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Induced pluripotent stem cells (iPSCs) are an established 
cellular system to study healthy and diseased conditions in 
a human context in vitro. Sensory neurons and signaling 
mechanisms mediating the perception of pain share many 
similarities but also substantial differences between mice 
and humans, and thus, translating the findings from rodents 
to humans is not always straightforward [7]. Although 
human iPSC-derived nociceptors cannot fully recapitulate 
the development of the human nociceptive pathway, the 
study by Zeidler et al. [10], recently published in Advanced 
Science, tries to fill this gap. In their comprehensive, data-
filled paper, the group of Michaela Kress (Institute of Phys-
iology, Medical University Innsbruck) investigated iPSC-
derived human nociceptor (iDN) development in the dish. 
Their study provides novel insights into and new data for (i) 
global gene expression during stem cell differentiation into 
sensory neurons, (ii) novel miRNA candidates regulating 
distinct stages of iDN differentiation, (iii) disease onset or 
susceptibility windows for disease-associated gene sets, and 
(iv) bundles all this information in the searchable online tool 
NOCICEPTRA.

Using a small molecule–based differentiation method 
modified from Chambers et al. [1], they first followed neu-
ron induction and maturation over a time frame of 36 days 
(D36), sampling RNA at six different time points for analysis 
by a combined long and short RNA sequencing approach to 
cover long protein-coding mRNA as well as short micro-
RNA transcripts. Their initial protein-coding mRNA analy-
sis shows successful nociceptor differentiation and identified 
6 hub-gene networks involving genes relevant for multifunc-
tional neuronal and synaptic development and neural tube 
or neural crest genes. As expected, pluripotency markers 

were strongly downregulated during differentiation, whereas 
neural crest cell markers peaked around D10 to D15, and 
many nociceptive markers were continuously upregulated. 
The transcriptome of differentiated neurons was more simi-
lar to that of dissociated human dorsal root ganglion (DRG) 
cultures than of whole ganglia, which is most likely due to 
the fact that DRGs comprise of much more than only sen-
sory neurons, e.g., satellite glial cells.

Using trajectory analysis, they were able to identify five 
different iDN differentiation stages: A pluripotency stage 
which similarly to the early differentiation stage (followed 
by the neural progenitor stages) continuously decreases 
during differentiation by measures of marker gene expres-
sion, while the nociceptor genes are upregulated during 
nociceptor and maturation stages. Interestingly, there are 
two complementary groups which seemingly inverse gene 
regulation: early/late maturation genes and those in the early 
neural progenitor group. Thus, the presented data convinc-
ingly recapitulate the stages of nociceptor differentiation 
as described for mice [2, 3, 6] suggesting that nociceptor 
fate determination is common among rodents and humans. 
Nociceptor subtype specification and diversification is also 
represented by the dataset as shown, e.g., by an increase of 
nociceptor-specific ion channel expression from D16-D36. 
Here a single cell–based analysis would add more detail and 
clarity regarding the sensory neuron populations that evolve 
during human development.

Several recent studies performed single cell transcrip-
tomic analysis on DRGs of non-human primates (macaque) 
[4] and humans [9] and revealed significant sex differences 
and inter-species divergence among specific nociceptor sub-
sets in human DRG subpopulation transcriptomes. For exam-
ple, whereas mice display an enriched expression of SCN9a 
in nociceptors, macaque SCN9A is broadly expressed at 
similar levels in all neuronal types. Zeidler et al. did not 
directly address these aspects, although the iPSC lines they 
used derived from two females and one male donor, and 
comparisons may thus have been fruitful. Differentiation of 
sensory neurons using the Chambers protocol shows high 
variability [5, 8] and thus the choice of clones may also 
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affect the outcome, which is an important factor to consider 
when discussing RNAseq results from differentiated cells.

Beyond mRNA transcriptomic analysis, Zeidler et al. 
set out to also identify the expression trajectories of small 
non-coding microRNAs (miRNAs) whose many regula-
tory functions we only start to understand. Zeidler and col-
leagues establish a link between their findings from coding 
and non-coding RNA analysis: they identified hub genes 
that are most likely important (if not the most important) 
regulators of the modules, and the authors additionally 
performed a miRNA:mRNA target analysis for those hub 
genes identified. Thereby they identified miRNAs which 
e.g. regulate pre- and post-synapse development via hub 
genes, which can potentially also act as master switches, 
and miRNAs with impact on neurite outgrowth modula-
tion. This interesting approach could in the future also be 
expanded to long non-coding RNAs (lncRNA), as they are 
of increasing importance for nociceptor differentiation. The 
author’s data set already covers lncRNAs and could easily 
be implemented within their online tool NOCICEPTRA as 
a searchable RNA.

To make the complex data and their analysis pipelines 
accessible and manageable for other researchers, the authors 
developed the mentioned online tool NOCICEPTRA to ana-
lyze and visualize time trajectories of genes and miRNAs 
of interest. This valuable tool allows for general exploration 
of gene and miRNA expression, hub modules and pathways 
as well as disease susceptibility windows with the option 
to specifically zoom into genes of interest, their expression 
trajectory during nociceptor differentiation and potential 
regulation by miRNAs. With the increasing availability of 
big data, such tools become more and more important and 
will hopefully in the future also include state-of-the art sin-
gle cell and single nuclear sequencing data and approaches.
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