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Abstract
The capacity of astrocytes to adapt their biochemical and functional features upon physiological and pathological stimuli is a 
fundamental property at the basis of their ability to regulate the homeostasis of the central nervous system (CNS). It is well 
known that in primary cultured astrocytes, the expression of plasma membrane ion channels and transporters involved in 
homeostatic tasks does not closely reflect the pattern observed in vivo. The individuation of culture conditions that promote 
the expression of the ion channel array found in vivo is crucial when aiming at investigating the mechanisms underlying their 
dynamics upon various physiological and pathological stimuli. A chemically defined medium containing growth factors and 
hormones (G5) was previously shown to induce the growth, differentiation, and maturation of primary cultured astrocytes. 
Here we report that under these culture conditions, rat cortical astrocytes undergo robust morphological changes acquir-
ing a multi-branched phenotype, which develops gradually during the 2-week period of culturing. The shape changes were 
paralleled by variations in passive membrane properties and background conductance owing to the differential temporal 
development of inwardly rectifying chloride  (Cl−) and potassium  (K+) currents. Confocal and immunoblot analyses showed 
that morphologically differentiated astrocytes displayed a large increase in the expression of the inward rectifier  Cl− and  K+ 
channels ClC-2 and Kir4.1, respectively, which are relevant ion channels in vivo. Finally, they exhibited a large diminution 
of the intermediate filaments glial fibrillary acidic protein (GFAP) and vimentin which are upregulated in reactive astrocytes 
in vivo. Taken together the data indicate that long-term culturing of cortical astrocytes in this chemical-defined medium 
promotes a quiescent functional phenotype. This culture model could aid to address the regulation of ion channel expression 
involved in CNS homeostasis in response to physiological and pathological challenges.
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Introduction

In the last decades, a large body of evidence have accu-
mulated showing that in the central nervous system (CNS), 
astroglial cells are actively involved in the maintenance of 

neuronal health through various mechanisms including neu-
ronal metabolic and trophic supports, the homeostatic regu-
lation of the perineuronal milieu, and neurovascular support 
[82]. The ability of astrocytes to influence the physiologi-
cal response of neuronal circuits is also corroborated by the 
wealth of information reporting that, as consequence of a 
variety of acute and chronic pathological conditions, astro-
cytes can become activated (reactive) and respond to various 
insults through alterations of morphological, molecular, and 
biochemical processes [91].

Fully functional astrocytes in vivo are endowed with 
a variety of ion channels and transporters some of which 
have unequivocally been shown to have housekeeping 
homeostatic roles [61, 83]. Astrocytes express a large 
background potassium  (K+) conductance carried mainly 
by the weakly inward-rectifier  K+ channel 4.1 (Kir4.1); 
this  K+ conductance sets the very negative membrane 

 * Stefano Ferroni 
 stefano.ferroni@unibo.it

1 Department of Pharmacy and Biotechnology, University 
of Bologna, Via San Donato 19/2, 40127 Bologna, Italy

2 Present Address: Department for Life Quality Studies, 
University of Bologna, Rimini, Italy

3 Departament de Ciències Fisiològiques, IDIBELL-Institute 
of Neurosciences, Universitat de Barcelona, Barcelona, Spain

4 Centro de Investigación Biomédica en Red Sobre 
Enfermedades Raras (CIBERER), Instituto de Salud Carlos 
III, Madrid, Spain

http://orcid.org/0000-0001-6211-4220
http://crossmark.crossref.org/dialog/?doi=10.1007/s00424-021-02627-x&domain=pdf


244 Pflügers Archiv - European Journal of Physiology (2022) 474:243–260

1 3

potential, contributes to the maintenance of the extracellu-
lar  K+ homeostasis, and regulates the efficacy of glutamate 
uptake [6, 15, 55, 56]. Kir4.1 is strongly developmentally 
regulated being virtually absent at birth and showing a 
sharp increment in expression at 10 days postnatal [75]. 
Furthermore, Kir4.1 channel is also downregulated under 
various pathological conditions [5, 26, 44, 58, 67]. Of 
note, when studied in culture conditions, Kir channels are 
not functionally expressed [1, 3, 21]. Hence the identifica-
tion of culture conditions that can more closely reflect the 
in vivo situation is mandatory to address the molecular 
mechanisms that contribute to the development and main-
tenance of a mature functional phenotype and those that 
induce reactive astrogliosis in which the expression of ion 
channels is altered.

We previously reported that a Kir conductance and 
an inward rectifier chloride  (Cl−) current were observed 
when cultured astrocytes were exposed for long term 
to conditions that elevate cytosolic cyclic AMP, which 
induces their morphological differentiation from flat 
polygonal to a phenotype with long thick processes [21]. 
Other studies reported that cultured rodent astrocytes, 
grown in the presence of a morphologically differen-
tiating supplement (G5) containing growth factors and 
hormones [50], displayed the upregulation of glutamate 
uptake through mechanisms mediated, at least partially, 
by augmented levels of the sodium-dependent glutamate 
transporters GLT-1 and GLAST [7, 27, 85]. There is also 
indication that G5 augmented the saxitoxin-sensitive 
voltage-gated sodium  (Na+) channels [90]. At variance, 
cultured astrocytes from rat corpus callosum exposed to 
G5 did not evidence any significant alterations in  K+ con-
ductance [72].

Because of these variable effects of G5 supplementa-
tion on the expression of plasma membrane homeostatic 
proteins in this work, we sought to determine whether 
the morphological differentiation of primary astrocytes 
induced by adding G5 to the culture medium devoid of 
fetal bovine serum (FBS) was associated to the expres-
sion of homeostatic ion channels which are not present in 
conventionally cultured astrocytes. Our results show that 
rat cortical astrocytes cultured for long term in G5-con-
taining medium acquired a differentiated morphological 
phenotype and displayed  K+ and  Cl− conductance which 
are found in mature astrocytes. Functional and molecular 
analyses indicate that G5-treated astrocytes exhibited an 
increase in Kir4.1 and ClC-2 proteins. This culture proto-
col could be suitable to address the dynamic mechanisms 
that influence the expression of functionally relevant ion 
channels in long-term cultured astrocytes under physi-
ological and pathological conditions.

Materials and methods

Preparation of primary cultures of neonatal rat 
cortical astrocytes

All the experiments were performed according to the Italian 
law on protection of laboratory animals, with the approval of 
bioethical committees of the University of Bologna (AEDB0.2) 
and of the Ministry of Health (protocol number 83/2017-PR) 
and under the supervision of the veterinary commission for 
animal care and comfort at the University of Bologna.

Primary cultures of cortical astrocytes from newborn 
(1–2 days) Sprague–Dawley breeding pairs (Charles River, 
Italy) were obtained according to the standard method [47] 
with some modifications [21] to obtain highly purified cultures 
composed of more than 95% astrocytes. Cultured flasks were 
maintained in DMEM containing GlutaMAX™-I and 4.5 g/L 
D-glucose, with 10% of heat-inactivated fetal bovine serum 
(FBS) and penicillin–streptomycin (100 U/mL and 100 μg/mL 
respectively). All products were from Gibco-BRL.

G5 treatment of primary cortical astrocytes

Confluent astroglial monolayers were enzymatically detached 
using trypsin (Gibco-BRL) and plated onto Petri dishes at 
low density (see below). Two days after, FBS was reduced to 
3%, and G5 supplement (Sigma-Aldrich) was added (10 μL/
mL) to the culture medium. G5 is a chemical-defined sup-
plement based on a formulation composed of growth factors, 
hormones, and micronutrients that induces the morphological 
differentiation of cultured astrocytes and lowers prolifera-
tion rate [50]. After 2 days of culturing in medium contain-
ing 3% FBS and G5, at the next medium change FBS was 
removed and G5 was present for the remaining period of 
culturing up to 16 days (days of treatment, DOT). G5 was 
freshly added every 4-5 DOT when changing the medium 
(Table 1). Untreated astrocytes were maintained in the same 
culture conditions in the absence of G5.

Electrophysiology

For electrophysiological experiments, untreated astrocytes 
were plated in 35-mm Petri dishes at a density of 24,000 cells 
per dish, whereas, to avoid cell–cell contact, highly branched 
G5-treated astrocytes were plated at 8,000 or 12,000 cells per 
dish. Whole-cell patch-clamp experiments were carried out 
as previously described [20, 21]. During each day of experi-
ment, recordings were performed alternating measurements 
in G5-treated and untreated (ctrl) astrocytes. Petri dishes were 
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mounted on the stage of an inverted microscope equipped with 
phase-contrast optics (Nikon Diaphot). Patch-clamp pipettes 
were prepared from borosilicate glass capillaries to have a tip 
resistance of 2–4 MΩ when filled with the standard intracellu-
lar solution. Membrane currents were amplified with an EPC-7 
amplifier (List Electronic, Darmstadt Germany) and low-pass 
filtered at 3 kHz before acquisition. Stimulation and analysis 
were performed with pClamp 6 software (Axon Instrument, 
Foster City, CA, USA) and Origin 6.0 (MicroCal, Northamp-
ton, MA, USA). All experiments were carried out at room 
temperature (20–24 °C). Series resistance values were below 
10–12 MΩ and were corrected for by 40–60% with the analog 
circuit of the amplifier. Cell capacitance of the recorded cell 
was obtained by the amplifier reading of the capacitive tran-
sient cancelation.

The standard external (bath) solution was (mM) 140 
NaCl, 4 KCl, 2  MgCl2, 2  CaCl2, 10 HEPES 5 glucose, pH 
7.4 adjusted with NaOH, and osmolarity ~ 310 mOsm cor-
rected with mannitol. The standard intracellular (pipette) 
solution was composed of (mM) 144 KCl, 2  MgCl2, 5 
EGTA, 10 HEPES, pH 7.2 adjusted KOH, and osmolar-
ity ~ 290 mOsm with mannitol. When using external solu-
tion with different ionic compositions, salts were replaced 
equimolarly. To isolate  Cl− currents, the external solution 
used was (mM) 120 CsCl, 2  MgCl2, 2  CaCl2, 10 2‐[Tris 

(hydroxymethyl)‐methylamino]‐ethanesulfonic acid (TES), 
5 glucose, pH 7.2 adjusted with CsOH, and osmolarity 
∼310 mOsm with mannitol. The pipette solution was com-
posed of (mM) 125 CsCl, 2  MgCl2, 5 EGTA, 10 TES, pH 
7.2 adjusted with CsOH, and osmolarity ∼290 mOsm with 
mannitol. Changes of solutions around the recorded cells were 
performed by using a gravity-driven, local perfusion system 
at a flow rate of ~ 200 μL/min and positioned within ~ 100 μm 
of the recorded cell.

Western blot

The primary and secondary antibodies used are listed in 
Table 2. Astrocytes were seeded in 60-mm Petri dishes, and 
cell lysates from G5-treated and untreated astrocytes were 
obtained at 5–7 and 12–16 DOT. Cells were lysed with 200 
μL of RIPA buffer and quantified with the Bradford method, 
as previously described [24]. Proteins were separated in a 
10–12% SDS–polyacrylamide, blotted into PVDF mem-
brane, and incubated 1 h at room temperature (RT) in blocking 
solution made of PBST 0.1% containing 5% BSA (Sigma-
Aldrich). Membranes were incubated with primary antibod-
ies overnight at 4 °C in PBST 0.1% containing 1% BSA. 
The following day, they were probed with IgG horseradish 

Table 1  Timeline of G5 treatment and data collection

Table 2  List of antibodies used 
for western blot analysis Primary antibodies Mouse anti-Kir4.1 (Santa-Cruz Biotechnology, sc-293252) (1:500)

Mouse anti-GFAP (Santa-Cruz Biotechnology, sc-33673) (1:1000)
Rabbit anti-β-actin (Sigma-Aldrich, A2066) (1:1000)
Rabbit anti-ClC-2 (custom-made provided by R. Estévez) (1:500)
Mouse anti-vimentin (Santa-Cruz Biotechnology, sc-6260) (1: 1500)
Mouse anti-GLT-1 (Santa-Cruz Biotechnology, sc-365634) (1:500)

Secondary antibodies Goat anti-mouse-HRP (Sigma-Aldrich, A4416) (1:5000 for all primary anti-
bodies)

Goat anti-rabbit-HRP (Sigma-Aldrich, A12-348) (1:5000 for anti-ClC-2, 
1:10000 for anti-β-actin)
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peroxidase‐conjugated secondary antibodies and developed 
with the enhancing chemiluminescence detection system 
(Santa Cruz Biotechnology or Cyanagen–Westar ηC ultra 
2.0). Blots were visualized with the  ChemiDocTM (Bio-Rad) 
imaging system, and densitometric analysis was performed 
using the Image Lab 6.0 software. Immunoreactive bands 
were normalized against β -actin levels.

Immunofluorescence

The primary and secondary antibodies used are listed in 
Table  3. For immunofluorescence experiments, cortical 
astrocytes were plated on glass coverslips coated with poly-
D-lysine (Sigma-Aldrich) (100 μg/mL) at a concentration of 
5000 cells/coverslip for both untreated and G5-treated astro-
cytes. Immunocytochemical analyses were performed as pre-
viously described [24]. Briefly, primary cultured astrocytes 
were washed twice in PBS, fixed with 4% paraformaldehyde 
(Sigma-Aldrich) at RT for 10 min, and washed again twice 
in PBS for 10 min. To block non-specific staining, astrocytes 
were incubated for 1 h at RT in PBS containing 5% BSA and 
0.05% Triton X-100 (Sigma-Aldrich). After blocking, speci-
mens were probed overnight at 4 °C with primary antibodies, 
which were diluted in PBS containing 1% BSA and 0.05% 
Triton X-100. Coverslips were washed 3 times for 20 min 
in PBS at RT and incubated 2 h with secondary antibodies 
diluted in PBS containing 1% BSA and 0.05% Triton X-100. 
Coverslips were finally washed twice for 5 min and mounted 
onto poly-lysine-coated slides (Menzel-Gläser Superfrost, 
Thermo Scientific) with Fluoromount-G mounting medium 
(Sigma-Aldrich). Single‐plane confocal immunofluorescence 
images were acquired with an inverted laser scanning con-
focal microscope (Nikon D-Eclipse C1). To assess staining 
specificity, astrocytes were also processed in the absence of 
primary antibodies. All secondary antibodies were conjugated 
with Cyanine 2/3.

Statistical analysis

Data are presented as mean ± standard error or box plots. The 
D’Agostino-Pearson omnibus test was used to detect consist-
ency of normal distribution. The Grubbs’s test was used to 
detect outliers at the 95% confidence level. The significance 
was determined with the Student’s t-test (paired and unpaired, 
two-tailed), one-way ANOVA, or Kruskal–Wallis test as 

appropriate by using GraphPad Prism software (GraphPad 
Software, Inc., San Diego, CA, USA). A p-value < 0.05 was 
considered statistically significant.

Results

Time‑dependent morphological differentiation 
of G5‑treated primary cortical astrocytes

Previous works showed that few days of exposure of cultured 
astrocytes to growth medium supplemented with G5 resulted 
in shape changes characterized by a shift from an epithelioid 
to a process-bearing morphology and an increase in glutamate 
uptake [86, 87]. Since we were interested to individuate other 
functional changes which paralleled the G5 effect on glutamate 
dynamics, cultured cortical astrocytes were challenged with 
G5 for a period of up to 16 DOT. Initial analysis was devoted 
to determining the long-term effect of G5 on the morphology 
of astrocytes cultured in the absence of FBS. The results show 
that after 5–7 and 12–16 days in FBS-free control medium 
(ctrl), astrocytes replated at low density exhibited the epithe-
lioid shape typical of undifferentiated primary cultured rat cor-
tical astrocytes [21] (Fig. 1A, C). Cultured astrocytes exposed 
to G5 for 5–7 DOT displayed a cell shape with few polarized 
processes elongating from an irregular cell body (Fig. 1B) and 
acquired a multi-branched phenotype radially departing from 
a retracted cell body at 12–16 DOT with G5 (Fig. 1D), These 
results indicate that the growth of cultured cortical astrocytes 
in a G5-containing chemical-defined medium promotes shape 
changes toward a process-bearing phenotype that develops 
gradually during the 16 DOT.

Electrical membrane properties of G5‑treated 
primary cortical astrocytes

We next addressed whether the dynamic changes in cell shape 
observed under these culture conditions were paralleled by 
alterations in electrical membrane properties. Experiments 
were carried out with the patch-clamp technique using stand-
ard intra- and extracellular solutions. We initially compared 
the resting membrane potential (RMP) of cortical astrocytes 
cultured in the absence (ctrl) and presence of G5 measured at 
various time of G5 treatment. Whereas RMP values were nor-
mally distributed in untreated astrocytes at all DOT windows, 

Table 3  List of antibodies 
used for immunofluorescence 
analysis

Primary antibodies • Rabbit anti-Kir4.1 (Alomone, APC-035) (1:200)
• Rabbit anti-ClC-2 (provided by Prof. R. Estévez) (1:200)
• Chicken anti-GFAP (BioLegend, Poly28294) (1:500)

Secondary antibodies • Cy-2 donkey anti-rabbit (Jackson ImmunoResearch, 711–225-152) (1:400)
• Cy-3 donkey anti-chicken (Jackson ImmunoResearch, 703–165-155) (1:400)
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Fig. 1  Time-dependent changes 
of morphological phenotype 
in G5-treated primary cul-
tured rat cortical astrocytes. 
Phase-contrast micrographs of 
low-density replated astrocytes 
in FBS-free culture condi-
tions in the absence (ctrl) and 
presence of G5 supplement 
for various days of treatment 
(DOT). A Untreated astrocytes 
at 5–7 DOT display the typical 
epithelioid shape. B Subconflu-
ent astrocytes exposed to G5 for 
5–7 DOT show few polarized 
processes elongating from an 
irregular cell body. C Untreated 
subconfluent astrocytes at 
12–16 DOT have a flat, epithe-
lioid morphology. D Low-
density G5-treated astrocytes at 
12–16 DOT develop multi-
branched processes radially 
departing from retracted cell 
bodies. Scale bar: 20 µm
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Fig. 2  Time-dependent variations in resting membrane potentials in 
G5-treated primary cortical astrocytes. A Box plots of resting mem-
brane potential (RMP) values depicting the median and the interquar-
tile range in untreated (ctrl, black) and G5-treated (red) astrocytes at 
different DOT windows. Untreated astrocytes display a median RMP 
that remains stable at ~ −50 mV throughout the whole period of sub-
culturing (5–7 DOT, n=18; 8–11 DOT, n=22; 12–16 DOT, n=27).
In G5-treated astrocytes, the median RMP is significantly more 
hyperpolarized after 8–11 DOT compared to untreated astrocytes 

(5–7 DOT, n=23; 8–11 DOT, n=32; 12–16 DOT, n=51). *p<0.05, 
***p<0.001, and #p<0.05 with Kruskal-Wallis test. Where not indi-
cated, the group differences were non-significant. B Pie graphs of 
the percentage of astrocytes with RMPs more negative (<) and more 
positive (>) of −60 mV in untreated (ctrl) and G5-treated cells. The 
value of −60 mV depicts the value of RMP separating the two popu-
lations of astrocytes described by the binomial distribution of RMPs 
in G5-treated astrocytes (Fig. S1). N is the number of cells analyzed 
in each condition at different DOT windows
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those of G5-treated astrocytes followed a bimodal distribution 
(Fig. S1). The non-parametric analysis (Fig. 2A and Table 4 
of S1) shows that in untreated astrocytes (ctrl), RMPs were 
not significantly different at all DOT windows. RMP values in 
untreated and G5-treated astrocytes were not different at 5–7 
DOT but were significantly more hyperpolarized in 8–11 and 
12–16 DOT G5-treated astrocytes. Moreover, RMPs become 
more negative with prolonged time of G5 exposure. Because 
the hyperpolarized RMPs of G5-treated astrocytes could be 
due to the presence of astrocyte subpopulations [39, 48, 93] 
with different sensitivity to G5 challenge, we next performed 
a stratified analysis to assess whether the time of exposure 
to G5 affected the percentage of cells with RMP higher and 
lower than a threshold value of − 60 mV. This value was cho-
sen because in the bimodal distribution it separated the two 
RMP populations in G5 astrocytes. The results indicate that 
whereas in untreated astrocytes the number of cells displaying 
RMPs more negative than − 60 mV was diminished at 12–16 
DOT (Fig. 2B, upper), in G5-treated cells, there was a positive 
correlation between time of exposure to G5 and percentage of 
astrocytes with RMPs more negative than − 60 mV (Fig. 2B, 
lower).

We next examined whether the gradual hyperpolarizing 
shift in RMP observed in the G5-treated, morphologically dif-
ferentiated astrocytes was associated to changes in the other 
passive membrane properties. The values of cell membrane 
capacitance (Cm) of untreated astrocytes at all DOT win-
dows were not significantly different. Compared to untreated 
astrocytes, those cultured in the presence of G5 revealed an 
increase in Cm at all DOT (Fig. 3A). We next determined 
the membrane resistance associated to the background mem-
brane conductance. To unravel the background conductance, 
astrocytes were voltage clamped at the holding potential 
(Vh) of − 60 mV, and families of 400-ms-long voltage steps 
of 20 mV increments were delivered from − 120 to + 60 mV 
(Fig. 3C, inset). Untreated astrocytes at all DOT displayed only 
outwardly rectifying, non-inactivating currents at membrane 
potentials more positive than − 40 mV (Fig. 3B and C, left). 
Their voltage-dependent kinetics (Fig. 3E, F) and the partial 
inhibition by extracellular administration of 10 mM TEA (data 
not shown) strongly suggest that they were mainly mediated 
by voltage-gated  K+ channels [21]. G5-treated astrocytes at 
5–7 DOT exhibited an increase in membrane conductance 
(Fig. 3B, right). Both positive and negative fast activating, 
non-inactivating membrane currents were elicited in the entire 
range of voltage stimulation. The currents had a quasi-linear 
current–voltage (I-V) profile (Fig. 3D) and changed polarity 
(Vrev) at ~  − 50 mV. At 12–16 DOT, larger quasi-instantaneous, 
non-inactivating currents were evoked both at positive and 
negative membrane potentials (Fig. 3C, right). Currents had 
Vrev at ~  − 70 mV and exhibited an ohmic behavior (Fig. 3E). 
The increase in membrane conductance upon time of exposure 
to G5 was also evident when comparing the I-V relationships 

of G5-treated astrocytes at 5–7 and 12–16 DOT (Fig. S2). The 
analysis of the input resistance (Ri) from the linear portion of 
the I-V curves at negative voltages measuring the instantane-
ous current from − 60 to − 80 mV revealed that compared to 
untreated astrocytes, G5 exposure caused a significant decre-
ment of Ri at all DOT windows (Fig. 3F). A decrease in Ri 
was also observed when comparing G5 astrocytes at 8–11 and 
12–16 DOT.

Taken together, these results show that compared to con-
trol astrocytes, those morphologically differentiated upon 
long-term exposure to the chemical-defined medium con-
taining G5 display an augment of the background membrane 
conductance mediated by the time-dependent increase in dif-
ferent membrane currents.

Differential pharmacological modulation 
of membrane conductance expressed by G5‑treated 
primary cortical astrocytes

Since the experiments above suggested the differen-
tial expression of membrane currents that contribute to 
the background conductance depending on the period of 
astrocyte exposure to the G5-containing medium, we next 
addressed their pharmacological sensitivity. Previous work 
showed that cortical astrocytes morphologically differen-
tiated upon long-term exposure to a membrane-permea-
ble analog of cyclic-AMP (dibutyryl-cAMP, dBcAMP) 
expressed inward rectifier  K+ and  Cl− currents that contrib-
ute to set the RMP and are specifically inhibited by extra-
cellular exposure to micromolar concentrations of barium 
 (Ba2+) and cadmium  (Cd2+), respectively [21]. We hence 
addressed the ability of these ions to depress the currents 
expressed by G5-treated cultured astrocytes.

In Fig. 4 are shown the differential  Ba2+ and  Cd2+ sen-
sitivities of the background conductance in astrocytes 
analyzed at the two most distant DOT windows. In 5–7 
DOT G5 astrocytes, both positive and negative ramp cur-
rents elicited from − 120 to + 60 mV were not affected 
by extracellular  Ba2+ (200 μM). By contrast negative 
currents were inhibited by subsequent co-administration 
of  Cd2+ (200 μM) and  Ba2+ (Fig. 4A, B). The voltage 
intercept of ramp currents before and after  Ba2+ and  Cd2+ 
co-administration was near the zero-current level. The 
same stimulation protocol revealed that in 12–16 DOT 
G5 astrocytes,  Ba2+ caused a depression of the ramp 
current (Fig. 4C), which, however, was significant only 
at negative voltages and was not further attenuated by 
co-application of  Cd2+ and  Ba2+ (Fig. 4D). The voltage 
intercept of ramp currents before and after  Ba2+ admin-
istration was at ~  − 85 mV strongly suggesting that in 
these astrocytes, the resting conductance was mediated 
by a  Ba2+-sensitive  K+ conductance. Overall, in this 
analysis, G5-treated astrocytes at 5–7 DOT with RMPs 
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more positive than − 60 mV (12 of 15 astrocytes) dis-
played the prevalence of  Cd2+-sensitive current with a 
non-significant contribution of the  Ba2+-sensitive  K+ 
current. The opposite was observed in 12–16 DOT G5 
astrocytes which had RMPs more negative than − 60 mV 

(26 of 31 astrocytes). Altogether these findings confirm 
that astrocytes morphologically differentiated upon long-
term exposure to G5 exhibit a time-dependent expression 
of background membrane currents with differential phar-
macological sensitivity.

Fig. 3  Time-dependent effects 
of G5 challenge on whole-cell 
membrane conductance of pri-
mary cortical astrocytes. A Bar 
graph of mean membrane capac-
itance (Cm) values in untreated 
(ctrl) and G5-treated astrocytes 
at the various DOT windows. 
*p<0.05 and ***p<0.001 with 
one-way ANOVA followed by 
Bonferroni's multiple com-
parisons test. B Representative 
current families elicited with a 
family of 400-ms voltage steps 
from a holding potential (Vh) of 
−60 mV and steps from −120 to 
+60 mV in 20-mV increments 
(inset of C) in an 5–7 DOT 
untreated (ctrl) astrocyte (left) 
and in an astrocyte grown in 
G5 for the same DOT (right). C 
Representative current families 
at 12–16 DOT untreated (left) 
and G5-treated astrocytes (right). 
Dashed lines in B and C are the 
zero-current levels. D Current-
voltage relationship (I-V) of 
mean steady-state current densi-
ties from 5 to 7 DOT untreated 
(ctrl, black, n=13) and 5–7 DOT 
G5 astrocytes (red, n=12). E I-V 
plot of 12–16 DOT untreated 
astrocytes (ctrl, black, n=6) and 
upon 12–16 DOT with G5 (red, 
n=11) *p<0.05, **p<0.01, and 
***p<0.001 with unpaired Stu-
dent’s t-test. F Semi-logarithmic 
bar graph of the mean values of 
the input resistance in the two 
conditions at different DOT 
windows. *p<0.05, **p<0.01, 
***p<0.001, and #p<0.05 with 
one-way ANOVA followed by 
Bonferroni’s multiple compari-
sons test
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Identification of the ion currents expressed 
by G5‑treated primary cortical astrocytes

Since 12–16 DOT G5 astrocytes display an increase in  K+ 
conductance, we next sought to identify the underlying 
channels. Cortical astrocytes in vitro express Kir-channel-
mediated currents under specific culture conditions [2, 21] 
and two-p-domain  K+ (K2P) channels that are activated by 
specific stimuli [22, 25, 51]. In vivo both channels contribute 
to the large background conductance [64, 94]. However, the 
high  Ba2+ sensitivity of the  K+ conductance expressed by 
astrocytes upon G5 for 12–16 DOT diminished the probabil-
ity of the contribution of K2P-mediated current because in 
cultured astrocytes, K2P channels are only slightly inhibited 
by higher  Ba2+ concentration [22]. We hence hypothesized 

that the G5-induced  K+ conductance was mediated by Kir 
channels.

In cultured astrocytes, the kinetics of Kir current depend 
on extracellular  K+ concentration  ([K+]o) that yields an 
increase in chord conductance at potentials more negative 
than Vrev [2, 71]. We analyzed the ramp current kinetics in 
physiological  [K+]o and upon a tenfold increase. The results 
show that at 5–7 DOT upon G5, the change in  [K+]o from 
4 to 40 mM caused a positive shift of ~ 20 mV in Vrev but 
did not affect the chord conductance (Fig. 5A, B). By con-
trast, at 12–16 DOT with G5, the same experimental proto-
col induced a ~ 50 mV positive shift of Vrev and an increase 
in  Ba2+-sensitive chord conductance at potentials negative 
to Vrev (Fig. 5C, D). These results support the view that 
cultured astrocytes grown for long-term in G5-containing 
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Fig. 4  Time-dependent differential pharmacological sensitivity of 
whole-cell membrane conductance in G5-treated primary corti-
cal astrocytes.  A Representative currents evoked in a 5–7 DOT G5 
astrocyte with a ramp protocol (inset of C) stepping from a Vh of −60 
to −120 mV for 400 ms before applying a depolarizing ramp (180 
mV/500 ms). Currents are those remaining stable for at least 2 min 
in control conditions (ctrl, black trace), following the maximal effect 
of barium administration  (Ba2+, 200 µM, red trace) and upon the sub-
sequent addition of cadmium  (Cd2+, 200 µM) to the  Ba2+-containing 
solution (green trace). The voltage intercept  (VCd2+) of the currents 
before and after addition of  Cd2+ was near the zero-current potential. 
Dashed line is the zero-current level. The RMP of this astrocyte was 
−44 mV. B The bar graph of the quantitative analysis of the current 
densities at +60 mV and −120 mV in the absence and presence of 
 Ba2+ and  Ba2+ +  Cd2+ depicts a significant current diminution only at 

−120 mV upon  Cd2+ administration. *p<0.05 with one-way ANOVA 
followed by Bonferroni’s multiple comparisons test. C Representative 
ramp current from a 12-16 DOT G5 astrocyte with a RMP of −76 
mV and elicited with the same protocol as in A. The voltage inter-
cept (VBa2+) of the ramp currents before and after addition of  Ba2+ is 
close to the Nernst equilibrium potential for potassium  (K+) under the 
experimental conditions used. Dashed line is the zero-current level. D 
The bar graph of the quantitative analysis of the current densities at 
+60 mV and −120 mV in the absence and presence of  Ba2+ and  Ba2+ 
+  Cd2+ shows that a significant current attenuation was observed only 
at −120 mV. *p<0.05 with one-way ANOVA followed by Bonferro-
ni’s multiple comparisons test. Numbers above black bars in B and D 
depict the number of cells in each condition. Ns identifies non-signif-
icant differences
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medium express a  K+ current mediated by Kir channels that, 
however, becomes clearly apparent only after exposure to G5 
for more than 5–7 DOT.

We next attempted to identify the membrane conduct-
ance insensitive to  Ba2+ and attenuated by  Cd2+, which 
was activated at hyperpolarized potentials in 5–7 DOT 
G5 astrocytes. There is evidence that in addition to Kir 
channels, both in vitro and in vivo astrocytes express two 
types of hyperpolarization-activated currents mediated 
by anion and cation channels [20, 21, 28, 45, 46, 68]. To 
rule out the contribution of the cationic current mediated 
by hyperpolarization‐activated cyclic nucleotide‐gated 
(HCN) channels expressed by reactive astrocytes in vivo 
[32], experiments were performed by replacing intra- 
and extracellular  Na+ and  K+ with cesium  (Cs+), which 
inhibits HCN [52] and with symmetrical high  Cl−. Under 
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Fig. 5  Identification of a potassium inward rectifier as mediator of 
the barium-sensitive current expressed by G5-treated primary cortical 
astrocytes.  A Representative ramp currents elicited with a stimula-
tion protocol as in Fig.  3 in a 5–7 DOT G5 astrocyte in extracellu-
lar 4 mM  K+ (black trace), after increasing  K+ to 40 mM by isotonic 
replacement of sodium (red trace) and following the subsequent 
application of  Ba2+ (green trace). The ten-fold increase in  K+ did not 
modify the current amplitude and kinetics both in the absence and 
presence of  Ba2+ but caused a ~20 mV depolarized shift of the cur-
rent reversal potential (Vrev). Dashed line is the zero-current level. B 
Bar graph of current densities at +60 mV and −120 mV in 4 mM 
extracellular  K+ (ctrl), upon 40 mM  K+ before (high  K+) and follow-
ing the maximal effect of  Ba2+ administration in 40 mM  K+ (high  K+ 

+  Ba2+) in 5–7 G5 astrocytes. C Representative currents evoked in 
a 12–16 DOT G5 astrocyte with the same protocol as in A. The ten-
fold increase in extracellular  K+ induced a ~50 mV positive shift in 
current reversal potential, an increase in membrane conductance at 
ramp potentials more negative than the reversal potential, and the par-
tial depression by  Ba2+ administration. Dashed line is the zero-cur-
rent level. D The quantitative analysis shows that the ten-fold increase 
in extracellular  K+ enhanced the current magnitude only at −120 mV, 
which was partially attenuated by  Ba2+ administration. **p<0.01 and 
***p<0.001 with one-way ANOVA followed by Bonferroni’s multi-
ple comparisons test. Numbers above black bars in B and D depict 
the number of cells in each condition

these ionic conditions, 5–7 DOT G5 astrocytes exhibited 
large strongly inward-rectifying currents which activated 
slowly at step potentials more negative than –20 mV and 
did not show voltage dependent inactivation (Fig. 6A). 
The hyperpolarization-activated conductance was signifi-
cantly attenuated by submillimolar  Cd2+ (Fig. 6B, E) cor-
roborating the tenet that it was mediated by the inwardly 
rectifying  Cl− current previously identified in cultured 
astrocytes [20, 21, 45]. In 12–16 DOT G5 astrocytes, the 
amplitude of the  Cl− conductance was larger (Fig. 6C, D) 
owing to an increase in current density (Fig. 6F).

Altogether, these results indicate that the morphologi-
cal differentiation of long-term G5-treated astrocytes is 
accompanied by the early expression of an inward rectifier 
 Cl− current, which precedes the functional appearance of 
the inward rectifier  K+ current.
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Molecular identification of the channel proteins 
mediating the increased membrane conductance 
in G5‑treated primary cortical astrocytes

The functional analyses supported the view that astro-
cytes morphologically differentiated upon long-term G5 

exposure express inward rectifier  Cl− and  K+ currents. 
To determine whether these results were associated with 
an increment in ion-channel protein synthesis, we per-
formed immunocytochemical and immunoblotting analy-
ses in 12–16 DOT astrocytes in the absence and presence 
of G5. The functional analysis suggested that the increase 
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Fig. 6  An inward rectifier  Cl− current underlies the cadmium-
sensitive conductance expressed by G5-treated primary cortical 
astrocytes.A Representative familyof currents elicited in a 5–7 DOT 
G5 astrocyte with a voltage steps protocol (inset) consisting of 2-s 
long voltage steps from a Vh of 0 mV applying step potentials from 
−120 to +60 mV in 20 mV increments and measured using intra- and 
extra-cellular solutions with symmetrical high chloride  (Cl−) and the 
monovalent cations replaced with cesium. Time-dependent currents 
activated slowly and were strongly inwardly rectifying. B The slow 
ramp current (180 mV/1 s) activated following a voltage step of 800 
ms to −120 mV from a Vh of 0 mV (inset) in the same astrocyte of A 
was markedly depressed by extracellular  Cd2+ (200 µM, red trace), 

which inhibits inward rectifier  Cl− channels. C Representative volt-
age-step currents in a 12–16 DOT G5 astrocyte recorded in the same 
conditions as in A are grater. D The ramp current in the same astro-
cyte retained the partial inhibition by  Cd2+. Scale bars are the same 
for all current traces. Dashed lines represent the zero-current level. 
E–F Bar graph of ramp current densities of the inward rectifier  Cl− 
current at +60 and −120 mV measured in astrocytes exposed to G5 
for 5–7 DOT (E) and 12-16 DOT (F) in the absence (ctrl) and follow-
ing the maximal inhibition upon extracellular administration of  Cd2+ 
(200 µM). **p<0.01 and ***p<0.001 with paired Student’s t-test. 
Numbers above bars depict the number of cells in each condition
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Fig. 7  Variations in molecu-
lar expression of chloride 
and potassium channels in 
G5-treated primary cortical 
astrocytes.A–B Confocal analy-
ses on sub-confluent astrocytes 
co-immunostained for glial 
fibrillary acidic protein (GFAP, 
red) and ClC-2 protein (green). 
ClC-2 is undetectable in 14 
DOT untreated GFAP-positive 
astrocytes (A) but is present 
in 14 DOT G5 astrocytes (B). 
Merge image depicts partial 
signal overlay. C–D Representa-
tive western blot (C) of ClC-2 
monomer from total lysates of 
untreated (ctrl) and 12-16 DOT 
G5 astrocytes with relative den-
sitometric analysis (D, n=3).E–
F Confocal analyses performed 
on sub-confluent astrocytes co-
immunostained for GFAP (red) 
and Kir4.1 (green). Kir4.1 stain-
ing is negligible in untreated 
GFAP-positive astrocytes (ctrl, 
E) and strongly upregulated 
in 14 DOT G5 astrocytes (F). 
Merge image depicts partial 
signal overlay. Scale bars in A 
and E: 20 µm. G–H Representa-
tive western blot (G) of Kir4.1 
monomer from total lysates of 
untreated (ctrl) and 12–16 DOT 
G5-treated astrocytes with rela-
tive densitometric analysis (H, 
n=3). **p<0.01 with unpaired 
Student’s t-test
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in  Cl− conductance was mediated by the upregulation of 
ClC-2, which was shown to be functionally expressed 
in astroglial cells both in vitro and in vivo[36, 46]. The 
results obtained by confocal analysis in untreated (ctrl) 
and G5-treated sub-confluent astrocytes at 14 DOT show 
that ClC-2 (green) was highly expressed both in cell body 
and in multi-branched processes of GFAP-positive cells 
(red) but was virtually undetectable in untreated astro-
cytes (Fig. 7A, B). Immunoblotting analysis revealed 
that in lysates of long-term G5-treated astrocytes, the 
expression level of ClC-2 monomer was tenfold higher 
compared to that of untreated cells (Fig. 7C, D). Since 
the ClC-2-mediated currents developed early upon G5 
treatment, we also assessed the protein expression in 
whole-cell lysates of astrocytes at 5–7 DOT. Surpris-
ingly, we did not observe any difference in total pro-
tein expression between untreated astrocytes and those 
G5-treated (Fig. S3).

We next characterized the expression pattern of the 
Kir4.1 channel, which previous studies identified to be the 
predominant Kir channel protein expressed in astrocytes 
from different regions in vivo [29, 31, 42, 60, 75] but also 

under some culture conditions in vitro [2]. The immunofluo-
rescence analysis of untreated (ctrl) and 14 DOT G5-treated 
astrocytes revealed that in GFAP positive cells (red),  Kir4.1 
expression (green) was not detectable in control astrocytes 
but was diffusely present in G5-treated astrocytes (Fig. 7E, 
F). Qualitatively similar results were obtained by comparing 
the immunoblot determinations in the two conditions which 
show that in whole-cell protein extracts, the monomeric 
form of Kir4.1 was increased by ~ sevenfold (Fig. 7G, H).

G5‑treated primary cortical astrocytes display 
a non‑reactive biochemical phenotype

Since changes in morphology denoted by the appearance 
of process elongation is also observed in reactive astrocytes 
[18], we evaluated whether the morphological differentia-
tion induced by G5 challenge was associated to an increase 
in GFAP expression, which is a typical hallmark of reactive 
astrocytes [17]. The immunoblot analysis shows that compared 
to untreated astrocytes, those exposed to G5 for 12–16 DOT 
exhibited a robust diminution of GFAP expression (Fig. 8A, 
B), and the same result was observed for the other intermediate 

Fig. 8  Changes in expression of 
intermediate filament proteins 
in G5-treated primary cortical 
astrocytes.A)Representative 
western blot of GFAP and 
vimentin from total lysates of 
untreated (ctrl) and 12-16 DOT 
G5 astrocytes. B-C) The densi-
tometric analyses (n=3 for each 
condition) show the marked 
diminution in GFAP and 
vimentin levels upon prolonged 
G5 treatment. ** p<0.01 with 
unpaired Student’s t-test
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filament vimentin (Fig. 8A, C), which is also upregulated in 
reactive astrocytes [66]. Altogether, this result suggests that 
the long-term culturing of primary rat cortical astrocytes 
in G5-containing chemically defined medium promotes the 
growth of non-reactive, quiescent astrocytes that display func-
tional features observed in astrocytes in vivo.

Discussion

The main objective of this study was to determine the 
long-term functional consequences of the grown of pri-
mary cortical astrocytes in a chemical-defined medium 
supplemented with a cocktail (G5) of growth factors and 
hormones that previous studies reported to cause their 
in vitro activation and morphological differentiation [8, 
27, 86, 87]. We show that the long-term G5 challenge 
caused the gradual, time-dependent morphological differ-
entiation of the astrocytes that acquire a multi-branched, 
process-bearing phenotype accompanied by variations of 
passive membrane properties and by time-dependent dif-
ferential expression of  K+ and  Cl− membrane channels 
involved in the homeostatic functions of astrocytes.

Usually, cultured astrocytes are grown in a medium con-
taining 10% FBS which allows rapid proliferation [47]. At 
confluence FBS-grown cortical astrocyte monolayer has a 
cobblestone phenotype, and re-plated isolated astrocytes 
display a fibroblast-like, epithelioid morphological pheno-
type [54]. In our experimental model, FBS was gradually 
omitted when astrocytes reached confluence (~ 10 days), 
and re-plated astrocytes in the absence of FBS were sup-
plemented with G5 for up to 2 weeks thereafter. During this 
period, astrocytes gradually changed their shape displaying 
polarized processes departing from the cell body after 5–7 
DOT and acquiring a multipolar, fine-branched phenotype 
with a retracted cell body at 12–16 DOT. These morpho-
logical alterations resemble those observed in long-term 
cultured astrocytes grown in various chemically defined 
medium [54]. Similar results have also been obtained with 
a method in which immunopanning of microglia, macro-
glia, and neurons was used to culture astrocytes in FBS-free, 
heparin-binding epidermal growth factor (EGF)-containing 
medium [23, 92]. However, it is worth noting that also in 
those approaches, FBS was used in some purification steps 
of the astrocyte cultures. Recently, a method using a FBS-
free, chemically defined medium containing fibroblast 
growth factor-2 (FGF2) and epidermal growth factor (EGF) 
was shown to promote the growth of mice-cultured astro-
cytes with morphological and biosynthetic features similar 
to those of in vivo astrocytes and characterized, compared 
to untreated cells, by a process-bearing morphology and an 
increase of glutamate uptake [70]. Of note, even though FGF 
and EGF are present in G5 cocktail, compared to untreated 

astrocytes, 12–16 DOT G5 astrocytes displayed a slight 
decrease in expression of the principal glutamate transporter 
GLT-1 (Fig. S4). Whether this negative modulation is due 
to the cellular morphological rearrangement or an antago-
nistic effect of other components of G5 administered in the 
absence of FBS remains to be established.

Our study clearly shows that the morphological differen-
tiation of G5-treated cortical astrocytes was paralleled by 
variations in membrane conductance. The results indicate 
that G5 challenge for 5–7 DOT caused a marked decrease 
in membrane resistance, which, however, compared to 
untreated astrocytes, was not accompanied by a significant 
change in RMP. The electrophysiological and pharmacologi-
cal analyses revealed that the increase in membrane conduct-
ance was due, at least in part, to an increase in functional 
expression of the  Cl− channel ClC-2, which started early 
during G5 treatment and increased throughout the whole 
period of exposure. Notably, the upregulation of ClC-2-me-
diated  Cl− inward rectifier at 5–7 DOT was not paralleled by 
an increment in total protein level. This discrepancy could be 
due to a G5-mediated augment in trafficking of ClC-2 from 
a cytosolic pool to the plasma membrane. In this context, 
previous work in cultured astrocytes identified significant 
amount of ClC-2 in the Golgi complex [78]. Moreover, cell 
surface expression and function of ClC-2 was shown to be 
upregulated by microtubule perturbation [14]. Whether G5 
treatment induces the early effect on ClC-2-mediated con-
ductance through changes in microtubule-associated proteins 
that regulate astrocyte differentiation [13] remains to be 
established. At variance, G5 challenge for 12–16 DOT also 
upregulated newly synthesized ClC-2 proteins, a result that 
was mirrored by a further increase in  Cl− inward rectifier.

ClC-2 is a member of the large family of  Cl− channels that 
in mammals consist of 9 subtypes [35]. ClC-2 is expressed in 
various cell preparations and is highly enriched in the brain 
[10, 81]. It is inhibited by submillimolar concentrations of 
 Cd2+ and  Zn2+ and allows  Cl− outflow at membrane poten-
tials below the equilibrium potential for  Cl− [37]. Astrocytes 
express a variety of  Cl− channels [16, 87]. ClC-2 was shown 
to be expressed in astrocytes both in vitro and in situ [36, 
46, 77]. In brain slices, ClC-2 is localized at terminals of 
astrocyte processes abutting GABAergic synapses in the hip-
pocampus [77]. An inward rectifier  Cl− current with pharma-
cological and biophysical properties identical to ClC-2 was 
reported to be expressed in cultured rat cortical astrocytes 
long-term treated with dBcAMP to induce their morphologi-
cal differentiation [20, 21] and in astrocytes co-cultured with 
neurons [45]. The result that the functional expression of the 
inward rectifier  Cl− conductance mediated by ClC-2 is an 
early event associated to the morphological differentiation 
of the primary astrocytes induced by G5 exposure raises 
the question of whether this channel could play a role in the 
regulation of the differentiation process. Interestingly, in situ 
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ClC-2 is absent in morphologically immature astrocytes and 
in astrocytes that display morphological alterations within a 
brain lesion [46]. However, since reverse causality cannot be 
ruled out, further studies are warranted to address this issue.

The role of ClC-2 in astrocytes as well as in other cell 
types is still largely elusive [34]. Genetic ablation of ClC-2 
did not cause overt defects in brain structural organization 
except widespread vacuolization of the white matter and spi-
nal cord typical of leukoencephalopathy [4]. The absence 
of ClC-2 has been associated with progressive neurodegen-
eration in old mice a result that was interpreted as due to 
astrocyte activation leading to defect in neurotransmission 
[12]. Recent works in cultured astrocytes indicate that ClC-2 
assembles with auxiliary subunits that change its biophysi-
cal properties [36, 78]. Those findings suggested that ClC-2 
also might mediate  Cl− influx necessary to compensate the 
 K+ dynamics. Overall, the results of this study indicate that 
G5-treated cultured astrocytes could be a suitable experi-
mental model for getting more insights on the functional 
impact of ClC-2 in astrocyte biology.

Our data also show that the ohmic profile of the large 
membrane conductance of cortical astrocytes exposed to 
G5 for 12–16 DOT is partially mediated by the upregula-
tion of the inward rectifier  K+ channel Kir4.1. Kir4.1 is a 
member of the large family of Kir channels composed of 15 
subtypes [30]. It is also the major component of the large 
astrocytic  K+ conductance and promotes the very negative 
RMP of astrocytes in vivo [15, 38, 60, 71, 75]. Kir4.1 is 
crucially involved in the regulation of  [K+]o [9, 15, 39] and 
to augmenting the efficacy of glutamate uptake [15, 33]. In 
cultured astroglia, the evidence are more contradictory with 
reports indicating the presence of Kir4.1 [39, 60] and others 
failing to detect its functional expression [3, 21, 79]. These 
discrepancies could be related to the culture conditions and/
or the region of the CNS from which the tissues to prepare 
the culture were obtained. In this respect, it is well known 
that in situ Kir4.1 expression is heterogeneous throughout 
brain regions and in the spinal cord [53, 57, 59, 69, 80]. The 
current study confirms that under our experimental condi-
tions and in the absence of G5, cultured cortical astrocytes 
do not display significant Kir4.1-mediated current. Even 
at 16 DOT, only outward rectifier  K+ current insensible to 
bath application of submillimolar  Ba2+ could be detected 
in untreated astrocytes. By contrast in astrocytes at 8–11 
DOT with G5, there was an increase in the proportion of 
astrocytes with a very negative RMP and an overall decrease 
in input resistance with a further decrement at 12–16 DOT. 
These results, together with the marked depression of the 
negative currents by  Ba2+ at a concentration that selectively 
inhibits Kir4.1, suggest that G5 exposure promotes the 
gradual functional appearance of Kir4.1. This finding was 
corroborated by the observation that G5 challenge for 12–16 
DOT induced a strong increase in Kir4.1 protein expression 

when compared to untreated cultures. Of note, compared to 
untreated astrocytes, the challenge with G5 at 5–7 and 12–16 
DOT also caused an increment of positive current activated 
at depolarized membrane potentials. The increase in  K+ out-
flow through Kir4.1 could only partially explain the increase 
in positive current at 12–16 DOT because the upregulation 
was already observed in astrocytes at 5–7 DOT when Kir4.1 
was not functionally expressed and  Ba2+ application had 
minimal effect on outward current. However, the observa-
tion that this positive conductance was totally abolished 
when intracellular  K+ was replaced with the  K+-channel 
impermeant cation  Cs+ suggests that it was mediated by 
an increase in  K+ current. Noteworthy, the upregulation of 
outward  K+ conductance could contribute to the consistent 
negative RMP observed in 5–7 G5 astrocytes in the presence 
of the depolarizing effect of the  Cl− inward rectifier under 
our experimental conditions.

It has been reported that G5 challenge also promotes an 
increase saxitoxin-sensitive voltage-gated  Na+ channels 
[90]. The results of previous research [21] and of the cur-
rent study do not support the presence of voltage-dependent 
 Na+ currents in untreated astrocytes. However, whether G5 
affects the transcripts and/or whole-cell protein levels of the 
various  Na+ channels isoforms identified in different astro-
cyte preparations remains to be established [63].

Previous works showed that cultured astrocytes chal-
lenged with G5 displayed an increment of glutamate uptake 
capability linked to the increased expression of glutamate 
transporters [84–86]. However, whether that effect is influ-
enced by additional mechanisms is unknown. The functional 
upregulation of Kir4.1 could partially explain the rise in glu-
tamate uptake observed in G5-treated cultured astrocytes. A 
direct correlation between Kir4.1 expression and glutamate 
uptake has been demonstrated as in vivo the genetic ablation 
of Kir4.1 is associated to a decrement in glutamate uptake 
mediated by the  Na+-dependent cotransporter GLT-1 [15]. 
Similar results have been described in cultured astrocytes 
in which Kir4.1 expression was downregulated by RNA 
interference [39]. It remains to be ascertained the effect on 
glutamate uptake of the large increase in Kir4.1 current in 
long-term G5-treated cortical astrocytes particularly in the 
context of the concomitant small diminution in total expres-
sion of GLT-1 transporter observed under these conditions. 
Whether the increase in expression of the  Cl− channel ClC-2 
plays a role in the regulation of glutamate uptake also war-
rants further investigations.

Primary cultured astrocytes have been often used for 
studying the astrocyte properties in physiological as 
well as pathological contexts [40, 49]. We and others 
have previously shown that incubation of cultured cor-
tical astrocytes with the cell permeable cAMP analog 
dBcAMP caused morphological and biochemical changes 
[21, 43, 76, 89]. The adherence of that culture model to 
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physiological or pathological conditions in vivo is still 
uncertain [19, 62, 88], and therefore, better in vitro models 
are required. The results of this study support the view that 
the long-term astrocyte culturing in a chemically defined 
medium containing G5 in the absence of FBS produces 
changes in astrocyte morphology and the acquisition of a 
quiescent phenotype since 12–16 DOT with G5 caused a 
strong downregulation in the expression of the intermedi-
ate filaments GFAP and vimentin, which are upregulated 
in reactive astrocytosis in vivo [41, 65, 73]. This observa-
tion contrasts with previous work in which few days of G5 
challenge caused the upregulation of GFAP and vimen-
tin [27]. The reason for this discrepancy is unclear but 
the fact that in our study G5 challenge was performed in 
the absence of FBS could play a role. To corroborate this 
hypothesis, it was previously reported that FBS affects 
several properties of cultured astrocytes [11]. Moreover, 
the fact that the G5 challenge was prolonged up to 2 weeks 
could also be a plausible explanation. Altogether, these 
results indicate that a supplement containing growth fac-
tors and hormones such as those present in G5 cocktail 
supports the long-term growth of primary cultured astro-
cytes in the absence of FBS and induce their morphologi-
cal and functional differentiation by upregulating relevant 
homeostatic channel proteins.

Conclusions

Even though major advances in the understanding about 
the role of astrocytes in the physiology and pathophysi-
ology of the CNS has been obtained from studies per-
formed in primary cultured astrocytes, in the last decades, 
it has become clear that in vitro models not always mimic 
perfectly the complex situation occurring in vivo [40]. 
Despite this evidence, the use of a reductionist model 
such as primary cultures is still essential to address the 
contribution of specific stimuli in determining the dynam-
ics of astrocyte plasticity under controlled conditions. In 
this context in the last years, great effort has been made 
to define conditions that more closely resembles those 
in vivo [23, 74].The results of this study add another piece 
of evidence to the view that the manipulation of culture 
conditions through the addition of specific growth factors 
and hormones could be used to create a valid in vitro plat-
form to investigate the modulatory processes of homeo-
static functions dependent on the expression of plasma 
membrane ion channels.
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