CAS  PubMed  Google Scholar 

  39. Widlansky ME, Gokce N, Keaney JF Jr, Vita JA (2003) The clinical implications of endothelial dysfunction. J Am Coll Cardiol 42:1149–1160. https://doi.org/10.1016/S0735-1097(03)00994-X

    Article  CAS  PubMed  Google Scholar 

  40. Xia T, Guan W, Fu J (2016) Tirofiban induces vasorelaxation of the coronary artery via an endothelium-dependent NO-cGMP signaling by activating the PI3K/Akt/eNOS pathway. Biochem Biophy Res Commun 474:599–605. https://doi.org/10.1016/j.bbrc.2016.03.110

    Article  CAS  Google Scholar 

  41. Yu QJ, Yang Y (2016) Function of SOD1, SOD2, and PI3K/AKT signaling pathways in the protection of propofol on spinal cord ischemic reperfusion injury in a rabbit model. Life Sci 148:86–92. https://doi.org/10.1016/j.lfs.2016.02.005

    Article  CAS  PubMed  Google Scholar 

  42. Zhang L, Liu Q, Lu L (2011) Astragaloside IV stimulates angiogenesis and increases hypoxia-inducible factor-1a accumulation via phosphatidylinositol 3-kinase/Akt pathway. J Pharmacol Exp Ther 338:485–491. https://doi.org/10.1124/jpet.111.180992

    Article  CAS  PubMed  Google Scholar 

  43. Zhou W, Chai H, Lin PH, Lumsden AB, Yao Q, Chen C (2004) Clinical use and molecular mechanisms of action of extract of Ginkgo biloba leaves in cardiovascular diseases. Cardiovasc Drug Rev 22:309–319. https://doi.org/10.1111/j.1527-3466.2004.tb00148.x

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank I. Tano and N. Bessho for technical assistance. We thank Enago (www.Enago.jp) for the English language review.

Funding

This work was partly supported by the JSPS KAKENHI Grant Numbers JP21K06811 (to Kumiko Taguchi) and JP21K06878 (to Tsuneo Kobayashi).

Japan Society for the Promotion of Science,JP21K06811,JP21K06878

Author information

Authors and Affiliations

Authors

Contributions

Kumiko Taguchi conceived and designed the study, performed the statistical analysis, and wrote the manuscript. Kumiko Taguchi and Kanami Okudaira conducted the experiments. Takayuki Matsumoto and Tsuneo Kobayashi helped develop the project, perform some experiments, and write the manuscript. Tsuneo Kobayashi is the guarantor of this work and approved the final version of the manuscript.

Corresponding author

Correspondence to Tsuneo Kobayashi.

Ethics declarations

Ethical approval and consent to participate

The animal study was reviewed and approved by the Hoshi University Animal Care and Use Committee. The application of approval number is P22-003. Consent to participate is “not applicable” as human study is not included in this work.

Human and animal ethics

Human ethics is “not applicable” as human study is not included in this work. This study was performed in accordance with the Guiding Principles for the Care and Use of Laboratory Animals from the Committee for the Care and Use of Laboratory Animals of Hoshi University (Tokyo, Japan).

Consent for publication

All authors have read the text of the article. All authors agreed with the content; all gave explicit consent to submit and are completely satisfied with its publication. The obtained consent was from the responsible authorities at the institute/organization where the work has been carried out.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taguchi, K., Okudaira, K., Matsumoto, T. et al. Ginkgolide B caused the activation of the Akt/eNOS pathway through the antioxidant effect of SOD1 in the diabetic aorta. Pflugers Arch - Eur J Physiol 475, 453–463 (2023). https://doi.org/10.1007/s00424-023-02790-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-023-02790-3

Keywords

Navigation