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Abstract
14–3-3 proteins (14–3-3 s) are a family of highly conserved proteins that regulate many cellular processes in eukaryotes by 
interacting with a diverse array of client proteins. The 14–3-3 proteins have been implicated in several disease states and 
previous reviews have condensed the literature with respect to their structure, function, and the regulation of different cellular 
processes. This review focuses on the growing body of literature exploring the important role 14–3-3 proteins appear to play 
in regulating the biochemical and biophysical events associated with excitation–contraction coupling (ECC) in muscle. It 
presents both a timely and unique analysis that seeks to unite studies emphasizing the identification and diversity of 14–3-3 
protein function and client protein interactions, as modulators of muscle contraction. It also highlights ideas within these two 
well-established but intersecting fields that support further investigation with respect to the mechanistic actions of 14–3-3 
proteins in the modulation of force generation in muscle.
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Introduction

Investigations into the function of 14–3-3 proteins over the 
last 30 years have elucidated their role in the regulation of 
several cellular pathways, including but not limited to, sig-
nal transduction, protein trafficking, cell cycle regulation, 
apoptosis, and metabolism. They operate as homodimers 
and heterodimers with each monomer capable of binding 
to phosphorylation sites within 14–3-3 binding motifs on 
client proteins. In general, there are two predominant bind-
ing motifs that have been identified, mode I and mode II 
each with consensus sequences defined as R(S/X)XpSXP 
and RXXXpSXP (X is any amino acid residue and p is adja-
cent to a phosphorylated serine or threonine) respectively 
[72]. A third consensus sequence (pS/pTX1–2-COOH) later 
identified appears to bind 14–3-3 proteins with a weaker 
affinity, although other binding motifs have been identified 
and the binding to unphosphorylated sites on some proteins 
is also recognized [15, 20, 29]. Once bound, they generally 

modulate client protein activation, inhibition, structural sta-
bilization, masking of sites, and intracellular localization 
[47].

Phylogenetic analysis indicates 14–3-3 proteins evolved 
in unicellular and multicellular eukaryotes before the diver-
gence of mammals. They exhibit a high degree of homology 
between the various isoforms of the same species, suggest-
ing conservation of critical regions and function [53]. The 
high level of conservation of core regions and X-ray crystal-
lographic studies of the mammalian isoforms has permitted 
identification of 3D structural features which are applicable 
to all the isoforms [73]. The ~ 30-kDa monomers consist of 9 
antiparallel arranged α-helices (H1–9), forming an L-shape 
structure. Helices 3, 5, 7, and 9 form a highly conserved 
amphipathic grove on the inner surface of all the isoforms 
which forms the site of ligand binding on client proteins. The 
formation of homodimers and heterodimers occurs between 
highly conserved sequences in the N-terminus of helix 1 on 
one monomer, and helices 2 and 3 on the opposing mono-
mer. The conserved nuclear export signal in helix 9 supports 
nuclear shuttling activities in addition to the established 
roles of the dimers acting as adaptors binding two different 
client proteins or two different regions of the same protein.

In humans, the seven isoforms (β, ε, η, γ, θ, ζ, and σ) are 
encoded by separate genes (YWHAB, YWHAE, YWHAH, 
YWHAG, YWHAQ, YWHAZ, and SFN or Stratifin) and 
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are expressed in a wide variety of tissues to varying degrees. 
Based on transcriptomic data in The Human Protein Atlas 
database, the 14–3-3 isoform-specific RNA expression pro-
files differ between the muscle subtypes and are summarized 
in Fig. 1. The data examining human 14–3-3 isoform-spe-
cific protein expression levels in the muscle subtypes are 
far less clear, with some isoforms not detectable. However, 
this may reflect limitations in the tools available to exam-
ine isoform-specific protein expression as opposed to the 
abundance of probe sets or sequence identification used in 
transcriptomic approaches. The regions of greatest protein 
sequence variability appear in the amino and carboxyl-
terminal regions of the isoforms. The N-terminal region is 
responsible for dimerization and sequence variations here 
may underly the differing propensity of the isoforms to form 
homodimers or heterodimers [73]. Sequence variations in 
the C-terminus have been speculated to function in an iso-
form-specific autoinhibitory capacity during ligand binding, 
through a conformation change when phosphorylated [48]. 
Several excellent reviews have focused more extensively on 
14–3-3 structure and function, their actions in modulating 
of cellular signaling, and the development of compounds to 
alter their activities, and are recommend for further reading 
[43, 47, 59, 71].

While 14–3-3 protein structure and function have been 
extensively studied in a vast array of non-muscle eucary-
otic cells, the number of muscle-specific studies is limited. 
A recent PubMed search using the terms “14–3-3 AND 
muscle” identified 273 studies. Based on commonly used 
keywords listed, most of these studies examine 14–3-3 
modulation of signaling pathways leading to transcriptional 
changes, apoptosis, autophagy, endoplasmic reticulum (ER) 
stress, cell cycle regulation, and mitochondrial function. In 
the case of smooth muscle, studies examining cell migration 
and cytoskeletal reorganization are also represented. On a 

broader scale, 14–3-3 proteins have been also implicated 
in organ development, muscle growth/hypertrophy, muscle 
differentiation, substrate uptake, and metabolism. However, 
the purpose of this review is to summarize emerging stud-
ies examining the interaction of 14–3-3 proteins with the 
proteins associated with excitation–contraction coupling 
(ECC) and in some cases, aligning their function with sign-
aling events associated with its regulation. Moreover, from 
the prospective of a greater understanding of ECC and its 
regulation, there is little recognition of the role of 14–3-3 
proteins in this process in general. Consequently, we aim to 
draw attention to this area through the assembly of a body of 
literature and discuss the potential mechanistic implications 
for 14–3-3 regulation of muscle contractile function.

Modulation of 14–3‑3 expression 
and genetic manipulation of function 
in muscle

Studies examining the regulation of 14–3-3 expression have 
predominantly characterized changes in their expression pro-
file with respect to injury or disease, but surprisingly none 
has investigated the molecular regulation of 14–3-3 gene 
transcription per se. The proliferation of vascular smooth 
muscle cells (VSMC) in response to vascular injury con-
tributes to vascular restenosis. In the carotid artery follow-
ing balloon angioplasty in rats, 14–3-3γ RNA expression 
increases within 24 h in the vessels. In cultured VSMC fol-
lowing serum, proinflammatory cytokine, and mitogenic 
stimulation, increases in 14–3-3γ RNA expression occur 
within 2–3 h and protein increases occur within 8–16 h [6, 
7]. A possible translational corollary associated with these 
observations is indicated in patients diagnosed with coro-
nary artery vasculopathy which is associated with cytokine-
induced activation and proliferation of medial VSMC as a 
critical cellular event in restenosis. Compared to patients 
with end-stage heart failure, coronary artery samples show 
elevated 14–3-3γ protein expression which colocalizes his-
tologically with smooth muscle α-actin in the media and 
neointima of the vessel [5]. Although most isoforms are 
expressed at low levels in many tissues, 14–3-3γ appears 
to be expressed at higher levels in human brain, skeletal 
muscle, and heart compared to other tissues [6, 7]. Simi-
larly, 14–3-3ε appears to be expressed at higher levels in the 
human heart and skeletal muscle compared to other tissues 
and its expression peaks during late stages of embryonic 
development through neonatal life in the rodent heart [41]. 
Oxidative stress associated with taurine deficiency and strep-
tozotocin-induced diabetes appears to induce the expression 
of 14–3-3σ in isolated cardiac myocytes, which is otherwise 
undetectable, but may play a role in cell cycle arrest in con-
cert with DNA damage and cell death [23, 24]. Myocardial 

Fig. 1  Human 14–3-3 isoform RNA expression in different muscle 
subtypes. Curated data from The Human Protein Atlas consensus 
dataset (www. prote inatl as. org). It represents expression levels from 
combined transcriptomic datasets that are normalized to 55 different 
tissues and 6 cell lines
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injuries associated with severe burn and sepsis induce 14–3-
3γ and η expression changes within the first 12 h post-injury 
but not 14–3-3ζ, which was not detected in the heart [28]. 
Interestingly, a study modeling age-associated heart fail-
ure in the senescence accelerated prone mouse (SAMP8), 
14–3-3η protein expression in the heart trended lower than 
the normal aging control, and was associated with cardiac 
dysfunction, dysregulation of markers of ER, myocyte DNA 
damage, and expression of pro-inflammatory cytokines [57].

Neonatal rat cardiac myocytes (NRVM) are extensively 
used as an in vitro model to examine aspects of myocyte 
biology and the expression of 14–3-3 β, γ, ε, and ζ iso-
forms can be detected at both RNA and protein levels. The 
expression of 14–3-3 proteins does not appear to change 
in response to norepinephrine (NE)-induced hypertrophy. 
However, inhibition of their activity via adenoviral medi-
ated delivery of a 14–3-3 inhibitor (R18, a 20-mer peptide) 
is sufficient to induce and potentiate NE-stimulated protein 
synthesis, suggesting 14–3-3 proteins may suppress hyper-
trophic signaling pathways [38]. Similarly, 14–3-3 protein 
expression increases over a 12–24-h time-course in NRVM 
exposed to anoxia preconditioning as an in vitro model of 
late-stage ischemic preconditioning in the heart, but the 
response of specific 14–3-3 isoforms here was not studied 
[12]. Likewise, in anoxia-reoxygenation injury in H9c2 cells 
often used as a “cardiac-like” cell line, knockdown of sirtuin 
(SIRT2), a signaling protein involved in stress-tolerance, 
results in increased 14–3-3ζ protein levels implicating an 
involvement in cytoprotective signaling [42].

Proteomics-based approaches have helped to further 
define 14–3-3 isoform expression in muscle tissues. 14–3-3γ 
protein expression in the corporal smooth muscle cells of the 
corpora cavernosa has been shown to increase within days 
following streptozotocin-induced diabetes [74]. Likewise, 
quantification of 14–3-3 protein isoform abundance identi-
fied 14–3-3ε, γ, η, θ, and ζ/σ in differentiated C2C12 cells 
and mouse triceps, with greater levels of 14–3-3γ, η, and θ 
in the skeletal tissues compared to the other isoforms [16]. 
Analysis of 14–3-3 protein expression changes through the 
incorporation of isobaric tags and mass spectrometry analy-
sis used to examine the tibialis anterior muscle proteome fol-
lowing sciatic nerve transection identified increased 14–3-3 
β, γ, ε, and ζ abundance during the first week of denerva-
tion [60]. Since most studies have focused on 14–3-3 protein 
function in the modulation of transcriptional programs, very 
few have focused on 14–3-3 genes as targets of transcrip-
tional regulation in the context of muscle growth. Exam-
ining the regulatory role of microRNAs (miRNA) during 
skeletal muscle myogenesis, ectopic expression of miR-34b, 
and quantitative proteomic analysis confirmed the down-
regulation of 14–3-3γ occurred as a direct target of miR-
34b suppression via binding to the 14–3-3γ mRNA 3′UTR 
[61]. Likewise, the transcriptional modulation of 14–3-3γ 

and other cell cycle checkpoint genes in proliferating skel-
etal myoblasts may be associated with silencing the activity 
of the transcription factor MEF2C, which is normally most 
active during the terminal differentiation stages in myogen-
esis [8].

One of the earliest studies testing 14–3-3 function in mus-
cle expressed a dominant-negative form of 14–3-3η in the 
heart. Dominant‐negative 14–3-3 mutant forms were first 
identified in Drosophila [10]. Expression of a DN-14–3-3η 
transgene in cardiac myocytes demonstrated the necessity 
of 14–3-3 function in preserving cardiac function and sur-
vival in response to pressure overload. All DN-14–3-3η 
transgenic mice died within 7 days of transverse aortic con-
striction [70]. Follow-on studies utilizing this DN-14–3-3η 
model have subsequently demonstrated the role of 14–3-3η 
in mediating apoptotic signaling intermediaries in response 
to pressure overload, diabetes, ventricular remodeling, and 
oxidative stress, and collectively implicate that enhanced 
14–3-3 expression or activity may provide a therapeutic ben-
efit in several cardiac disease states [25, 26, 54, 62, 68, 75].

Studies employing germ-line deletion of the 14–3-3 iso-
forms were mainly developed for the purpose of studying 
neurological defects associated with each isoform. How-
ever, they have provided somewhat conflicting data with 
respect to the necessity 14–3-3 isoform expression for sur-
vival and ability to thrive, in large part due to the influence 
of background strain and knockout strategies used. Origi-
nally, deletion of 14–3-3ε allele resulted in heterozygous 
mice that were normal and fertile. Breeding these mice to 
homozygosity mainly produced mice that then die within 
hours of birth, but with only a small percent surviving to 
adulthood if bred on a mixed background compared to origi-
nal inbreed strain [64]. Examination of possible causality 
of premature death during embryonic development of the 
14–3-3ε-deficient mice on the inbred strain revealed that 
14–3-3ε expression in the cardiac myocytes was required 
for normal ventricular morphogenesis and compaction of the 
myocardium. Interestingly, expression of the other 14–3-3 
isoforms did not change or compensate for the lack of 14–3-
3ε, indicating a level of isoform specificity in the developing 
heart [34]. In a follow-on and more detailed study of the car-
diac malformations resulting from 14–3-3ε deletion, defects 
in the outflow tract, atrioventricular endocardial cushions, 
valvular, and vasculature were all apparent during mid and 
late gestion indicating the necessity of 14–3-3ε to control 
multiple aspects of cardiac development [22]. Similarly, 
deletion of 14–3-3θ/τ results in death during embryonic 
development of homozygous embryos with indications of 
delayed cardiac development, but with otherwise a normal 
morphologic appearance. Interestingly, haploinsufficient off-
spring are viable with normal cardiac function, but show an 
enhanced rate of mortality and increased cardiac myocyte 
apoptosis following coronary artery ligation [36]. Deletion 
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of 14–3-3γ by insertion of the neomycin gene into exon 2 
on an inbred background did not produce any obvious phe-
notypic alterations despite initial gene copy number and off-
spring being born with the expected Mendelian frequency 
[58]. However, deletion of 14–3-3γ using gene trapping to 
insert β-galactosidase into exon 2 to produce a truncated 
protein with just the 3 N-terminal α-helical domains intact 
produced homozygotes that all died by weaning [32]. Mice 
deficient in 14–3-3ζ also generated by gene trapping and 
maintained as heterozygous breeders on an inbred back-
ground or a mixed background appear viable and pheno-
typically indistinguishable to their wild-type littermates 
[11]. Thus, except for 14–3-3θ/τ, no other studies have been 
conducted to examine the impact on 14–3-3 isoform haplo-
insufficiency in response to a perturbation in the muscles 
of these models, and none has examined muscle-specific 
14–3-3 deletion.

14–3‑3 modulation of muscle membrane 
channels, exchangers, and pumps

The fundamental function of muscle tissue is to generate 
force which is initiated by the process of ECC. ECC is the 
progression of molecular events which start with changes in 
the resting membrane potential of the sarcolemma resulting 
in an action potential. The depolarization phase of the action 
potential generates a rise in the intracellular calcium which 
binds to a calcium sensor protein, permitting the interaction 
of myosin with actin and the generation force. This finely 
orchestrated multi-step process is regulated at various lev-
els and differs between muscle subtypes. The changes in 
electrophysiological state of the sarcolemma through move-
ment of different ions across the membrane facilitated by 
channels and pumps generally represent the first level of 
regulation. The function of 14–3-3 proteins in this aspect of 
muscle physiology is varied ranging from membrane chan-
nel chaperonin partners, aiding channel subunit assembly to 
modulators of channel and pump activities. In the context of 
14–3-3 protein-mediated channel trafficking from the Golgi 
to the cell membrane, a description of the steps involved has 
been the focus of an excellent review [56], but the broader 
physiological implications, 14–3-3 protein interactions with 
these client proteins in the context ECC, are highlighted in 
the studies below.

Voltage-gated sodium channels are responsible for initia-
tion and propagation of the action potential. These channels 
are composed of a transmembrane α-subunit which has four 
repeat domains and forms the pore (I to IV), plus accessory 
β-subunits. 14–3-3η interactions with the cytoplasmic region 
of the α-subunit interdomain I were first identified by a yeast 
2-hybrid screen and validated biochemically [1]. Similar 
interactions with 14–3-3θ/τ and ζ were also identified, and 

14–3-3η was shown colocalized with the  Na+ channel to the 
intercalated disc in cardiac myocytes. Functionally, the pres-
ence of 14–3-3η did not change channel activation or current 
density but altered channel inactivation in a heterologous 
cell system, which required in part 14–3-3 protein dimeriza-
tion. Further examination of 14–3-3 protein interactions with 
the  Na+ channel has shown they may support the formation 
of α-subunit dimers harboring mutations linked to cardiac 
arrhythmias. Inhibiting the 14–3-3 interaction abolished the 
dominant negative effect on current amplitude of the mutant 
channels. Binding site analysis indicated that 14–3-3 binding 
did not play a direct role in channel dimerization but altered 
gating properties [14]. While a second 14–3-3 binding site 
was identified in the interdomain I cytoplasmic loop in addi-
tion to the previously reported site, which 14–3-3 isoforms 
and their dimerization state in bridging these sites to account 
for the altered gating properties of these channels have yet 
to be defined.

The inward rectifier  K+ current carried by the Kir2.1 
channel reestablishes and maintains the resting membrane 
potential in cardiac muscle cells. While the function of these 
channels’ contrasts with that of the  Na+ channels, a pool of 
these two channels appears to be trafficked to the membrane. 
There they exist in multiprotein complexes and reciprocally 
modulate each other’s channel density. Inhibiting 14–3-3 
protein interactions does not appear to impact individual 
channel densities but abolished reciprocal modulation of the 
complex without altering the formation of the complex in the 
membrane [66]. Interestingly, it is proposed that disruption 
of anterograde trafficking of the  Na+ channel via 14–3-3 pro-
tein interaction inhibition may occur within the same region 
of the interdomain I cytoplasmic loop initially identified to 
contain PKA phosphorylation and ER retention motifs, and 
subsequently identified to contain 14–3-3 binding sites [40, 
76]. A similar proximity and potentially functionally over-
lapping area of ER retention and 14–3-3 binding motifs has 
also been recognized in the pore-forming subunit of the volt-
age-gated calcium channel Cav2.2, predominantly expressed 
in presynaptic nerve terminals. Here it was shown to play 
a role in membrane trafficking of the pore-forming subunit 
independently of the auxiliary subunits, through 14–3-3θ/τ 
binding and masking the ER retention signal thereby allow-
ing the channel to escape the ER [37]. The co-existence and 
interplay between ER retention motifs recognized by the 
COPI complex of the retrieval pathway of protein contain-
ing vesicles from the cis-Golgi membrane to the ER, and 
14–3-3 binding motifs required to reach the cell surface, 
were studied in the trafficking and assembly of the metaboli-
cally sensitive ATP-sensitive  K+  (KATP) channel complex in 
the heart [4]. Utilizing knockout mice deficient in the pore 
forming subunit (Kir6.2), the sulfonylurea receptor subu-
nit (SUR1), which contains ER retention signal, was shown 
to be retained intracellularly localized to the Golgi in the 
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ventricular myocytes. β-adrenergic receptor agonists stimu-
lated the translocation of SUR1-containing  KATP channel, 
and increased SUR1, Kir6.2, and 14–3-3 phosphorylation, 
indicating 14–3-3 protein interactions control anterograde 
trafficking needed to overcome COPI-dependent retrieval 
signaling.

Activation of the delayed rectifier channels carries the 
 K+ current and modifies the rate of membrane potential 
repolarization during the action potential. The ether-a-go-
go-related gene (HERG) encodes the pore-forming subunit 
of the channel permitting the delayed rectifier  K+ current 
IKr, responsible for the rapid phase of depolarization. Bind-
ing of 14–3-3ε enhances voltage-dependent activation in the 
negative voltages ranges in CHO cells that could result in 
a faster current activation during cardiac action potentials. 
This functional effect occurs through direct 14–3-3 protein 
cross-bridging and stabilization of the PKA phosphorylated 
state of the channel, which appears to involve two sites (N- 
and C-terminal site) [30]. The pathophysiological signifi-
cance of 14–3-3 protein modulation of HERG channel prop-
erties was highlighted in the analysis of naturally occurring 
C-terminal truncation mutations in heterozygous families 
with long-QT syndrome (LQTS) [13]. These channels are an 
assembly of four α-subunits each composed of cytoplasmic 
N- and C-terminal domains, and six transmembrane seg-
ments. C-terminal truncation mutated channels, in which the 
PKA phosphorylation, 14–3-3 binding sites, and ER signal 
are removed, can still bind 14–3-3ε and assemble as func-
tional channels in the membrane. However, mutant chan-
nels do not respond to hyperpolarized membrane potentials 
and display dominant-negative behavior when co-expressed 
with wild-type channels in CHO cells. While not studied 
directly in cardiac myocytes, modeling of this HERG chan-
nel activity on the action potential duration in response to 
sympathetic stimulation indicated 14–3-3 protein interac-
tions may be important in suppressing arrhythmias arising 
from premature ectopic beats in patients with LQTS due to 
C-terminal channel truncation mutations. Exploring HERG 
channel 14–3-3ε interactions in the context of β-adrenergic 
modulation indicated that the β1-adrenergic receptor com-
petes with the HERG pore-forming subunit for 14–3-3ε both 
in the presence and absence of receptor stimulation. β1-
adrenergic receptor competition for 14–3-3ε, and complex 
formation, appears to be directly occurring through PKA 
phosphorylation of putative 14–3-3 binding sites within 
the receptor and can be decreased by β-receptor antagonist 
treatment. Studying these interactions in heart samples, the 
β-receptor/14–3-3ε complex coeluted to a greater extent 
following stimulation [65]. In studying the functional con-
sequences on the HERG channel, current modulation fol-
lowing 14–3-3ε recruitment to the PKA phosphorylation 
sites identified in the cytoplasmic domain of the β-receptor 
showed that phosphorylation-deficient mutants did not 

associate with 14–3-3ε which abolished β-receptor modu-
lation of the HERG channel current. Finally, investigation 
of drug interactions with mutant HERG channels in LQTS 
using patient-specific human-induced pluripotent stem 
cell–derived cardiac myocytes (hiPSC-CMs) implicated that 
peroxisome proliferator-activated receptor-delta (PPARδ) 
agonists may exert indirect effects on mutant HERG chan-
nel activity by inducing 14–3-3ε expression changes, but 
no direct data in support of this role was investigated [19].

While the literature surrounding 14–3-3 protein interac-
tions with membrane channels probably represents the most 
in-depth area of investigation with respect to their functional 
role in modulating ECC, studies examining 14–3-3 interac-
tions with membrane pumps and exchangers which contrib-
ute to ion homeostasis in muscle cells also provide exam-
ples of their influence. The  Na+/K+-ATPase, an electrogenic 
pump which creates a gradient of  Na+ and  K+ across the 
plasma membrane to establish a resting membrane potential, 
is of note. The  Na+/K+-ATPase activity increases during 
cardiac ischemia and adrenergic stimulation via the phos-
phorylation of a 72 amino acid accessory protein called 
phospholemman, which regulates  Na+ pump function. 
Phospholemman’s interaction with 14–3-3β is increased 
during ischemia and in isolated cardiac myocytes follow-
ing direct PKA activation but is abrogated by expressing a 
mutant 14–3-3β (K49Q) [21]. Likewise, 14–3-3β binding 
to the  Na+/H+ exchanger (NHE) which regulates intracel-
lular pH and mediates increases in exchanger activity dur-
ing ischemia/reperfusion injury through phosphorylation of 
NHE1 by p90RSK. Uncoupling the 14–3-3/NHE interaction 
via overexpression of dominant-negative RSK in the heart 
was found to be beneficial and limited cell death [45].

Calcium homeostasis

The rise in cytosolic calcium levels is the trigger for contrac-
tion in all type of muscles. The management of the intracel-
lular calcium concentration reflects the balance of calcium 
influx and release from intracellular stores, verses its reup-
take into stores and extrusion out of the cytosol. 14–3-3 
proteins have been identified to interact with some of the 
exchangers and pumps that play an integral role in the main-
tenance of calcium homeostasis.

The plasma membrane  Na+/Ca2+ exchanger and 
 Ca2+-ATPase pump both function to remove and transport 
 Ca2+ ions from the cytosol into the extracellular space. 
While different isoforms exist, both are enriched in muscles 
and have been shown to be modulated by 14–3-3 proteins. 
In the framework of  Na+/Ca2+ exchanger interactions, the 
NCX2 isoform which is predominantly expressed in the 
brain was identified to interact with 14–3-3ε and ζ which 
produced an inhibitory effect on NCX2 function. Extending 
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these observations to the NCX1 and NCX3 isoforms which 
are predominantly expressed in muscle, a similar inhibition 
of exchanger function was noted. Specifically, the binding 
of 14–3-3ε reduced the exchanger’s ability to clear stimu-
lated increases in intracellular  Ca2+, which occurred inde-
pendently of changing NCX levels in the membrane and 
NCX phosphorylation [51]. Of the different plasma mem-
brane  Ca2+-ATPase pump (PMCA) isoforms that exist, the 
ubiquitously expressed PMCA1 and PMCA4 isoforms are 
expressed in muscle. Despite their wide tissue distribution, 
their functional properties are modulated in part by various 
partner proteins. These proteins interact with the different 
intracellular domains of the pump of which the N-terminal 
domain has the lowest sequence homology between the iso-
forms. Focusing of N-terminal domain interacting partners 
to assign PMCA isoform specificity, the binding of 14–3-3ε 
to this region in PMCA4 but not PMCA2 occurs indepen-
dently of phosphorylation and inhibits the pump’s ability 
to export  Ca2+ which is rescued by silencing 14–3-3ε gene 
expression. Interestingly, the N-terminal domain of PMCA4 
does not appear to interact with 14–3-3θ and ζ isoforms 
based on their expression profile in HeLa cells possibly 
implying a level of 14–3-3 isoform target specificity, but 
the remaining isoforms were not tested [52]. Expanding the 
study of 14–3-3 interactions with PMCA1 and PMCA3, 
both pumps were found to interact with 14–3-3ε whereas 
PMCA3 also interacted with 14–3-3ζ. In this instance, test-
ing all the other 14–3-3 isoforms against these two client 
proteins supported the notion that 14–3-3ε is specific for 
PMCA1 in HeLa cells. Functionally, both pumps were also 
found to inhibited by 14–3-3 interactions in the N-terminus 
[39]. Sequence analysis of the N-terminal region revealed 
that despite a conserved putative 14–3-3 binding motif pre-
sent in all four PMCA isoforms, the predicted secondary 
structure of an adjacent α-helix in PMCA2 differed and may 
contribute to the destabilization of the 14–3-3 interaction 
noted with this isoform.

Probably the most compelling examination of 14–3-3 
protein function in the context cardiac muscle ECC is the 
recognition that 14–3-3 proteins interact with Phospholam-
ban (PLN) [46]. PLN associates with the sarcoplasmic 
reticulum  Ca2+-ATPase pump (SERCA) to negatively regu-
late SERCA activity and limit the kinetics of  Ca2+ uptake 
into the SR. Phosphorylation of serine 16 on PLN by PKA 
following β-adrenergic stimulation and threonine 17 by 
 Ca2+-calmodulin-dependent kinase II removes the inhibi-
tory effects of PLN on SERCA, increasing  Ca2+ uptake 
and accelerating relaxation of the contractile apparatus. 
Leveraging prior appreciation of the interaction between 
Arg-Arg ER retention motifs recognized by the COPI com-
plex and 14–3-3 binding motifs for assembly and traffick-
ing of channels, the existence of these adjacent sequences 
in the N-terminus of PLN was investigated [46]. Through 

a series of biochemical approaches to test the existence 
of protein–protein interactions, PLN pentamers were cap-
tured using 14–3-3 protein pull-downs, proximity labeling 
experiments in neonatal cultured myocytes, and immuno-
precipitation data supported evidence of a direct interaction. 
Moreover, the affinity of 14–3-3 to bind to PLN monomers, 
and the avidity of the monomers to form pentamers, was 
dependent on Ser 16 and Thr 17 phosphorylation. Physi-
ologically, the 14–3-3 protein interaction with PLN was 
promoted following β-adrenergic stimulation and shown to 
slow the kinetics of PLN dephosphorylation by masking the 
phosphosite on PLN. Functionally, the time constant of the 
 Ca2+ transient decay was shown to be prolonged following 
acute β-adrenergic stimulation in the presence of recombi-
nant 14–3-3 protein, dialyzed into the adult myocytes. Thus, 
the 14–3-3 protein interactions with PLN serve to stabilize 
the phosphoform and disinhibit its effect on SERCA activity. 
Interestingly, the authors also point to a clinical corollary 
that may exist in patients carrying a mutation which results 
in the loss of Arg14, adjacent to the 14–3-3 binding site at 
Ser16. These patients develop an aggressive dilated cardio-
myopathy and genetically engineered mice recapitulating 
this myopathy suffer premature death, highlighting a patho-
physiologic consequence associated with the disruption of 
the 14–3-3/PLN interaction.

The contractile apparatus

The contractile apparatus of muscle performs the fundamen-
tal role of generating force in response to a suitable stimu-
lus. While elevated levels of intracellular calcium trigger the 
contractile response, differences exist in the calcium sen-
sor which initiates the molecular events that culminate in 
crossbridge formation between the muscle subtypes. With 
the recognition of effector proteins 14–3-3 proteins interact 
with to modulate ECC, these studies point towards a more 
diverse role beyond the regulation of signaling pathways in 
muscle. However, only a few studies exist with respect to 
14–3-3 proteins and the modulation of muscle contractile 
system. These studies mainly focus on 14–3-3 proteins in 
regulating upstream kinases and phosphatases that directly 
regulate contractile proteins to alter their function, or events 
associated with cytoskeletal rearrangement impacting con-
tractile function, and are highlighted below.

In an effort to identify substrates of various protein 
kinases in skeletal muscle, phosphorylation of the skel-
etal myosin light chain kinase (MLCK) at Serine 16 was 
identified as a target for an upstream kinase [27]. MLCK 
phosphorylation of myosin light chain (MLC) plays a cen-
tral role in the formation of the actin-myosin crossbridge 
in smooth muscle and modulates crossbridge function in 
cardiac and skeletal muscle. Phosphorylation of MLCK at 
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Ser16 is associated with MLCK autophosphorylation and 
is increased during tetanic muscle contraction. Phospho-
rylation of Ser16 was shown to induce binding of 14–3-3 
proteins but it does not appear to change MLCK activity 
[27]. However, while MLC phosphorylation is central to 
crossbridge formation in smooth muscle, equally important 
is MLC dephosphorylation by myosin light chain phos-
phatase (MLCP), to initiate muscle relaxation. MLCP is 
composed of 3 subunits, of which the myosin phosphatase 
targeting subunit (MYPT1) binds the enzyme to myosin. 
MYPT1 can be directly phosphorylated to alter its affin-
ity for myosin and increase the phosphatase activity of the 
catalytic subunit, but also change its intracellular localiza-
tion. In regulating these activities, biochemical studies have 
identified 14–3-3β to directly bind to MYPT1 to induce its 
dissociation from smooth muscle myosin, attenuate MLCP 
phosphatase activity, and alter its cellular localization [33]. 
14–3-3β bound to the region surrounding Ser472 on MYPT1 
results in increased MYPT1/14–3-3β binding upon MYPT1 
phosphorylation and an associated increase in MLC phos-
phorylation, suggesting a mechanism by which contraction 
maybe sustained or augmented may exist due to the interac-
tion of 14–3-3 proteins with MYPT1.

The control of smooth muscle tone and vascular diameter 
involves not only the balance of myosin-light chain phos-
phorylation and dephosphorylation, but additional mecha-
nisms related to the dynamics of cytoskeletal reorganiza-
tion. The cytoskeleton anchors the contractile apparatus to 
the extracellular matrix and contributes to the contractile 
response to vasoactive stimulation. 14–3-3 proteins interact 
with proteins involved in the regulation of actin filament 
dynamics, but their interactions with cofilin have gained sig-
nificant attention with respect to the regulation of smooth 
muscle contractile function. Cofilin is an actin regulatory 
protein that binds to the side of F-actin to promote actin fila-
ment disassembly and recycling of actin monomers during 
cytoskeletal remodeling. Involved in mediating the cofilin/F-
actin interaction is the small heat shock protein 20 (HSP20), 
also known as HSPB6. While the precise mechanism is still 
unclear, it is proposed that HSP20-mediated smooth muscle 
relaxation in response to elevated cyclic nucleotides results 
in HSP20 phosphorylation which displaces cofilin from 
its complex with 14–3-3 [17]. This hypothesis is based in 
part on the ability of a transducible recombinant phospho-
peptide analog corresponding to 14–3-3 binding sequence 
surrounding Ser16 in HSP20, which has been shown to 
relax smooth muscle in various tissues, to disrupt the actin 
cytoskeleton, interact with 14–3-3 proteins, and dephos-
phorylate cofilin in cells. A comprehensive analysis of the 
14–3-3 and HSP20 interaction showed that phosphopeptides 
derived from the N-terminus of HSP20 containing the site 
surrounding Ser16 interacted with and stabilized 14–3-3 
proteins impeding their proteolysis [55]. The authors also 

explored the chaperoning activity of 14–3-3ζ monomers and 
dimers to prevent myosin S1 fragment aggregation subjected 
to increasing temperature. Compared to its homodimer and 
HSP20, the 14–3-3ζ monomer was the most effective in pre-
venting S1 fragment aggregation, suggesting that 14–3-3 
proteins may target myosin as a client protein to alter its 
properties. Extending this interaction, it has been shown that 
human 14–3-3σ directly interacts with the tail fragments of 
purified human non-muscle myosin IIA-C fusion proteins 
to alter their assembly kinetics independent of phospho-
rylation [69]. Examination of the direct interaction between 
the 14–3-3 isoforms and the non-muscle myosin isoforms 
revealed they all interacted to varying degrees, but collec-
tively suggests that 14–3-3 proteins may have a direct role 
regulating cellular mechanics at the level of the contractile 
proteins. Intriguingly, modulating the molecular interaction 
between Hsp20 and 14–3-3 proteins has formed the basis 
of a high-throughput screen for the discovery of small mol-
ecule analogs of phosphorylated HSP20 that may provide 
a therapeutic regiment for the treatment of smooth muscle 
vasospasm in lung diseases [2].

In cardiac myocytes, the cytoskeleton plays an impor-
tant role in maintaining and anchoring the sarcomere and 
contributes to the overall tension development. Cytoskeletal 
rearrangements involving HSP20/14–3-3 and cofilin/14–3-3 
protein interactions influencing actin cytoskeletal dynamics 
may have implications in the pathogenesis of heart failure. 
Treatment of cardiomyocytes with the HSP20 phosphopep-
tide which displaces cofilin from 14–3-3 proteins promotes 
actin filament disassembly, increased shortening and relaxa-
tion rates and the time constant of the  Ca2+ transient decay 
[49]. Interestingly patients with a Hsp20 mutation P20L, 
which forms part of the 14–3-3 protein binding site sur-
rounding Ser16, develop a dilated cardiomyopathy. Examin-
ing the impact of the human Hsp20-P20L mutation, it was 
shown this mutation conferred a diminished physical inter-
action with 14–3-3 proteins and failed to compete for 14–3-3 
binding to cofilin upon phosphorylation [67]. Consequently, 
this mechanism may be sufficient to influence contractile 
dynamics directly or indirectly via modulating the cytoskel-
etal reorganization that are mediated through changes in the 
state of F-actin polymerization.

How 14–3‑3 interactions combine 
to modulate ECC in health and disease

Without a clear indication as to necessity of 14–3-3 proteins 
in the modulation for ECC through muscle-specific deletion, 
speculation based on the literature presented herein and in 
other electrically excitable tissues does suggest their dysreg-
ulation may contribute to disease state. 14–3-3 proteins have 
been implicated in neurodegenerative and neuropsychiatric 
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diseases and are highly expressed in the brain, making up 
about 1% of the total soluble brain protein [9]. In the context 
of ECC, the literature at present points towards three main 
areas which are summarized in Fig. 2. These are the regula-
tion of electrophysiologic properties, regulation of calcium 
homeostasis, and modulation of contractile function, but 
with fewer studies existing in support of the later. Their role 
in the protein–protein interactions associated with voltage-
gated channel assembly, modulation of current properties 
in response to physiological stimulation and membrane traf-
ficking in the formation of channel complexes, all point 
to their need in maintaining the normal electrophysiologic 
state of the muscle cell membrane. Simulations modeling 
the effect of 14–3-3 loss-of function on the action potential 
indicate their absence may be proarrhythmogenic but this 
has not been tested directly. However, their involvement 
in the assembly of mutant channel subunits implicated 
with inherited arrhythmias indicates they play an indirect 
role in disease development via the assembly of dysfunc-
tional client proteins. These data and those showing their 
regulation of ionic gradients by modulating the activity of 
membrane pumps and exchangers all coalesce around the 
notion 14–3-3 proteins exert critical control over membrane 
excitability, which constitutes the primary triggering event 
in ECC.

Until recently, their role in maintaining intracellular 
calcium homeostasis was associated mainly through the 
analysis in heterologous systems. However, the discovery 
that 14–3-3 proteins interact directly with phospholamban to 

alter reuptake kinetics of  Ca2+ into the sarcoplasmic reticu-
lum within the cardiac myocyte represents the most direct 
mechanism to date and provides pivotal support to their role 
in ECC. PLN plays an important role in muscle in relaxa-
tion albeit to differing degrees between the muscle subtypes. 
Extending the 14–3-3/PLN interaction to the regulation of 
contractility places this mechanism at a critical nexus in 
ECC. Moreover, the suggestion that this mechanism may 
be causal in the development of dilated cardiomyopathy in 
patients that carry a mutation in the 14–3-3 binding motif in 
PLN may provide rationale for the development of 14–3-3 
targeted therapeutic intervention using small molecular sta-
bilizers such as fusicoccin-A or derivatives [31].

Finally, while the data implicating direct 14–3-3 protein 
interactions with the contractile machinery are evolving, a 
recent publication aimed at defining alpha-actinin interacting 
partners at the Z-disc of the sarcomere identified both 14–3-
3ε and 14–3-3γ using a proximity-dependent biotinylation 
(BioID) approach in hiPSC-CM [35]. To our knowledge, this 
represents the first study that demonstrates a 14–3-3 protein 
contractile protein interaction, and broadly implicates their 
involvement in myofibrillar assembly and/or trafficking of 
accessory proteins to the myofibrils.

Concluding remarks and future directions

There is generally a greater understanding as to the func-
tional significance of 14–3-3/client protein interactions in 
certain cellular processes and disease states. Undoubtedly, 
their role in the formation of signaling complexes, intracellu-
lar protein translocation, and protein trafficking of more than 
200 client partners has rightly positioned them as important 
intracellular modulators [50]. Despite this recognition, the 
precise mechanisms of their interactions and composition of 
14–3-3 dimers are still being elucidated, but as recognized in 
this review, answering these questions could have a signifi-
cant influence on our understanding of ECC regulation and 
provide further therapeutic options for dysregulation of this 
critical process. To that end, new proteomic-based tools are 
being developed to better define the 14–3-3 protein interac-
tome within different cell types, to quantify changes in these 
interactions in response to changes in the physiological and 
pathophysiological environment and help identify potential 
14–3-3 binding domains. All bear brief mention as they are 
most applicable and would be useful for investigating the 
extent of 14–3-3 protein–protein interactions in ECC.

14–3-3 capture and release is an approach by which cli-
ent proteins are captured via 14–3-3 affinity purification 
and eluted with a phosphopeptide analog corresponding 
to the mode I 14–3-3 binding domain consensus sequence 
(ARAApSAPA), for identification by mass spectrometry. 
As noted, this methodology first identified the breadth of 

14-3-3

Ca
2+

SR

Sarcomere

Fig. 2  Summary of the main 14–3-3 and client protein interactions 
involved in the modulation of excitation–contraction coupling that 
have been identified to date. Specific aspects of client protein assem-
bly into functional complexes are not depicted but are described in 
the text. (  14–3-3 dimer;  voltage-gated channel carrying inward 
current (e.g.,  Na+ channel);  voltage-gated channel carrying out-
ward currents (e.g.,  K+ channel);  cation exchanger (e.g.,  Na+/Ca2+ 
exchanger);  electrogenic pump (e.g.,  Ca2+ ATPase);  sarco/endo-
plasmic reticulum  Ca2+ ATPase)
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the 14–3-3 protein interactions [50]. Modifications of this 
approach by which differential capture of 14–3-3 protein 
clients through isotope incorporation of digested proteins 
have permitted quantification of 14–3-3 protein/client pro-
tein interactions in response to signal pathway activation 
[18]. Limitations however have been the use of the yeast 
14–3-3 isoforms (BMH1 and BMH2) for affinity capture 
even though they correspond to mammalian orthologs, but 
they do not permit isoform-specific capture analysis. Also, 
the use of mode I 14–3-3 binding domain phophopeptide to 
elute proteins which may not compete for all 14–3-3/client 
protein interactions. Nevertheless, the repertoire of 14–3-3 
client proteins defined to date has helped define their scope 
of function in several cellular processes and permitted the 
formation of databases and bioinformatic tools which can 
be leveraged to identify and better understand 14–3-3 pro-
tein function in ECC. Likewise, an exciting alternative is 
the application of tandem affinity purification (TAP), an 
epitope-tagging purification strategy to purify protein com-
plexes followed by tandem mass spectrometry. Evolving this 
approach, a TAP transgenic mouse line that expresses 14–3-
3ζ was developed and used to identify interacting proteins 
in various tissues in situ [3]. One of the advantages offered 
by isolating 14–3-3 isoform protein complexes from their 
physiological environment is the analysis of tissue-specific 
interactions that might not be otherwise present in heter-
ologous cell cultures. Further adaptation of this methodol-
ogy to drive cell-specific expression, and/or breeding onto 

a disease model background, could provide an integrated 
physiological analysis of 14–3-3 protein client protein 
interactions during disease progression. In addition to these 
methodological approaches, as mentioned bioinformatic 
and in silico prediction web-based resources provide access 
to a database and a prediction method, for identification of 
potential 14–3-3 binding motifs within client proteins, and 
are helpful resources to initiate investigation into targets of 
interest [44, 63]. Utilizing the web-based 14–3-3 Pred tool 
built as a prediction method to analyze and prioritize puta-
tive 14–3-3 binding sites in > 2000 potential interactor pro-
teins, we analyzed the major human contractile and calcium 
handling proteins expressed in the heart. This tool confirms 
some of the pre-existing targets discussed herein, but also 
identifies relevant new targets that are yet to be explored 
in the context of 14–3-3 modulation of ECC (Table 1). Of 
note is the presence of some well-defined serine/threonine 
phosphorylation sites within the putative 14–3-3 binding 
motifs such as S23 and S24 in the N-terminus of cardiac 
troponin I which play a significant role in the myofilaments 
response to  Ca2+.

In the context of further studies of 14–3-3 protein func-
tion in the field of ECC, many questions remain to be 
addressed. First, how to identify the physiologically relevant 
receptors and their regulation by 14–3-3 protein modula-
tion within the context of ECC regulation? This is a vital 
but understudied area despite strong data in heterologous 
systems showing 14–3-3 protein interactions with β-arrestin 

Table 1  Identification of putative 14–3-3 binding sites in contractile 
and calcium handling proteins associated with ECC in human car-
diac myocytes using the web-based 14–3-3 Pred tool (http:// www. 
compb io. dundee. ac. uk/ 1433p red.). Protein name and UniProtKB 
ID (in brackets), plus all sites predicted (strong and weak scores) 
except where noted. Proteins absent from Table 1 due to no 14–3-3 

predicted sites include as follows: TNNC1_Troponin C, slow skeletal 
and cardiac muscle (P63316), TNNT2_Troponin T, cardiac muscle 
(P45379), MYL2_Myosin regulatory light chain 2, ventricular/car-
diac muscle isoform (P10916), MYL7_Myosin regulatory light chain 
2, atrial isoform (Q01449), MYL3_Myosin light chain 3 (P08590), 
MYL4_Myosin light chain 4 (P12829)

Myofilament proteins 14–3-3-predicted sites Ca2+ handling proteins 14–3-3-predicted sites

TNNI3_Troponin I, cardiac muscle 
(P19429)

S23, S24, T31, S77, T143, S150, 
S166, S210

AT2A2_Sarcoplasmic/endoplas-
mic reticulum calcium ATPase 2 
(P16615)

S136, T172, S265, S493, S495, 
S509, T847, S941, S973, 
S1006

TPM1_Tropomyosin alpha-1 chain 
(P09493)

S247, S271 PPLA_Cardiac phospholamban 
(P26678)

S16, T17

MYPC3_Myosin-binding protein 
C, cardiac type (Q14896)

S242, S275, S284, S286, S304, 
T498, T 688, T729, T1026, 
S1040, S1141, T1153, T1184, 
S1231

RYR2_HUMAN Ryanodine recep-
tor 2 (Q92736)

53 sites-highest scored: T279, 
T301, S742, T1466, S1662, 
S0231, S2808, S3196, S4260, 
S4539

MYH7_Myosin-7 (P12883) S111, S158, T446, T547, T665, 
T786, S810, T971, S1362, S1366, 
S1478, S1596, S1843, S1924

NAC1_Sodium/calcium exchanger 
1 (P32418)

S101, S285, S392, T621, T836, 
T912

ACTC_Actin alpha cardiac muscle 
1 (P68032)

T91, S201, T262, S340 AT2B4_Plasma membrane 
calcium-transporting ATPase 4 
(P23634)

T60, T137, T315, S576, S590, 
T696, S756, T1102

ACTN2_Alpha-actinin-2 (P35609) T57, T165, S291, T495, T564, 
S596, S624, T799, S870

CAC1C_Voltage-dependent L-type 
calcium channel subunit alpha-1C 
(Q13936)

36 sites-highest scored: S465, 
T688, T1462, T1622, S1718, 
S1879, T1953, S1975, S1981, 
S2027, S2098
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and its role in G-protein-coupled receptor signaling. Second, 
what role do 14–3-3 isoforms play in mediating different 
pathways and functional activity of downstream proteins 
in the pathogenesis of muscle diseases? Third, given the 
proclivity of 14–3-3 isoforms to form homodimers or het-
erodimers, but also function as monomers, does this enable 
them to fulfill specific roles in ECC? Fourth, what effects 
do 14–3-3 proteins exert on client proteins in the balance 
of phosphorylation and dephosphorylation of critical resi-
dues in the regulation of ECC? These may be challenging 
questions to purse in muscle due to the unique structure 
functional relationship of the multimeric protein assem-
blies involved in ECC, and the potential for multiple 14–3-3 
interaction sites within a single protein. Nevertheless, one 
clear advantage to help tackle these questions related to the 
structural, temporal, and spatial regulation of 14–3-3/client 
protein interactions in the regulation by ECC is the well-
defined physiological and biophysical readouts associated 
with each of aspect this process in muscle.
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