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Abstract
Renal erythropoietin (Epo)-producing (REP) cells represent a rare and incompletely understood cell type. REP cells are 
fibroblast-like cells located in close proximity to blood vessels and tubules of the corticomedullary border region. Epo 
mRNA in REP cells is produced in a pronounced “on–off” mode, showing transient transcriptional bursts upon exposure 
to hypoxia. In contrast to “ordinary” fibroblasts, REP cells do not proliferate ex vivo, cease to produce Epo, and lose their 
identity following immortalization and prolonged in vitro culture, consistent with the loss of Epo production following REP 
cell proliferation during tissue remodelling in chronic kidney disease. Because Epo protein is usually not detectable in kidney 
tissue, and Epo mRNA is only transiently induced under hypoxic conditions, transgenic mouse models have been developed 
to permanently label REP cell precursors, active Epo producers, and inactive descendants. Future single-cell analyses of the 
renal stromal compartment will identify novel characteristic markers of tagged REP cells, which will provide novel insights 
into the regulation of Epo expression in this unique cell type.
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Erythropoietin function or functions?

The only known essential function of the endocrine gly-
coprotein hormone erythropoietin (Epo) is the regulation 
of red blood cell (RBC) homeostasis. Epo dysregulation 
inevitably leads to disturbances of RBC production in the 
bone marrow [118]. Mouse models with targeted deletions 
of the genes encoding Epo or the Epo receptor (EpoR) are 
non-viable due to lethal anemia during embryonic develop-
ment [121], whereas transgenic Epo overexpression causes 
massive erythrocytosis [84]. The finding of Epo expression 
in cells that are separated from the blood stream by a tight 
barrier, such as in brain and testis, sparked the idea of local 

paracrine/autocrine Epo functions beyond erythropoiesis. 
Indeed, a myriad of non-erythropoietic Epo functions have 
been suggested [118]. However, these functions have com-
monly been investigated by injections of unphysiologically 
high doses of recombinant Epo, in the absence of appropri-
ate controls such as inactive/mutant recombinant Epo pro-
duced in a blinded manner along with wild-type Epo and 
diluted in the same stabilization solution. Non-erythropoietic 
Epo functions should also be confirmed in EpoR knockout 
mice containing an erythroid-specific transgenic EpoR res-
cue [109]. At least under disease conditions, non-erythro-
poietic variants of Epo seem to be tissue protective via an 
alternative heterodimeric EpoR [11], but the physiological 
relevance of these findings remains questionable.

While during fetal life the liver is the main Epo-producing 
organ, in adult mammals the kidney is essential for endo-
crine Epo production [33, 87]. Patients with end-stage renal 
disease (ESRD) usually require Epo injections to maintain 
their RBC counts, and there appears to be no other additional 
Epo function that depends on these treatments. This review 
will hence focus on the (dys)regulation of Epo production 
in the kidney and the implications for the treatment of renal 
anemia in ESRD.

This article is published as part of the Special Issue on “Kidney 
Control of Homeostasis.”.
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Renal Epo regulation: much lauded but still 
incompletely understood

Somewhat unusual for an endocrine hormone, the rate-
limiting step in renal Epo synthesis takes place on the 
level of gene expression. Tissue hypoxia rather than 
“RBC counting” induces Epo transcription, explaining 
the identical Epo response following hypoxemia and ane-
mia. Transgenic mouse models identified the regulatory 
regions in the distal 5′ and proximal 3′ EPO gene flanking 
regions which direct EPO gene expression in the kidney 

and liver, respectively [56, 67, 68, 90, 91, 93]. Detailed 
analysis of the 3′ flanking region led to the discovery of 
the hypoxia-inducible factor (HIF) family of transcription 
factors [92, 94]. In 2019, the elucidation of the HIF sig-
nalling cascade was honored by the bestowal of the Nobel 
Prize in Physiology or Medicine (previously reviewed in 
detail in this journal [28]). As outlined in Fig. 1, the α 
subunits of these heterodimeric transcription factors are 
oxygen-labile, marked for degradation by oxygen-depend-
ent prolyl-4-hydroxylases (PHDs) and conveyed to the 
ubiquitin–proteasome system by the von Hippel-Lindau 
(VHL) tumor suppressor protein [89]. Factor inhibiting 

Fig. 1  Oxygen sensing and signalling. The prolyl-4-hydroxylase 
domain (PHD) enzymes PHD1, PHD2, and PHD3, and the asparagi-
nyl hydroxylase factor inhibiting HIF (FIH) utilize the co-substrates 
molecular oxygen and 2-oxoglutarate (2-OG) to hydroxylate the 
hypoxia-inducible factor (HIF) α subunits, along with the conver-
sion of 2-OG to succinate by oxidative decarboxylation. Ferrous iron 
and reducing agents such as ascorbate (vitamin C) serve as co-factors 
required for enzymatic function. Hydroxylase activity is inhibited by 
hypoxia, several Krebs cycle intermediates and agents that interfere 
with ferrous iron, including transition metals, iron chelators, nitric 

oxide, and other oxidative reactive oxygen species (ROS). Hydroxy-
lated HIFα is recognized by the von Hippel-Lindau (VHL) ubiquitin 
E3 ligase adaptor protein, and subsequently subjected to proteasomal 
degradation. Non-hydroxylated HIFα heterodimerizes with the com-
mon HIF-β subunit and forms a transcriptional enhancer complex at 
hypoxia response elements (HREs) of HIF target genes. PHD2 and 
PHD3 are among these genes, establishing a negative feedback loop 
that limits HIF activity and adapts the hypoxic set point to the micro-
environmental oxygen partial pressure
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HIF (FIH), another HIF hydroxylase, is apparently not 
involved in Epo regulation [114, 124]. Like the collagen 
hydroxylases, HIFα hydroxylases are sensitive to oxidation 
and require ascorbate (vitamin C) as a co-factor. However, 
we and others have shown that alternative reducing agents 
(glutathione, dithiothreitol) can replace vitamin C in vitro 
[31, 73], and we subsequently confirmed that vitamin C 
deficiency in Gulo knockout mice does not lead to Epo 
overproduction in vivo [73].

The molecular mechanisms governing renal EPO gene 
expression are well established: under hypoxic conditions, 
HIF-2α is stabilized and forms together with HIF-β the tran-
scription factor HIF-2 that binds cis-regulatory elements of 
the EPO gene to enhance its transcription [86, 116]. How-
ever, this mechanism has primarily been investigated using 
hepatoma cell culture models and/or the liver-specific 3′ 
flanking region. The absence of a suitable kidney-derived 
cell culture model, and the finding that the 3′ flanking region 
is dispensable for kidney-restricted EPO gene expression 
[107], limited the understanding of kidney-specific Epo pro-
duction, which in the adult is physiologically more relevant 
than liver-specific Epo production. Kidney cells capable of 
Epo synthesis are generally referred to as renal Epo-produc-
ing (REP) cells and include currently active cells as well as 
cells bearing the ability to produce Epo.

Open questions include the molecular identity of these 
REP cells, from origin to fate; the precise interplay of the 
various tissue-specific cis-enhancer elements governing 
the organ/cell type restriction and hypoxia-inducibility of 
EPO gene expression; the burst-like “on–off” transcrip-
tion pattern, shutting down EPO expression even under 
ongoing hypoxic conditions; the unique oxygen sensitivity 
in vivo; the route of the instantaneous endocrine Epo secre-
tion; the sex-independent levels of circulating Epo despite 
sex-specific differences in blood hemoglobin content; the 
mechanism of the loss of Epo production during ESRD; and 
the apparent specificity of the pan-PHD inhibitors for Epo 
induction, in healthy as well as in diseased kidneys.

Genetics to provide more insights into Epo 
regulation?

Knockout mouse models confirmed the essential functions 
of the genes encoding HIF-2α (EPAS1), PHD2 (EGLN1), 
and VHL (VHL) in the regulation of EPO gene expression 
[44, 116]. Other members of the HIFα and PHD families 
may have modulatory functions, but their precise roles in 
REP cell biology, if any, are unknown. Conditionally tar-
geted mouse models are of limited help because REP cells 
are rare and specific marker genes, other than Epo itself, 
which would be suitable to drive REP-specific Cre expres-
sion, are currently unknown. Moreover, Cre drivers with 

REP cell overlapping expression patterns used for condi-
tional knockouts of VHL and PHDs cause unphysiologically 
high, constitutive, and isoform-independent HIFα stabiliza-
tion, often leading to ectopic Epo production [13, 32, 37, 
38, 55, 61, 62].

Patients suffering from congenital erythrocytosis as well 
as populations living over evolutionary relevant periods in 
high altitude provided additional insights into the genetics 
of Epo regulation. Mutations in the genes encoding HIF-2α 
(but not HIF-1α and HIF-3α), PHD2 (but not PHD1 and 
PHD3), and VHL have been identified to be associated either 
with congenital secondary (i.e., Epo-dependent) erythrocy-
tosis or with blunted erythropoietic responses, typical for 
high-altitude adaptation of RBC homeostasis [6, 8, 64, 66, 
105]. Furthermore, some rare mutations in the EPO gene 
itself cause erythrocytosis [112, 125]. Regarding the fact 
that the majority of all congenital erythrocytosis cases are 
of idiopathic origin, it appears likely that this approach will 
lead to novel candidate loci involved in Epo regulation [16]. 
However, it will be a major challenge to unequivocally elu-
cidate the direct mechanistic connection between these loci 
and renal Epo expression. Because the expression of most 
of these factors is widespread, non-renal functions, e.g., in 
steroid hormone-producing organs or in the bone marrow, 
must be considered as well [81].

Genome-wide association studies (GWAS) linking sin-
gle-nucleotide polymorphisms (SNPs) with RBC traits (i.e., 
hemoglobin content, hematocrit, and RBC size and counts) 
provided new insights into RBC dysregulation and have the 
potential to identify new candidate regulators of Epo pro-
duction. Genes involved in iron metabolism, proliferation of 
erythropoietic precursor cells, or the EPO locus itself have 
been identified [3, 17, 19, 36, 59, 97, 113]. However, there is 
much less information about SNPs associated with circulat-
ing Epo levels, probably because of the high costs and strong 
variability of circulating Epo which, among others, shows 
very low basal levels and fluctuates in a circadian manner. 
One study focused on ageing populations with gradually 
decreasing renal function [9]. Some smaller studies looked 
at Epo after kidney transplantation [39, 40], or at the (lack 
of) sex-specific differences in chronically anemic patients 
[51]. None of these initial analyses has been performed in 
a larger cohort of randomly chosen, healthy individuals of 
the normal population.

The first reported Epo-GWAS study in normal individuals 
identified a single intergenic locus between the HBS1L and 
MYB genes [42]. This locus had previously been found to 
be associated with deregulated fetal hemoglobin (HbF) in a 
background of a Chinese β-thalassemia anemia population 
[29, 101], which is likely permissive for the selection of 
otherwise erythrocytosis-causing mutations. Disruption of 
this locus in the mouse prevented binding of several eryth-
ropoietic transcription factors, lowered Myb gene activation, 
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and increased HbF synthesis [106]. Using dried neonatal 
blood spots, also the CRP locus was reported to be asso-
ciated with circulating Epo [115]. In contrast to the latter 
study, we found a strong heritability of circulating Epo levels 
in a family-based cohort from the general population [21]. 
SNPs of the MAP2K5-SKOR1-PIAS1 locus showed the high-
est association with circulating Epo levels. However, to date 
the direct mechanistic links between the HBS1L-MYB, CRP, 
and MAP2K5-SKOR1-PIAS1 loci and Epo remain unknown.

Regulatory elements conferring tissue 
specificity and hypoxia inducibility to EPO 
gene expression

As outlined above, mouse models containing transgenic 
DNA fragments of the human EPO locus allowed for the 
identification of tissue-specific and hypoxia-inducible cis-
acting DNA regions, but the resolution of this approach was 
not sufficient to make any conclusions about the involved 
transcription factor-binding sites. Using hepatoma cell 
lines [41], the ~ 50-bp EPO 3′ hypoxia response element 
(HRE) has extensively been characterized [92, 94]. This 
HRE turned out to be active in basically all the cultured cell 
types [70], and similar functional HREs can be found in 
hundreds of HIF target genes involved in hypoxia adaptation 
[119]. However, the mouse Epo 3′ HRE is not required for 
hypoxia-inducible Epo expression in the kidney [107], and 
we suggested that a distal 5′ HRE is involved, instead [104].

Because of the transient nature of Epo expression in REP 
cells cultivated ex vivo, to date no renal cell culture model 
has been used for the analysis of putative kidney regula-
tory EPO cis-elements. Regarding the expression of sev-
eral neuronal lineage markers in REP cells in vivo [2, 75], 
it seemed likely that in human Kelly neuroblastoma cells, 
known to express Epo in a hypoxia-inducible manner [103], 

EPO cis-regulatory elements may be involved which are 
not active in hepatoma cells. Indeed, using CRISPR-Cas9-
mediated mutational analyses, only the 3′ HRE was found 
to be required in Hep3B hepatoma cells, but both the 5′ and 
3′ HREs contribute to the hypoxic induction of endogenous 
Epo mRNA in Kelly cells [77]. Chromatin immunoprecipita-
tion (ChIP) experiments confirmed the preferential interac-
tion of HIF-2 (and to some extent HIF-1) with the 3′ HRE 
in hepatoma cells. Despite its essential function in neuro-
blastoma cells, neither HIF-2 nor HIF-1 bound the 5′ HRE, 
but there was an unexpected strong HIF interaction with two 
newly identified HREs in the promoter region, although the 
minimal EPO promoter alone showed only a weak hypoxia-
inducible activity. Intriguingly, mutation of either the distal 
5′ or 3′ endogenous HREs completely abolished HIF bind-
ing to the proximal EPO promoter HREs as well as to the 3′ 
HRE in neuroblastoma cells [77]. Figure 2 summarizes the 
differences between human hepatic and neuronal cells in the 
complex remote interaction of cis-regulatory DNA elements 
and trans-acting protein factors of the EPO gene locus.

Using mouse embryonic fibroblast (MEF)-derived Epo-
producing C3H10T1/2 cells, the interaction of HIF-2 (and 
HIF-1) with the HREs located in the 5′, promoter, and 3′ 
regions of the Epo gene has recently been confirmed by 
ChIP [96]. This finding was unexpected since MEFs usu-
ally do not express any HIF-2α and there is no remaining 
HIF-2 response in HIF-1α-deficient MEFs [102]. The factors 
governing Epo expression in this particular MEF-derived 
cell line hence remain to be investigated.

That each of these three HRE-containing elements of the 
EPO locus confers hypoxia inducibility to a reporter gene 
has previously been shown in Hep3B hepatoma cells, but 
the same authors disputed the necessity of the 5′ HRE for 
hypoxic induction of Epo in the mouse kidney [47]. There-
fore, they phlebotomized transgenic mice containing a large 
bacterial artificial chromosome (BAC) construct of the mouse 

Fig. 2  Regulatory elements of 
the human EPO gene. Hypoxia 
response elements (HREs) have 
been identified in the distal 5′ 
and 3′ enhancer regions as well 
as in the proximal promoter 
region of the EPO gene. 
Hypoxia-inducible transcription 
factor complexes interact with 
these HREs in a cell-type–spe-
cific manner to govern EPO 
gene expression as indicated. 
kb, kilobases
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Epo locus with a 0.7-kb deletion of the 5′ HRE region and 
GFP in place of most of the Epo exons. While GFP remained 
undetectable in normal mice, strong GFP signals were still 
observed in the kidney of anemic mice [47]. Because the 
hypoxia-inducible Epo promoter (as well as the 3′ HRE) was 
still present in this transgene, the conclusion that the putative 
5′ HRE is not active in REP cells seems not to be justified. 
While it may well be that only neuronal but not renal Epo 
regulation requires the specific 5′ HRE sequence within the 
crucial upstream regulatory region, our Kelly experiments 
demonstrated an unprecedented remote action of both distal 
5′ and 3′ HREs on HIF occupancy of the promoter HREs at 
least in neuronal cells, which may also inspire future experi-
ments to elucidate renal Epo regulation, possibly involving a 
currently unknown additional kidney-specific 5′ HRE.

The enigmatic nature of REP cells: targeting 
the unknown

The identity of the renal cells that produce Epo has been 
debated for decades, mainly due to the limited quality of 
the original in situ hybridization (ISH) technology [108]. 
With the development of much more specific and sensitive 
ISH techniques (the most widely applied method known as 
“RNAscope”), it is now undisputed that only fibroblast-like 
cells located in the intertubular space, often referred to as 
“interstitial” cells, produce Epo mRNA. These peritubular 
and pericytic REP cells are mainly located in the corticome-
dullary border region but can be found throughout the cortex 
in severe anemia [58, 69, 122].

Because (i) REP cells are rare, (ii) normoxic Epo protein is 
basically undetectable, and (iii) hypoxic Epo mRNA expres-
sion occurs only transiently; independent markers to target 
and analyze these cells are urgently required. A number of 
Cre drivers have been used to target REP cells, including 
promoter elements derived from the genes encoding CD68, 
renin, connexin 40, PDGFRβ, and FOXD1 [13, 32, 37, 38, 
54, 55, 61, 62]. Because these genes are also expressed in 
non-REP cells, the corresponding models are probably of 
limited use to study physiological Epo regulation. The only 
reliable alternative to tag REP cells is the use of the Epo gene 
itself. However, in contrast to the mentioned Cre drivers, a 
small promoter fragment of the Epo gene is not sufficient 
to recapitulate tissue-specific Epo expression. Alternatively, 
a reporter gene could be inserted into the endogenous Epo 
locus by homologous recombination, but this led to Epo 
gene inactivation and anemia [69, 122]. The generation of 
transgenic mice containing a BAC, with the Cre recombinase 
inserted into an approx. 200 kb DNA fragment derived from 
the Epo locus, finally allowed for the unambiguous targeting 
of REP cells, albeit only under hypoxic/anemic conditions 
[75]. To permanently label REP cells, similar transgenic 

mouse lines but with a Cre recombinase instead of the GFP 
reporter were generated and crossed with Cre-activatable 
reporter mice [122]. Because in this model the Cre recombi-
nase is constitutively active, the time point of REP labelling 
during kidney development and episodes of tissue hypoxia 
remained unknown. We therefore used a similar approach, 
but with a conditionally regulated (i.e., tamoxifen-inducible) 
Cre cassette, to generate a mouse model that allowed for the 
exclusive targeting of currently active REP cells [50]. When 
crossed with a tdTomato reporter mouse, REP cells showed 
a bright and permanent red fluorescent signal (Fig. 3a).

In order to activate the tdTomato reporter gene, a minimal 
level of Cre expression is required. Under normoxic and 
non-anemic conditions, only very few cells were labelled 
with tdTomato. Far more cells were labelled following 
hypoxic exposure or application of a PHD inhibitor, sug-
gesting that Cre expression levels reliably recapitulated 
endogenous Epo regulation [22, 50]. Highly sensitive ISH 
detected also low-level Epo mRNA expressing REP cells 
which were not labelled by tdTomato (Fig. 3b) possibly 
because Cre expression did not reach the minimal level 
required for reporter activation and/or due to allele-specific 
hypoxic Epo induction. Not only the number of tdTomato-
positive REP cells but also the intensity of tdTomato fluo-
rescence increased with hypoxia, which can be explained by 
the surprising observation that Cre sequentially recombines 
the tripartite transcriptional STOP cassette of the tdTomato 
reporter in a loxP-independent manner, allowing for a partial 
read-through transcription and hence a stepwise activation 
of the tdTomato alleles [4].

Spatiotemporal recruitment of REP cells

Using our reporter mouse model, we could demonstrate 
that REP cells persist for the entire observation period of 
up to 32 weeks under normoxic conditions, without any 
Epo expression, proliferation, differentiation, or cell death. 
Following a second hypoxic stimulus, approx. 60% of the 
tagged cells can again be recruited for Epo production 
(Fig. 3b), independent of the duration of inactivity [22].

No labelled cells were found outside of the kidney, sug-
gesting that the transcriptional Epo mRNA bursts are much 
higher in the Epo-producing cells of the kidney than those 
in any other organ. Intriguingly, using a liver-specific PHD 
inhibitor [52], a large number of hepatocytes but not REP 
cells could be labelled in our mouse model (manuscript in 
preparation), demonstrating that the observed kidney restric-
tion in our mouse model is not due to a technical artifact, 
but rather represents the unexcelled physiological hypoxia 
sensitivity of REP cells.

Local tissue hypoxia in the REP microenvironment is 
likely to be caused by the massive oxygen consumption 
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of the neighboring proximal tubule epithelial cells [25]. 
A pharmaceutic Epo-inducing drug would be expected to 
be more uniformly distributed in the kidney than tissue 
hypoxia. Contrary to these expectations, a PHD inhibitor 
(roxadustat, FG-4592) showed the same spatial distribution 
of tagged REP reporter cells as found after hypoxic stimu-
lation [22], suggesting that additional factors contribute to 
REP recruitment by roxadustat, such as synergism with tis-
sue hypoxia, cell–cell contacts, or paracrine mediators from 
the local microenvironment.

REP cell‑derived cell lines

In contrast to “ordinary” fibroblasts, isolated primary REP 
cells stop to proliferate and cannot be permanently cultivated 
in vitro [50]. Immortalization in principle would allow for 
indefinite proliferation of REP cells, but transgenic mice 
containing an Epo-driven SV40 large T antigen, partly even 
homologously recombined into the endogenous Epo locus, 
did not result in any Epo-producing cell line [69]. Cell lines 
derived from VHL-deficient clear cell renal cell carcinoma 
occasionally produce Epo, albeit in an oxygen-independent 
manner [95]. Cells capable of oxygen-regulated Epo expres-
sion have been reported using in vitro differentiated kidney-
derived mesenchymal progenitor cells [82], and primary 
REP cells from kidneys of transgenic mouse lines expressing 
fluorescent proteins under the control of regulatory elements 
of the Epo locus (knock-in allele in a background of severe 
neonatal anemia) [78], or of the Col1a1 locus [18]. Epo has 
also been detected in primary cells derived from 10-day-old 

mouse kidneys, but Epo was not hypoxically induced [1]. 
A similar study using 2-week-old rats resulted in  CD73+ 
cells capable of hypoxic Epo induction [43]. Also human 
mesenchymal-like  CD133+/CD73+ progenitor cells isolated 
from the inner medulla showed increased Epo production 
following hypoxic stimulation [15]. However, despite all of 
these approaches, there is still no kidney-derived cell line 
existing which would be in widespread use to investigate 
renal Epo regulation, similar to the human hepatoma and 
neuroblastoma cell lines.

Epo-driven transgenic reporter mouse models would 
have the potential to specifically target REP cells, but a cell 
line derived from constitutive Epo-Cre reporter mice lost 
the PDGFRβ marker as well as Epo expression [85]. There-
fore, we reasoned that isolation of cells acutely tagged for an 
“open” Epo locus by conditional Cre induction may enhance 
the chance of obtaining functional REP cells. Following 
immortalization with a large T antigen, we could reproduc-
ibly generate such cell lines [46, 50], but the Epo mRNA 
and protein levels were still quite low when compared to the 
human hepatoma and neuroblastoma models. Therefore, we 
generated additional REP-derived (REPD) cell lines from 
Epo-CreERT2 reporter mice, but used a heat-sensitive SV40 
large T antigen for the immortalization [4, 5]. Following 
incubation at the non-permissive temperature (37 °C), con-
ditionally immortalized REPD cell lines indeed increased 
stem cell markers and HIF-2α mRNA expression. While 
HIF-2α mRNA could further be induced by a neurotrophic 
medium, neither HIF-2α protein nor Epo was substantially 
increased. Vice versa, even REP cells isolated from mouse 
kidneys genetically deficient for VHL in PDGFRβ-positive 

Fig. 3  Renal Epo-producing (REP) cells. Epo-CreERT2xtdTomato 
reporter mice were treated with tamoxifen and exposed for 4  h to 
0.1% carbon monoxide (CO) resulting in ~ 50% CO saturation of 
hemoglobin (hypoxemia), a strong but short-lived stimulus for Epo 
expression. a Fluorescence microscopy of a REP cell 3 weeks after 
the permanent labelling with fluorescent tdTomato protein (red). b 
Reporter mice were treated with a second identical hypoxic stimulus 

1  week after the initial REP tagging, and analyzed immediately by 
Epo mRNA fluorescent in situ hybridization (FISH; white). Because 
the FISH procedure destroyed its fluorescence, tdTomato protein 
was detected by anti-RFP immunofluorescence (αRFP IF; red). a, b 
Tubuli were visualized by their autofluorescence (green) and nuclei 
were stained by 4′,6-diamidino-2-phenylindole (DAPI; blue)

Pflügers Archiv - European Journal of Physiology (2022) 474:783-797788



1 3

cells, which show very high Epo mRNA levels in vivo [12, 
38], rapidly lost Epo expression during in vitro cultivation 
despite constitutive HIF-2α stabilization by loss of VHL 
(M. Fuchs and A. Kurtz, Regensburg, Germany; personal 
communication).

In summary, these results suggest that increased HIF-2α 
expression/stabilization is not sufficient to prevent the 
decrease in Epo expression in cultured REPD cell lines. 
Additional transcription factor-mediated reprogramming of 
REPD cells seems to be required to rescue their original 
identity. Of note, essential coactivators of specific HIF target 
gene subsets have previously been identified [80, 120]. It 
will be of major interest to identify such master REP dif-
ferentiation regulators by single-cell analyses of isolated 
primary REP cells.

Why do REP cells fail to produce Epo 
in chronic kidney disease?

During chronic kidney disease (CKD), REP cells lose their 
ability to produce Epo, resulting in renal anemia that needs 
to be treated with erythropoiesis-stimulating agents (ESAs) 
in ESRD patients. The precise reason for this REP cell fail-
ure is unknown.

Acute kidney injury is often associated with global tis-
sue hypoxia which also plays an important role during the 
transition to CKD [111]. In ESRD, tubulointerstitial hypoxia 
is caused, among others, by capillary rarefaction and extra-
cellular matrix expansion [27, 71]. Failure of Epo produc-
tion despite tissue hypoxia is obviously not compatible with 
normal HIF signalling, suggesting that other mechanisms are 
involved, including REP cell transdifferentiation or altered 

environmental clues such as paracrine factors or cell–cell 
contacts. However, the observation that ESRD patients liv-
ing at higher altitudes generally require lower doses of ESAs 
to maintain their hematocrit [14] sparked the idea that the 
oxygen sensing and HIF signalling pathway in REP cells 
may still be intact. A fully functional HIF pathway seems 
also to underlie the successful clinical application of PHD 
inhibitors, which depends on the presence of the diseased 
kidney and cannot be explained by liver-derived Epo alone 
[7]. How could these apparently contradictory findings be 
resolved?

The microenvironment of REP cells that maintained their 
pericytic location on capillaries that remained intact may not 
be affected by fibrotic tissue remodelling to a similar extent 
as parenchymal cells. Assuming that the oxygen content of 
the post-glomerular arterial blood in the vicinity of these 
REP cells is not affected by the renal disease, the REP cell 
 pO2 is only altered by the remaining hemoglobin desatura-
tion, caused by oxygen consumption which is well-known 
to predominantly depend on tubular sodium reabsorption 
[24, 53, 65]. Decreased proximal tubular metabolism leads 
to an increased cortical  pO2 [10] and inhibits hypoxic Epo 
induction [25]. Due to the loss of tubular function, oxygen 
consumption and hence hemoglobin desaturation are likely 
to be decreased in the diseased kidney [27, 30, 72], possibly 
causing a pericytic “microenvironmental relative hyperoxia” 
within REP cells (Fig. 4). Vice versa, increased renal oxy-
gen consumption by mitochondrial uncoupling led to tissue 
hypoxia and an increase in hemoglobin content (Epo was not 
measured) despite the observed nephropathy [34].

Regarding the putative changes in paracrine factors, 
transforming growth factor β (TGFβ) signalling has been 
suggested as a possible cause of suppressed or lost Epo 

Fig. 4  Loss of tubular function during chronic kidney disease (CKD). 
In this hypothetical model, renal “microenvironmental relative 
hyperoxia” is caused by decreased oxygen consumption of damaged 
tubules during the course of the disease, which leads to an attenuated 

hemoglobin oxygen desaturation of the capillary blood in the vicin-
ity of the pericytic Epo-producing (REP) cells. Consequently, intra-
cellular  pO2 levels in REP cells exceed the normal hypoxic set point 
required for Epo production, leading to renal anemia
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expression in ESRD [35]. Of note, TGFβ has recently been 
shown to suppress HIF-2α and Epo expression [96], which 
may thus represent a transdifferentiation-independent direct 
function of the TGFβ pathway. Pro-inflammatory NF-κB 
signalling is also well-known to inhibit Epo expression [63], 
and anti-inflammatory treatment has been shown to restore 
Epo production in a UUO model of renal tissue remodel-
ling [100]. Finally, epigenetic DNA modifications have been 
shown to silence Epo in fibrotic mouse kidneys, and DNA 
methyltransferase inhibitors restored Epo production [18]. 
However, it is currently unclear if and how PHD inhibition 
interferes with these processes, whereas hypoxia mimicry 
readily explains the reversal of a “microenvironmental rela-
tive hyperoxia” by PHD inhibitors.

Using constitutive Epo-Cre REP reporter mice, a large 
increase of the proportion of tagged REP cells positive for α 
smooth muscle actin (αSMA) has been observed [100], lead-
ing to the proposal that REP-to-myofibroblast transdifferen-
tiation is the main cause of the loss of Epo expression during 
CKD [99, 110]. However, using the same CKD model, only 
a minor proportion of tagged REP cells expressed αSMA in 
our conditional Epo-CreERT2 reporter mice, and we hence 
concluded that Epo loss precedes transdifferentiation [22]. 
Because seven distinct cell clusters with increasing αSMA 
levels can be distinguished during myofibroblast differentia-
tion [74], TGFβ-induced αSMA does not necessarily repre-
sent fully differentiated myofibroblasts.

Efficient rescue of inactive REP cells by PHD 
inhibitors to treat renal anemia

Epo-deficient renal anemia needs to be treated by ESA 
injections or, more recently, by oral application of HIFα 
stabilizing PHD inhibitors [57]. Of the five drugs that have 
recently been clinically approved [45], roxadustat was the 
first compound authorized for the treatment of renal ane-
mia. While the known rapid induction of Epo by roxadustat 
[22, 23, 48] would be consistent with a counteraction of 
“microenvironmental relative hyperoxia” [49, 88], it is more 
difficult to understand how this rapid roxadustat effect could 
be caused by a reversal of the REP-to-myofibroblast transdif-
ferentiation. Furthermore, it was unclear whether inactive 
REP cells or other cells of the large fibroblast-like cell pool 
are recruited by PHD inhibition.

We therefore applied a unilateral model of renal tissue 
remodelling to our conditional Epo-CreERT2 reporter mice. 
Epo expression was completely abrogated in the damaged 
but not contralateral or sham-operated kidneys. Importantly, 
we found that roxadustat recruited previously active tagged 
REP cells of the damaged kidney and that roxadustat effi-
ciently induced Epo expression in the damaged kidney to 
the same extent as in the (healthy) contralateral kidney [22], 

demonstrating that disease-inactivated REP cells can readily 
be recruited by hypoxia-mimicking agents.

Recently, Kobayashi et al. suggested that Epo is lost dur-
ing CKD progression due to the progressive loss of areas 
containing functional REP cells and that phlebotomy or 
PHD inhibition re-induced Epo in REP cells residing in pre-
served areas of the otherwise damaged kidneys [54]. These 
preserved areas readily responded to phlebotomy but were 
apparently not able to prevent the Epo-dependent renal ane-
mia that developed in these animals. Because an adenine-
diet model was applied, it remains to be investigated to what 
degree the spatial tissue damage is comparable to the more 
commonly used UUO model. While the “preserved area” 
hypothesis also suggests regions of intact but (for unknown 
reasons) inactive REP cells, it may not be able to explain 
the PHD inhibition-mediated rescue of Epo expression in 
the more uniformly damaged obstructed kidney of the UUO 
model [22].

In conclusion, the “microenvironmental relative hyper-
oxia” hypothesis would explain why (i) despite global tissue 
hypoxia Epo is not induced, (ii) less Epo is required to treat 
ESRD patients at higher altitudes, and (iii) the PHD inhibi-
tors can re-induce Epo expression as rapidly and efficiently 
in the diseased kidney as hypoxia does in the healthy kidney. 
We do not exclude that other mechanisms, such as the men-
tioned effects of increased TGFβ and NF-κB signalling, may 
contribute to the loss of Epo expression in CKD. To date, 
however, mechanistic explanations that would be compatible 
with these three observations are pending.

How do REP cells “sense” tissue hypoxia 
caused by decreased blood oxygen content?

Renal arterio-venous oxygen shunts [76] and high oxygen 
extraction by the tubular cells ensure independence of res-
piratory fluctuations in the arterial  pO2 (which are “sensed” 
by the carotid body). Furthermore, the stable ratio between 
kidney perfusion and oxygen consumption ensures blood 
pressure-independent oxygen sensing, explaining why sys-
temic RBC-regulating oxygen sensing is primarily located in 
the kidney [116]. On the cellular level, the HIF-PHD nega-
tive feedback loop (Fig. 1) may define the hypoxic set point, 
allowing the cell to adapt to its microenvironmental tissue 
oxygen partial pressure  (pO2) [102]. However, REP cells 
are pericyte-like cells, and the long processes are closely 
aligned to post-glomerular blood vessels in vivo [5, 98]. 
Likewise, the mitochondria-rich tunneling nanotubes of 
REPD cell lines readily aligned with vessel-like structures 
in vitro [5, 82]. Considering this close vicinity to blood ves-
sels containing oxygenated arterial blood, it is challenging 
to understand the molecular processes that confer the unique 
hypoxia sensitivity to REP cells. Moreover, regarding the 
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deep oxygen sinks of the mitochondria-rich proximal tubules 
of the opposite site of REP cells, there must be a high trans-
versal oxygen flow through the pericytic REP cells, further 
complicating the understanding of oxygen sensing in these 
cells.

As illustrated by the calculated  pO2 isobars in the Krogh 
tissue cylinder [117], each REP cell resides within a dif-
ferently oxygenated microenvironment, depending on the 
longitudinal distance from the glomerulus and the radial dis-
tance from the blood vessel. It is generally assumed that Epo 
is produced in reverse proportion to the (radially decreasing) 
tissue  pO2 (Fig. 5, upper part). While the pericytic locali-
zation of REP cells limits the radial variability of the  pO2 
microenvironment, there is still a high longitudinal variabil-
ity, mainly caused by the oxygen extraction of hemoglobin 
by tubular oxygen consumption. For reliable hypoxia sens-
ing, REP cells should hence obtain information about their 
longitudinal localization along the blood vessels. Therefore, 
we would like to moot a “longitudinal differential” oxygen-
sensing mechanism that provides information about the 
localization along the blood vessel. In this model, REP 
cells sense the difference of the  pO2 along the blood vessel, 
maybe with the help of their mitochondria-rich tunneling 
nanotubes which longitudinally align with blood vessels in 
healthy kidneys but detach and reorient towards tubules in 

damaged kidneys that do not produce Epo anymore [98]. 
Because of the sigmoidal mutual relation between hemo-
globin oxygen saturation and  pO2, the  pO2 values drop more 
rapidly at the arterial end compared with the venous end of 
the blood vessel (assuming constant oxygen extraction by 
the surrounding tubular epithelia), thereby informing the 
REP cell about its localization along the blood vessel and/
or the initial oxygen content of the post-glomerular arterial 
blood (Fig. 5, lower part). The high tubular oxygen extrac-
tion ensures efficient hemoglobin desaturation along short 
distances of the blood vessel, resulting in a high resolution 
of the differential tissue ΔpO2 values. ΔpO2 information 
may be processed by either a single REP cell or a group of 
REP cells connected via their tunneling nanotubes, which 
would be consistent with the neuronal properties of REP 
cells [2, 5, 75], and which would also explain the clustering 
that is often observed with REP cells [58].

While entirely speculative, this mechanism would be 
consistent with the high hypoxia sensitivity that is typi-
cal for REP cells, and the exclusive dependence on the 
arterial blood oxygen content. The relevant REP cell  pO2 
drops whenever the oxygen capacity of blood is lowered, 
by anemia as well as by hypoxemia. For instance, in an 
anemic patient, inspiration of 100%  O2 would have little or 
no suppressive effect on renal Epo induction despite an at 

Fig. 5  Proposed three-dimensional model for tissue oxygen partial 
pressure “sensing” of arterial blood oxygen content by renal Epo-
producing (REP) cells. Pericytic REP cells are longitudinally aligned 
along post-glomerular blood vessels and are depicted within the cal-
culated isobaric oxygen partial pressure  (pO2) values forming the 
Krogh tissue cylinder [117]. Strong transversal  O2 fluxes through 
REP cells, especially around the arterial end of the blood vessel, are 
generated by high  O2 consumption of tubular epithelial cells located 
in the outer parts of the tissue cylinder (not shown). In the “radial 

proportional” mode (upper part), REP cells sense the mean cellular 
 pO2 levels and regulate Epo in inverse proportion to this value. In the 
“longitudinal differential” mode (lower part), REP cells integrate the 
information obtained from distal  pO2 values along the blood vessel 
and regulate Epo based on this differential value that provides infor-
mation about the longitudinal localization. Under anemic conditions, 
the venous (but not the arterial)  pO2 is lowered, and the critical tissue 
 pO2 required for Epo induction is shifted towards the “arterial end” of 
the capillary
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least fivefold increase in the arterial (but not venous)  pO2. 
Vice versa, renal Epo production would be reduced in the 
same anemic patient if the oxygen affinity of hemoglobin 
would be lowered (e.g., by pharmaceutical interference 
with the allosteric regulation of hemoglobin  O2 affinity by 
2,3-BPG) despite unchanged arterial  pO2.

It will be challenging to gather experimental evidence 
supporting this three-dimensional (3D) oxygen-sensing 
model. High-resolution nearest-neighborhood analyses of 
REP cells will be required to statistically evaluate their 3D 
arrangement relative to specific blood capillary sections 
and nephron segments. Therefore, we recently reported 
the combined 3D vascular and tubular imaging of whole 
mouse kidneys using X-ray μCT [60]. In a next step, light 
sheet fluorescence microscopy of the same kidney shall 
localize tagged REP within the μCT picture. Finally, com-
putational modelling will be required to reveal the 3D oxy-
gen distribution on a micrometer scale.

Perspectives

In the absence of cell culture models that allowed for the 
molecular understanding of the regulatory pathways of so 
many other genes, most insights into renal Epo regula-
tion have been derived from transgenic mouse models, 
but the nature of REP cells is still an unsolved puzzle. One 
possible explanation could be that multiple subtypes of 
fibroblast-like cells contribute to the functional REP cell 
pool [12]. Alternatively, REP cells represent an entirely 
new cell type whose currently known expression markers 
overlap with various other cell types. Single-cell analyses 
of freshly isolated REP cells bear the potential to solve this 
puzzle. However, due to the low expression of Epo under 
normoxic conditions, initial single-cell RNA sequencing 
(scRNAseq) data of tens of thousands kidney cells did not 
contain any Epo mRNA in interstitial cells [20, 26, 79, 83, 
123]. Once more, tagged REP cells derived from trans-
genic mouse models will be instrumental in the necessary 
enrichment of this cell type for scRNAseq analyses.
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