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Abstract
Duchenne muscular dystrophy is a highly progressive muscle wasting disorder due to primary abnormalities in one of the 
largest genes in the human genome, the DMD gene, which encodes various tissue-specific isoforms of the protein dystro-
phin. Although dystrophinopathies are classified as primary neuromuscular disorders, the body-wide abnormalities that are 
associated with this disorder and the occurrence of organ crosstalk suggest that a multi-systems pathophysiological view 
should be taken for a better overall understanding of the complex aetiology of X-linked muscular dystrophy. This article 
reviews the molecular and cellular effects of deficiency in dystrophin isoforms in relation to voluntary striated muscles, the 
cardio-respiratory system, the kidney, the liver, the gastrointestinal tract, the nervous system and the immune system. Based 
on the establishment of comprehensive biomarker signatures of X-linked muscular dystrophy using large-scale screening 
of both patient specimens and genetic animal models, this article also discusses the potential usefulness of novel disease 
markers for more inclusive approaches to differential diagnosis, prognosis and therapy monitoring that also take into account 
multi-systems aspects of dystrophinopathy. Current therapeutic approaches to combat muscular dystrophy are summarised.
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Introduction

Contractile tissues in general, and skeletal muscle fibres 
in particular, occupy a special position in the physiologi-
cal systems of the human body, making up approximately 
40% of body weight. Voluntary contractile fibres and their 
associated cell types display a remarkable array of special 
features on various levels of biological organisation rang-
ing from genotype to phenotype [226]. Although enormous 
progress has been made in the elucidation of the underlying 

mechanisms of myogenesis [44, 307] and muscle plastic-
ity [262, 263], various fundamental questions of skeletal 
muscle physiology remain to be fully resolved [273]. Many 
of the functional and structural specialisations of the mus-
cular system play body-wide roles in health and disease, 
affecting especially locomotion, posture, heat homeostasis 
and metabolic networks and their integration [50]. Given 
this context, the complexity and multifunctionality of the 
constituents of the skeletal muscle proteome is reflected 
by the diversity of muscular disorders [81]. In addition to 
neurological, metabolic and autoimmune diseases that indi-
rectly affect the motor system, intrinsic disorders of skeletal 
muscles manifest as inflammatory myopathies, myotonias, 
congenital myopathies, pharmacogenetic myopathies and 
muscular dystrophies [71, 340]. The current list of neuro-
muscular disorders includes over 1,000 individual patholo-
gies with over 600 identified genes that are associated with 
monogenic neuromuscular disorders [21], whereby many of 
these muscular disorders are already diagnosed at young age 
[70]. The most frequently inherited primary muscle disease 
of early childhood is Duchenne muscular dystrophy (DMD) 
[197], a highly progressive disorder of voluntary contractile 
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fibres [88, 98, 215] that is associated with a high level of 
caregiver burden and illness costs [289].

On the level of the skeletal musculature, genetic defects in 
the DMD gene cause the almost complete loss of the mem-
brane cytoskeletal protein dystrophin, which causes pro-
gressive symmetrical muscle wasting, in combination with 
sterile inflammation, fat substitution and reactive myofi-
brosis. A variety of recent reviews provide excellent details 
on the discovery of dystrophin [130], the genetic basis of 
dystrophinopathy [84, 117, 228], the complexity of patho-
physiological mechanisms that underlie the muscle-related 
pathogenesis [6, 141, 300, 319, 340], diagnosis and clinical 
management of Duchenne patients [25–27, 215] and novel 
therapeutic strategies to treat progressive muscle degen-
eration and associated complications in X-linked muscular 
dystrophy [101, 298, 299]. This review builds on this accu-
mulated knowledge on dystrophinopathy with a focus on the 
concept that Duchenne muscular dystrophy displays multi-
systemic abnormalities. This biomedical idea is especially 
based on recent findings generated by large-scale analyses of 
both genetic disease models and patient specimens. There-
fore, this article attempts to provide an inclusive overview 
of the molecular and cellular aspects that lead to highly 
complex skeletal muscle degeneration in association with a 
multi-systems pathogenesis and organ crosstalk in X-linked 
inherited muscular dystrophy [111, 324]. Following an intro-
duction into the organisation of the DMD gene, its tissue-
specific expression pattern and the tight interactions within 
dystrophin complexes (which is crucial for our understand-
ing of the role of the various dystrophin isoforms in multiple 
tissue and organ systems), the structure and function of the 

various protein products of the dystrophin gene and their 
pathophysiological role are examined.

Individual sections of this review outline crucial aspects 
of the differential effects of dystrophin deficiency on differ-
ent skeletal muscles, late-onset cardio-respiratory complica-
tions and associated multi-system abnormalities including 
aberrant functioning of the nervous system, the liver, the 
kidney, the gastrointestinal tract and the immune system. 
Since systems biological approaches have been extensively 
applied to studying the molecular and cellular pathogenesis 
of muscular dystrophy and have resulted in the identifica-
tion of complex biomarker signatures, the suitability and 
robustness of novel diagnostic and prognostic biomarker 
candidates of dystrophinopathy and organ crosstalk are pre-
sented. This includes the discussion of cell, tissue and organ 
disease markers in association with biofluid-related markers, 
as well as the evaluation of the potential for establishing 
therapeutic biomarkers of pharmacological interventions, 
cell-based approaches and gene therapies to counter-act 
dystrophin deficiency.

The DMD gene, its expressed proteoforms 
and the genetic basis of dystrophinopathy

In skeletal muscle fibres, one of the largest genes in the 
human genome, the X-chromosomal 79-exon spanning Dmd 
gene [130, 164], exhibits the highest expression levels in 
form of the full-length Dp427-M isoform of the membrane 
cytoskeletal protein dystrophin [228]. The DMD gene is 
positioned on the short arm of the X-chromosome at the 
Xp21.2 band. As outlined in Fig. 1, the 79 exons encode an 

Fig. 1  Overview of the DMD 
gene, its promoter structure 
and tissue-specific expression 
pattern of dystrophin iso-
forms. Abbreviations used: B, 
brain; B/K, brain/kidney; Dp, 
dystrophin protein; G, general; 
M, muscle; P, Purkinje cell; R, 
retina; S, Schwann cell
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amino-terminal region with an actin-binding site, 4 proline-
rich hinge regions, large central spectrin-like rod domains, 
a cysteine-rich domain and a carboxy-terminal domain with 
binding sites for various dystrophin-associated proteins 
[164–166]. The large number of distinct binding sites dis-
played by the protein product of the DMD gene provides 
the structural basis for a supramolecular dystrophin node at 
the sarcolemma [75], as outlined below. The tissue-specific 
expression of dystrophin isoforms is driven by seven dif-
ferent promoters. The protein products include three full-
length dystrophins in brain, muscle and Purkinje cells, i.e. 
isoforms Dp427-B, Dp427-M and Dp427-P [228, 261] and 
shorter isoforms in the retina, brain/kidney, Schwann cells, 
the brain and a variety of other tissues, i.e. Dp260-R [349], 
Dp140-B/K [182, 183], Dp116-S [198, 206], Dp71-G [240] 
and Dp45 [278].

The Dp427-M isoform belongs to the class of giant pro-
teins [233] and was identified in all major types of contrac-
tile tissues, including skeletal muscle, cardiac muscle and 
smooth muscle [75, 134, 162]. An overview of the basic 
structure of the various isoforms of dystrophin, as compared 
to its autosomal homologue utrophin and the dystrobrevin 
family of proteins, is provided in Fig. 2. In contrast to the 
X-chromosomal DMD gene, the genes UTRN, DTNA and 
DTNB are autosomal and encode the dystrophin-related 
proteins utrophin, alpha-dystrobrevin and beta-dystrobrevin 
with the chromosomal locations 6q24, 18q12 and 2p24, 
respectively. Full-length utrophin of apparent 395 kDa is 
highly enriched in the neuromuscular junction [115, 251] 
and exists in several isoforms, including A-Up395, B-Up395, 
Up140, G-Up113 and Up71 [260, 342, 372]. Dystrobrevins 

were shown to exist as four distinct isoforms, i.e. alpha-
DYB-1, alpha-DYB-2, alpha-DYB-3 and beta-DYB [29, 
241, 271].

The complexity and enormous size of the Dmd gene 
with its 2.4-Mbp sequence requires considerable process-
ing of the dystrophin 14-kb mRNA and a lengthy period 
for transcription [332, 346]. A large array of mutations and 
genetic rearrangements in the Dmd gene result in distinct 
effects on the various protein products, including abnormal 
size and/or amount of dystrophin isoforms in X-linked mus-
cular dystrophy [84]. As listed in Fig. 1, primary genetic 
abnormalities in the DMD gene on the short arm of the 
X-chromosome include small and large deletions, small and 
large insertions, large duplications, missense point muta-
tions, nonsense point mutations, splice site mutations and 
mid-intronic mutations [28, 99]. Diagnostic testing of these 
diverse primary abnormalities in the DMD gene can be rou-
tinely performed with a variety of genetic techniques [297], 
such as (i) diverse types of polymerase chain reaction assays 
[2] that mostly focus on the analysis of potential deletions 
[149], (ii) comparative genomic hybridisation array technol-
ogy that can predict whether genetic changes may disrupt 
the reading frame [204], (iii) multiplex ligation-dependent 
probe amplification methods which are capable of swiftly 
assessing the copy number of exons and related genetic 
changes [292] and (iv) next-generation sequencing for the 
analysis of nonsense or missense types of point mutations, 
as well as small deletions [243, 255]. Genomic sequencing 
has also been applied to the detailed genetic characterisation 
of female carriers of the mutated DMD gene [368]. While 
the highly progressive Duchenne type of X-linked muscular 

Fig. 2  Domain structure of 
full-length dystrophin, shorter 
dystrophin isoforms and the 
main types of dystrophin-related 
proteins. Abbreviations used: B, 
brain; B/K, brain/kidney; CT, 
carboxy-terminus; CR, cysteine-
rich domain; Dp, dystrophin 
protein; G, general; DYB, 
dystrobrevin; H, proline-rich 
hinge region; M, muscle; NT, 
amino-terminus; P, Purkinje 
cell; R, retina; S, Schwann cell; 
SLR, spectrin-like rod domain; 
WW, conserved region with 
signature tryptophan residues; 
Up, utrophin
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dystrophy is characterised by genetic defects that result in 
the almost complete loss of the Dp427-M isoform of dys-
trophin in contractile tissues [30, 133], late-onset and less 
progressive Becker muscular dystrophy shows only reduced 
density and/or size of the dystrophin protein [170]. Hence, 
the difference between severe versus more benign forms of 
dystrophinopathy is based on the type of genetic alterations 
[297] and whether particular mutations cause the loss of 
dystrophin or the production of an abnormal but still semi-
functional protein product [255].

Association of dystrophin with other proteins

In the sub-sarcolemmal cytoskeleton of skeletal muscle 
fibres, the full-length isoform of dystrophin does not exist in 
isolation but forms a tightly associated membrane assembly 
[89, 90, 249, 252]. As recently reviewed, dystrophin can be 
considered an organising node of the muscle periphery [75]. 
A sub-complex consisting of dystrophin isoform Dp427-M 
and its associated integral glycoprotein beta-dystroglycan 
form the basis of a sarcolemma-spanning structure [147], 
which tightly interacts with the extracellular laminin-recep-
tor alpha-dystroglycan, the integral glycoproteins alpha/
beta/gamma/delta-sarcoglycan and the highly hydrophobic 
membrane component sarcospan, as well as the cytosolic 
proteins alpha/beta-dystrobrevin and alpha/beta-syntro-
phin [234]. This dystrophin core complex in turn provides 
a linkage to (i) the wider extracellular matrix (including 
laminin-211, fibronectin, biglycan and collagen isoforms 
COL-IV and COL-VI) [212, 230, 268], (ii) the intracellular 
cytoskeletal network (including cortical actin, cytokeratin, 

desmin, vimentin, tubulin, synemin and plectin) [23, 266, 
274, 350], (iii) signalling proteins (such as the neuronal iso-
form nNOS of nitric oxide synthase, various kinases, the 
aquaporin water channel, the growth factor receptor-bound 
protein Grb2 and the insulin receptor, as well as crucial ion-
regulatory proteins including  Na+ channels, inward rectifier 
 K+ channels, voltage-sensing L-type  Ca2+ channels and tran-
sient receptor potential cation channels) [46, 103, 179, 290, 
374] and (iv) the costamere structures (in conjunction with 
the mechano-sensing axis of integrin, vinculin and talin) of 
the fibre periphery [151].

Thus, the dystrophin node functions as a central inte-
grator of fibre stability, cytoskeletal organisation, cellular 
signalling and lateral force transmission [6, 51, 75, 179]. 
The discovery that dystrophin interacts directly with tubu-
lin puts this membrane-associated protein into the class of 
cytolinkers [266]. Since besides dystrophin, the dystro-
phin-associated protein complex also plays a key role in the 
pathogenesis of dystrophinopathy [137], its core structure 
and diverse interconnectivity with the actin cytoskeleton, 
sarcolemma membrane, ion-regulatory components and the 
extracellular matrix is shown diagrammatically in Fig. 3. 
Besides in skeletal muscles, where the dystrophin complex 
was shown to form a monomeric structure of apparent 1.2 
MDa size [287], this membrane-associated protein assem-
bly also exists in the heart [154] and smooth muscle cells, 
such as the outer layers of the stomach wall [77]. However, 
the structure and subcellular localisation is slightly different 
as compared to skeletal muscle fibres. In cardiac muscle, 
the dystrophin complex was shown to be also present in the 
transverse tubular membrane system [154, 162] in contrast 

Fig. 3  Interaction sites of dys-
trophin isoform Dp427-M and 
overview of the dystrophin-gly-
coprotein complex at the sarco-
lemma of skeletal muscle fibres. 
Abbreviations used: ABD, 
actin-binding domain; CT, 
carboxy-terminus; CR, cysteine-
rich domain; DG, dystroglycan; 
DYB, dystrobrevin; Dp427-M, 
muscle-specific dystrophin 
isoform of 427 kDa; H, proline-
rich hinge region; nNOS, 
neuronal isoform of nitric oxide 
synthase; NT, amino-terminus; 
SG, sarcoglycan; SLR, spectrin-
like rod domain; SSPN, sar-
cospan; SYN, syntrophin; WW, 
conserved region with signature 
tryptophan residues
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to the almost exclusive subcellular localisation in the sarco-
lemma membrane in skeletal muscles [252, 366, 385].

Developmental stages of dystrophinopathy 
and skeletal muscle fibre degeneration

Duchenne muscular dystrophy is the most common neuro-
muscular disorder of early childhood with a prevalence of 
approximately 1 in 5,000 live male births [52, 197] and is 
often initially detected due to developmental delay in con-
junction with contractile weakness, slower walking and 
Gower’s sign, indicating weakness of proximal muscles [84, 
98, 111]. Major clinical milestones of the developmental 
stages of dystrophinopathy are summarised in Fig. 4. The 
presence of Gower’s sign in Duchenne patients relates to 
proximal muscular weakness in hip and thigh muscles, which 
requires the help of both hands and arms for rightening the 
body to reach a standing position. Muscular dystrophy-asso-
ciated temporal and spatial variations in gait were shown to 
include changes in cadence, anterior pelvic tilt and dorsiflex-
ion during swing [68]. The proper assessment of pathologi-
cal gait patterns and functional ambulation are crucial for 
prediction of disease progression, as well as monitoring of 
drug treatment and physiotherapeutic interventions [157]. 
Detailed studies of gait abnormalities have established a 
drastic decrease in walking speed, stride length, step length, 
maximal power generation at the hip, maximal knee exten-
sion torque, maximal dorsiflexion torque and maximal power 
generation at the ankle in Duchenne children [112, 113]. 
Common complications are hip, knee and ankle joint plantar 
flexion contractures [47]. Progressive muscle weakness also 

affects bone strength due to low bone mineral density in 
Duchenne patients [285]. This may cause an increased risk 
of bone fragility [25, 221], especially in association with 
prolonged glucocorticoid therapy [327, 365]. Key develop-
mental stages of the disease include initially frequent falls, 
difficulties with climbing stairs, toe walking and a waddling 
gait, followed by progressive limitations in general mobility, 
respiratory insufficiency and scoliosis [105].

At a later stage, the loss of unassisted ambulation is fol-
lowed by weakness of upper body musculature [25–27, 215]. 
Loss of ambulation as a clinical indicator of disease pro-
gression was shown to correlate with the type of genetic 
abnormality in the DMD gene. Of note, small mutations 
were associated with a younger age of loss of ambulation as 
compared to large deletions or duplications [19]. In the sec-
ond decade of life, cardiomyopathy and respiratory failure 
requires ventilatory assistance and intervention with cardiac 
drug treatment [161, 216]. Duchenne patients also exhibit 
an increased susceptibility for fatty liver disease, gastroin-
testinal complications, renal failure, and bladder dysfunc-
tion [26, 200, 357]. Steady advances in cardiopulmonary 
care and pharmacological therapy have preserved quality 
of life and improved prognosis for survival of Duchenne 
patients in recent years. Premature death occurs usually at 
20 to 40 years of age [27, 174]. However, cases of individ-
ual Duchenne patients living into their fifth and even sixth 
decade of life have been described [291, 360]. Especially 
the usage of oral corticosteroids has significantly prolonged 
ambulation in patients suffering from Duchenne muscu-
lar dystrophy, and therapy with angiotensin-converting 
enzyme inhibitors and beta-blockers was shown to delay the 

Fig. 4  Summary of develop-
mental stages of dystrophinopa-
thy and muscle symptoms
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progression of cardiomyopathic complications [335]. The 
importance of ventilation is clearly supported by findings 
from a recent meta-analysis that has established differences 
in median life expectancy of 14–27 years versus 21–40 years 
in patients without versus with ventilatory support, respec-
tively [174].

For the differential diagnostic evaluation of dystrophic 
patients, the above-described genetic tests are routinely 
utilised in conjunction with general physical examinations, 
motor and gait assessments, the evaluation of muscle biopsy 
specimens using histological and immunochemical tests 
[248] and serum assays focusing on the status of general 
muscle damage markers such as creatine kinase [237, 250]. 
In addition, magnetic resonance imaging presents a crucial 
non-invasive and multi-parametric assessment tool for the 
quantification of muscle pathology [4]. Muscle imaging 
correlates relatively well with histologic parameters [160] 
and can be employed for both diagnostic purposes and 
the extended monitoring of progressive alterations in the 
dystrophin-deficient skeletal musculature and clinical out-
come measures [371]. Recently, the evaluation of increased 
collagen levels by multispectral optoacoustic tomography 
has been established and can be employed as an advanced 
imaging tool for the characterisation of reactive myofibrosis 
in association with dystrophinopathy [272]. The pathophysi-
ological importance of fibrotic changes in dystrophinopathy 
is discussed in more detail in the below section.

In progressive X-linked muscular dystrophy, the decline 
in skeletal muscle strength is reflected on the histological 
level by characteristic changes in fibre size, a more roundly 
appearance of myofibres and a high degree of central 

nucleation, as well as myonecrosis, clusters of inflammatory 
cells, hypercontractility, fibre branching, fatty deposition and 
myofibrosis. Figure 5 illustrates the subcellular localisation 
of dystrophin isoform Dp427-M in skeletal muscle using 
immunofluorescence microscopy. Full-length dystrophin 
exhibits a peripheral localisation [252, 385] whereby this 
membrane cytoskeletal protein is proposed to form a sta-
bilising lattice at the cytoplasmic face of the sarcolemma 
membrane [366]. A striking feature of dystrophinopathy 
is the almost complete loss of dystrophin and a drastic 
reduction in all dystrophin-associated proteins in contrac-
tile fibres [253]. Dystrophin deficiency renders myofibers 
more susceptible to micro-rupturing of its plasmalemma 
and contraction-induced injury. Leaky surface membrane 
systems and impaired luminal calcium buffering [53] were 
shown to trigger impaired calcium handling [13, 72, 74], 
abnormal excitation–contraction coupling [39] and activa-
tion of calcium-dependent proteolytic degradation of muscle 
proteins [3, 144, 202].

Physiological dysregulation and enhanced proteolysis in 
dystrophic fibres are accompanied by a sustained cellular 
stress response and the upregulation of various chaperon-
ing proteins to counteract proteotoxic insults to dystrophin-
deficient fibres [35], especially small heat shock proteins 
such as alphaB-crystallin and the muscle-specific chaperone 
cvHSP [73]. The comprehensive mass spectrometric profil-
ing of muscle biopsy samples from Duchenne patients has 
confirmed severe cytoskeletal and extracellular dysregula-
tion in Dp427-deficient skeletal muscle [38].

The importance of abnormal calcium homeostasis in 
X-linked muscular dystrophy is summarised in Fig.  6, 

Fig. 5  Absence of dystrophin 
isoform Dp427-M in X-linked 
muscular dystrophy and key 
histopathological features 
of dystrophinopathy. Shown 
is the immunofluorescence 
microscopical analysis (using 
monoclonal antibody NCL-
DYS1 to dystrophin and Hoe-
chst-33342 labelling of nuclei) 
and histological comparison 
(using haematoxylin and eosin 
staining; H&E) of skeletal mus-
cle cryosections from wild type 
(wt) versus the mdx-4cv mouse 
model of Duchenne muscular 
dystrophy. Bar equals 40 μm
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which also highlights the pathophysiological intercon-
nectivity between the innate immune response to muscle 
damage and resulting activation of myofibroblasts and their 
role in reactive myofibrosis. In addition to dysregulated ion 
homeostasis, sterile inflammation and myofibrosis, the dras-
tic reduction of the dystrophin-associated nNOS isoform of 
nitric oxide synthase in dystrophic fibres affects signalling 
between contractile cells and their microvasculature caus-
ing use-dependent muscle ischemia [339]. A recent study 
using Doppler sonography established that the severity of 
the dystrophic phenotype correlates with a reduction in post-
exercise blood flow in Duchenne patients [67]. Besides the 
central pathophysiological role of myofiber fragility, intrin-
sic satellite cell dysfunction also contributes to progressive 
muscle wasting via an impaired regenerative capacity of 
dystrophic muscles [45, 319].

In addition to a high frequency of micro-rupturing of the 
dystrophin-deficient sarcolemma and associated increases 
in cytosolic calcium levels and enhanced proteolytic deg-
radation [144], the neuromuscular junction region was also 
shown to be more susceptible to contraction-induced injury, 
which results in impaired neuromuscular transmission [195, 
244, 319]. Since the low-frequency versus high-frequency 
electro-stimulation pattern at the motor endplate dictates 
the slow-twitching versus fast-twitching properties within 
individual motor units [262, 263], a difference in the suscep-
tibility of slow versus fast synaptic systems might play a key 
pathophysiological role in dystrophinopathy. Various neu-
romuscular disorders display a certain degree of fibre type 
specificity in muscle wasting [48, 81]. In Duchenne patients, 
subsets of fast myofibers appear to be more susceptible to 

initial degenerative processes as compared to a later onset 
of fibre wasting in slower-twitching fibre populations [367]. 
This correlates with an early decrease of fast myosin heavy-
chain isoforms in dystrophic fibres [203, 259]. Indirect fast-
to-slow transition processes were also observed in the DMD 
pig model of X-linked muscular dystrophy [104] and murine 
mdx skeletal muscle, whereby muscle transformation was 
shown to be linked to elevated levels of fibre respiration 
and enhanced protection from muscle damage [122]. Impor-
tantly, differential susceptibilities occur at the level of whole 
skeletal muscles. For example, extraocular muscles exhibit a 
very mild phenotype due to dystrophin deficiency [9].

Sparing of naturally protected extraocular muscles 
in dystrophinopathy

Although dystrophin deficiency is clearly associated with 
highly progressive skeletal muscle degeneration, differ-
ent subtypes of skeletal muscles are affected in distinctive 
ways. In contrast to severely degenerative limb and trunk 
muscles, extraocular muscles are spared from severe dys-
trophic changes [80, 100]. Unusual cell biological features of 
extraocular muscles include anatomical, biomechanical and 
functional compartmentalisation, myogenic processes driven 
by specific upstream activators, a longitudinal distribution 
of multi-terminal motor endplates along contractile fibres 
and morphologically distinct muscle spindles [63, 355]. The 
large variety of contractile patterns, including extraordinary 
fatigue resistance of fast fibres, within the extraocular mus-
cle system is probably based on a broad distribution and 
expression pattern of key sarcomeric proteins, such as a large 

Fig. 6  Pathophysiological role 
of chronic inflammation, reac-
tive myofibrosis and abnormal 
calcium handling in the molecu-
lar and cellular pathogenesis of 
dystrophinopathy. Abbreviations 
used: COL, collagen; DAMPs, 
damage-associated molecular 
patterns; ECM, extracellular 
matrix; MMP, matrix metal-
loproteinase; PA, plasminogen 
activator; TIMP, tissue inhibitor 
of metalloproteinases; TGF, 
transforming growth factor; 
TNF, tumour necrosis fac-
tor; NF-κB, nuclear factor 
kappa B
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variety of slow and fast isoforms of light and heavy myosin 
chains [135]. A recent proteomic survey of the extraocular 
muscle proteome has established MyHC14 and MyHC15 
as new markers of this subtype of skeletal muscles [106], in 
addition to the already-well-established super-fast myosin 
isoform MyHC13 [135].

The naturally protected phenotype of dystrophin-deficient 
extraocular muscles has been linked to a highly efficient cal-
cium extrusion system, a specialised stem cell niche that 
provides efficient cellular regeneration and an enhanced 
remodelling capacity, the non-junctional upregulation of 
the dystrophin homologue utrophin Up-395 and concomitant 
rescue of dystrophin-associated glycoproteins, an enhanced 
cellular stress response, metabolic adaptations, the lack 
of fibrotic scarring and the relatively low load bearing of 
extraocular fibres [74, 106, 355, 378]. The fact that the con-
tractile system surrounding the eyeball stays functionally 
unaffected in Duchenne muscular dystrophy is of consid-
erable biomedical importance [9]. A better comprehension 
of the molecular and cellular processes that underlie the 
sparing of extraocular muscles during the course of disease 
progression in dystrophinopathy could be helpful for the 
identification of new therapeutic targets to counteract dys-
trophin deficiency, i.e. manipulation of calcium handling, 
utrophin replacement therapy, the targeted upregulation of 
molecular chaperones or improving the capacity for cellular 
regeneration.

Reactive myofibrosis and chronic inflammation 
as key symptoms of dystrophinopathy

The disproportionate accumulation of proteins belonging to 
the extracellular matrix can be considered a key defining fea-
ture of dystrophinopathy [158, 254] and is probably closely 
linked to abnormal cellular signalling, extensive recruitment 
of the muscle repair machinery and chronic inflammation 
in the affected contractile tissues [309]. Chronic cycles of 
muscle tissue damage and fibre repair are triggered by dys-
trophin deficiency and cause a sustained immune response, 
which results in a chronic inflammatory phenotype of dys-
trophinopathy [280, 314, 315]. The innate immune response 
is accompanied by high levels of macrophage activity and 
the release of a variety of signalling factors, as well as the 
recruitment of myofibroblasts [31]. The potential interplay 
between chronic inflammation and myofibrosis in damaged 
fibres, as well as the role of abnormal  Ca2+-handling in 
dystrophin-deficient fibres, is summarised in Fig. 6. Impor-
tantly, myofibroblasts exhibit an elevated synthetic capacity 
for the production of extracellular matrix proteins and there-
fore play a key role in reactive fibrotic changes in dystrophic 
muscle tissue.

The multi-functional cytokine named transforming 
growth factor TGF-β is released in large amounts from 

M2 macrophages and is involved in the activation of fibro-
adipogenic progenitors [110] and other precursor cells in 
the muscle environment [20]. Enhanced activity of fibro-
adipogenic progenitors plays a key role in dystrophinopathy. 
These precursors are resident in skeletal muscles and belong 
to the class of stromal cells that exhibit the potential to adapt 
to multiple cellular lineages [199]. Upon activation by fibre 
damage, fibro-adipogenic progenitors are involved in the 
generation of myofibroblasts, fibroblasts and adipocytes, 
as reviewed by Theret et al. [338]. Enhanced secretion of 
extracellular matrix components can then cause the exces-
sive formation of fibro-fatty scars that surround contractile 
fibres and thereby negatively affect mechano-transduction 
and skeletal muscle elasticity [163]. In addition, adipogenic 
precursors were shown to be involved in interstitial remodel-
ling, which is associated with disturbed adipogenesis [36]. 
This might explain the concomitant occurrence of reactive 
fibrosis and fat replacement in Duchenne muscular dystro-
phy causing major cellular complications for maintaining 
proper metabolic and contractile functions.

In one of the original descriptions of X-linked muscular 
dystrophy dating back to the year 1868, the French neurolo-
gist Guillaume-Benjamin-Amand Duchenne de Boulogne 
described an abundant production of fibrous tissue at the 
advanced stages of the disease and proposed to name this 
muscular disorder ‘paralysie myosclérosique’ (archived in 
[85]: Duchenne GB. Recherches sur la paralysie muscu-
laire pseudo-hypertrophique ou paralysie myosclérosique. 
Archives générale médecine). The original medical descrip-
tion is certainly in agreement with the interstitial fibrotic 
phenotype of Duchenne muscular dystrophy. In normal 
skeletal muscles, the basal lamina and the extended layers 
of the extracellular matrix (consisting of the endomysium, 
perimysium and epimysium [379]) provide a supporting and 
signalling environment that forms protective sheets around 
contractile fibres [109]. Importantly, motor neurons and cap-
illaries are embedded in the interstitial extracellular matrix 
for efficient neurotransmission within motor units and the 
steady supply of essential nutrients and oxygen to support 
the high bioenergetic needs of skeletal muscle metabolism.

Key proteins involved in structural maintenance of the 
extracellular matrix-sarcolemma axis via cell–matrix adhe-
sion processes and the provision of mechanical support and 
lateral force transmission include various (i) collagen iso-
forms (Col I, III, IV, V and VI), (ii) a large number of pro-
teoglycans (biglycan, prolargin, mimecan, decorin, asporin, 
fibromodulin, perlecan, syndecan, lumican, agrin and 
aggrecan), (iii) matrix crosslinkers (fibronectin), (iv) non-
architectural matricellular proteins (periostin, osteopontin, 
dermatopontin and nidogen), (v) matrix metalloproteinases 
(MMP 1, 2, 9, 10 and 13) and their inhibitors named tissue 
inhibitors of metalloproteinases (TIMP) and plasminogen 
activators (PA), (vi) integrin (α7β1-integrin), (vii) laminin 
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(α2β1γ1 laminin-211) of the basal lamina, (vii) signalling 
proteins (myokines and growth factors) and (vii) the dystro-
glycan complex with its laminin-binding component alpha-
dystroglycan [109, 141, 254, 379]. Disturbances of adhesion 
receptors and rearrangements of structural fibres within the 
extracellular matrix play an important pathophysiological 
role in many neuromuscular pathologies, including X-linked 
muscular dystrophy [158]. Since the extracellular matrix is 
intrinsically involved in the maturation and differentiation of 
muscle fibres and adaptive fibre transitions, myofibrosis has 
a considerable influence on the loss of regenerative capac-
ity in dystrophic muscles [163]. The loss of tissue elasticity 
and progressive cellular scarring causes decreased mechano-
transduction and impaired skeletal muscle function, and may 
also affect crosstalk between muscle and tendon [375].

As indicated in Fig. 6, a large number of extracellular 
matrix proteins were shown to be drastically increased or 
modified in their isoform expression pattern in both patients 
and animal models of X-linked muscular dystrophy, includ-
ing collagens, proteoglycans, adhesion receptors, matricel-
lular proteins and matrix metalloproteinases [7, 92, 309, 
344]. Systematic large-scale surveys using mass spectrom-
etry–based proteomics identified a drastic increase in the 
matricellular proteins dermatopontin [41] and periostin 
[138], as well as the extracellular matrix stabilisers biglycan 
and fibronectin [230, 239] in conjunction with elevated col-
lagen expression in the highly fibrotic- and dystrophin-defi-
cient diaphragm muscle [141]. Especially striking are high 
levels of the cross-linking enzyme lysyl oxidase and con-
comitant increases in the level of cross-linked collagen clus-
ters in the disturbed extracellular matrix of the dystrophic 
diaphragm [310]. These findings were confirmed by a lon-
gitudinal study of histological changes during progressive 
muscle wasting in Duchenne patients, which clearly estab-
lished that endomysial fibrosis presents the most significant 
myopathological feature in correlation to the gradual loss of 
motor functions [64]. It is therefore not surprising that col-
lagens detected by advanced imaging technology have been 
suggested as novel biomarkers for dystrophinopathy [272]. 
Primary fibroblasts isolated from Duchenne patients produce 
elevated levels of decorin and collagen, and are character-
ised by elevated proliferation rates [376, 377]. This pro-
fibrotic phenotype shows high sensitivity to transforming 
growth factors, which agrees with the finding that muscular 
dystrophy-associated fibrosis is driven by the transforming 
growth factor TGF-β-related activation pathway [196, 208, 
356]. Interestingly, the serum- and glucocorticoid-inducible 
kinase SGK1 appears to be a fibrosis-stimulating factor that 
plays a role in fibrotic remodelling and muscular weakness 
[321].

These findings of dysregulated matricellular proteins and 
elevated collagen fibrillogenesis due to hyperactive fibro-
blast populations are crucial for our general understanding 

of the detrimental role of myofibrosis in X-linked mus-
cular dystrophy. Skeletal muscles appear to be capable to 
swiftly address minor acute injuries by upregulating repair 
mechanisms and the regenerative activation of myoblasts 
and protective involvement of fibroblasts [379]. However, 
chronic muscle wasting seems to overwhelm the beneficial 
effects of elevated activity levels of the connective tissue 
and causes instead fibrotic tissue scarring [141, 254]. As 
discussed in the below section on novel treatment options 
for dystrophinopathies, it will be crucial to counteract the 
progressive nature of fibrotic changes in order to increase the 
chance for the successful application of new cell-mediated 
or gene-based therapies [295]. However, a recent study on 
dystrophinopathy-associated fibrosis has shown different 
degrees of altered muscle stiffness and collagen amounts 
in extensor digitorum longus versus soleus muscles [34], 
suggesting the selective targeting of the alignment of large 
collagen structures rather than total collagen for the most 
efficient treatment of fibrotic stiffness in X-linked muscular 
dystrophy [309, 310].

The inflammatory phenotype of progressive skeletal 
muscle degeneration due to dystrophin deficiency is asso-
ciated with a variety of cellular immune responses [280], 
especially interference by the innate immune system [31] 
but also acquired immune responses [314]. As already 
discussed above, there appears to be a close link between 
chronic inflammation and reactive myofibrosis in X-linked 
muscular dystrophy [20]. Resident immune cells play an 
important role in normal skeletal muscle homeostasis. Of 
note, a resident macrophage population associated with the 
epimysium and perimysium space between contractile fibres 
can swiftly act and remove cellular debris. In muscular dys-
trophy, the conversion of activated monocytes and the inva-
sion by large numbers of additional macrophages is a key 
feature of muscle membrane lesions [358, 359]. Besides M1 
and M2 macrophages, the promotion of the degenerative 
phenotype seen in dystrophic muscle fibres includes addi-
tional immune cells, including helper CD4 + T lymphocytes, 
cytotoxic CD8 + T lymphocytes, eosinophiles and neutro-
philes as first responders of inflammation, as well as infiltra-
tion of the dystrophic muscle by myeloid cell populations 
[314, 315].

High levels of contraction-induced injury due to dys-
trophin deficiency cause fibre disintegration, and the cel-
lular damage to the weakened sarcolemma is associated 
with damage-associated molecular patterns (DAMPs) and 
the release of typical DAMP components such as nucleic 
acids and ATP molecules [219]. DAMP molecules are 
recognised by the innate immune system and result in an 
inflammatory response with a central role played by the 
nuclear factor NF-κB and the inflammasome [280]. In addi-
tion, the shedding of peptides, protein fragments or pro-
teins through the leaky muscle plasmalemma presents these 
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muscle components as potential neoantigens to the adaptive 
immune system [341]. Importantly, a large number of signal-
ling cytokines and chemokines promote the infiltration of 
dystrophic fibres by neutrophiles, macrophages and dendritic 
cell populations [31, 319].

The recent proteomic analysis of the role of the spleen 
in X-linked muscular dystrophy confirmed pathophysiologi-
cal crosstalk between dystrophic muscles and the secondary 
lymphoid organ system [76]. The spleen, which is majorly 
involved in antigen detection, antibody production and the 
removal of abnormal erythrocytes, exhibits morphological 
adaptations of lymph nodes in its white pulp region due to 
dystrophin deficiency [293]. Importantly, muscular dystro-
phy is associated with changed numbers of splenic inflam-
matory monocytes and an increased migration pattern of 
immune cells from the splenic reservoir to damaged con-
tractile fibres [219, 220, 256]. The movement of splenic 
monocytes and differentiation into macrophages seems to 
be crucial for promoting chronic inflammation in dystrophin-
deficient skeletal muscles [277]. These major changes due 
to inflammatory mechanisms in dystrophic fibres are sum-
marised in Fig. 6.

Late‑onset cardiorespiratory pathophysiology 
in dystrophinopathy

Impaired cardiorespiratory function plays a key pathophysi-
ological role in X-linked muscular dystrophy, especially in 
the second decade of life of Duchenne patients [25], and 
requires mechanical ventilatory support to manage respira-
tory insufficiency [32] and cardiac drug treatment including 

angiotensin-converting enzyme inhibitor therapy [161, 216]. 
Right and left diaphragmatic motions are reduced follow-
ing inspiration [93], and progressive respiratory decline is 
already present during the early ambulatory phase in Duch-
enne patients [276]. Imaging studies of respiratory muscle 
movements revealed a drastically reduced thoracic cavity 
area and reduced chest wall contraction during inspira-
tion-expiration patterns in muscular dystrophy, as well as 
increased fat infiltration in accessory respiratory muscles 
[17]. The progression of myocardial fibrosis in Duchenne 
and Becker muscular dystrophy patients is associated with 
poor prognosis. Thus, in analogy to skeletal muscle fibro-
sis and its detrimental effect on motor function [163, 272], 
excess accumulation of extracellular matrix components also 
plays a crucial role in progressive cardiomyopathic compli-
cations in dystrophinopathy.

Cardiomyocytes, which only exhibit limited regenerative 
capacity, do not undergo extensive degeneration-regenera-
tion cycles in muscular dystrophy. The central importance 
of the cardio-respiratory syndrome and interconnectivity 
of body-wide effects of dystrophin deficiency is diagram-
matically summarised in Fig. 7, which gives an overview 
of the complexity of abnormalities in the skeletal muscu-
lature, the central and peripheral nervous system, smooth 
muscles and the cardiovascular system, as well as potential 
organ crosstalk that is related to secondary dysfunctions in 
the liver and the renal-urinary tract. Interstitial fibrosis and 
myofiber necrosis cause cardiac weakness which in turn 
negatively affects efficient circulation. Thus, dystrophinop-
athy-associated cardiomyopathy is probably indirectly linked 
to a decreased whole-body supply of nutrients, oxygen and 

Fig. 7  Overview of skeletal 
muscular degeneration, multi-
systems pathophysiology and 
organ crosstalk in Duchenne 
muscular dystrophy
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hormones in X-linked muscular dystrophy. Chronic impair-
ment of circulation might be involved in fatty liver disease, 
as discussed in more detail in the below section on organ 
crosstalk. Both the long-term impairment of the circula-
tory system and chronic exposure to released intracellular 
molecules from damaged skeletal muscle fibres may also 
contribute to renal abnormalities in dystrophinopathy [172].

In analogy to skeletal muscle, full-length dystrophin 
also forms a tight complex with glycoproteins in the heart, 
where it occupies a major mechanical, protective and sig-
nalling role in the organisation and maintenance of the sur-
face membrane system of cardiomyocytes [154, 162]. In 
conjunction with the talin-integrin system, the dystrophin 
complex associates with vinculin at costamers in a perpen-
dicular direction to the longitudinal axis of cardiac muscle 
cells [56]. However, in contrast to skeletal muscle, the core 
cardiac dystrophin-glycoprotein complex exhibits a differen-
tial composition in relation to dystrobrevins and syntrophins 
and does not display a direct link to the nNOS isoform of 
nitric oxide synthase. The cardiac dystrophin complex fea-
tures additional linkages to the molecular chaperone alphaB-
crystallin, the large scaffolding phosphoprotein ahnak-1, the 
caveolae component cavin-1 and the cardiac cytoskeletal 
component cypher [152].

Important aspects of the molecular and cellular pathogen-
esis of dystrophinopathy-associated cardiomyopathy were 
determined by studying dystrophic mouse and pig models 
[139, 232, 331]. Systematic proteomic surveys of the dys-
trophin-deficient heart have revealed drastic changes in the 
dystrophin-associated glycoprotein complex [114], which 
in turn triggers an abnormal expression pattern of proteins 
involved in cytoskeletal networks, the extracellular matrix, 
the cardiac contractile apparatus, energy metabolism, signal-
ling mechanisms and the cellular stress response [142]. On 
the subcellular and molecular level, the dystrophic heart is 
primarily characterised by sarcolemmal disintegration and 
significantly reduced levels of laminin, nidogen and annexin 
[232]. Pathophysiological patterns of cardiac fibre necrosis, 
interstitial inflammation and reactive myofibrosis result in 
heart disease in the majority of patients afflicted with Duch-
enne muscular dystrophy [216].

The fibrotic phenotype of the dystrophin-deficient heart 
resembles some of the alterations that occur during skeletal 
muscle fibrosis, including increased activity of pro-fibrotic 
genes, collagen accumulation, enhanced activity of con-
nective tissue growth factors and heightened transforming 
growth factor TGF-β signalling via coronary endothelial 
cells [142, 148]. Workload-induced cardiomyocyte injury 
and the acute elevation of mechanical stress in the dystrophic 
heart is also linked to abnormal  Ca2+ handling [175]. Fragil-
ity of the dystrophin-deficient plasma membrane and altered 
ion homeostasis is clearly associated with a lowered luminal 
 Ca2+-buffering capacity of cardiomyocytes, hypersensitive 

excitation–contraction coupling and the activation of the 
stretch-activated  Ca2+-influx pathway via transient receptor 
potential vanilloid channels of type TRPV2 [189, 192, 302].

Neurological complications in dystrophinopathy

The multi-system pathophysiology of Duchenne muscular 
dystrophy is characterised by a variety of neurological com-
plications [210]. However, mental issues do not appear to 
be progressive and were shown not to correlate with the 
severe loss of motor function in dystrophic patients. Differ-
ent degrees of neurodevelopmental, psychiatric, behavioural 
and emotional symptoms have been clearly established in a 
subset of individuals suffering from severe forms of dystro-
phinopathy [61] but can also occur in more benign cases of 
Becker muscular dystrophy [173]. Neurological issues are 
characterised by social, behavioural and emotional problems 
[129, 275], delayed milestones of language development 
[58], adaptive deficiencies [57], impaired working mem-
ory [336] and a variety of neuropsychiatric diseases such 
as hyperactivity, obsessive–compulsive behaviour, atten-
tion deficit and autism spectrum disorders [128, 257, 258]. 
However, it is important to emphasise that severe cognitive 
impairments and mental retardation occur only in a subgroup 
of patients and were shown to be secondary in nature to 
physical handicap [210, 311].

Non-progressive cognitive deficiencies in Duchenne 
patients were shown to correlate at least partially with the 
type of mutation in the DMD gene and accompanying effects 
on the expression levels of the various dystrophin isoforms 
in the central nervous system [69, 337]. Especially abnor-
malities in the dystrophin isoform Dp140 [16, 95] appear 
to be associated with severe forms of cognitive defects [18, 
347]. Neuronal dystrophins include the short forms Dp45 
and Dp71, the medium-sized isoform Dp140 and full-length 
Dp427 [228, 240]. Brain-associated proteoforms of Dp427 
were shown to feature biochemical properties that are typi-
cal of cytoskeletal components and are similar to the actin-
binding protein Dp427 present in skeletal muscles [96, 97]. 
The large Dp427 isoforms localise to neurons of the hip-
pocampus and the cerebral cortex [159, 181, 348]. During 
the development of the central nervous system, the Dp140 
isoform is most highly expressed in the brain [183]. How-
ever, following brain maturation, the most abundant dystro-
phin is represented by isoform Dp71 [240] that is mostly 
localised in neuronal and glia cells of the olfactory bulb and 
the dentate gyrus [54, 329]. In analogy to skeletal muscles, 
various dystrophin isoforms in the brain are linked to glyco-
proteins such as dystroglycans and sarcoglycans [55, 364]. 
Dystrophin-glycoprotein complexes were shown to be asso-
ciated with key neuronal processes, including modulation 
of synaptic activity, excitability, plasticity and integration 
of signalling cascades [125, 260].
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Abnormalities in brain white matter were recently estab-
lished in children afflicted with dystrophinopathy by diffu-
sion tensor imaging, a magnetic resonance imaging tech-
nique that is suitable to especially determine the axonal 
organisation within the brain [265]. These neurological com-
plications seem to be connected to altered developmental 
pathways in the cerebellum resulting in disturbed cerebro-
cerebellar loops [59]. Besides studying brains from Duch-
enne patients by mostly non-invasive technologies, crucial 
insights into complex neurological changes have been gen-
erated by studying molecular and cellular brain abnormali-
ties in animal models of dystrophinopathy. One of the most 
widely employed dystrophinopathy models, the mdx mouse, 
exhibits deficits in long-term consolidation memory, charac-
teristic changes in associative learning patterns and bioen-
ergetic alterations in distinct brain regions [227, 343, 351] 
making it a suitable system for detailed neurochemical and 
cellular studies. Important findings include the establish-
ment of disturbed interactions between glial and endothelial 
cells at the blood–brain barrier [246], an abnormal neuronal 
receptor density in Purkinje cells [169] and the central role 
of impaired cerebellar function as highlighted by disrupted 
circuit signals between Purkinje cells and the cerebellar 
nuclei in the dystrophin-deficient brain [320].

The altered blood–brain barrier function in the mdx brain 
is associated with a reduction in dystrophin-associated gly-
coproteins [247] and upregulation of the matrix-metal-
loproteinases MMP2 and MMP9 [245]. Interestingly, the 
proteomic analysis of the mdx-4cv mouse model revealed 
increases in vimentin and annexin that might be associated 
with the cytoskeletal stabilisation of dystrophin-lacking 
brain cells and enhanced membrane repair processes [235]. 
Elevated expression levels of the glial fibrillary acidic pro-
tein, which is an established marker of astrogliosis due to 
its unique localisation to astrocytes in the central nerv-
ous system [136], were also demonstrated to occur in the 
mdx-4cv brain by mass spectrometry, immunoblotting and 
immunofluorescence microscopy [235]. This agrees with the 
reported occurrence of multifocal glial nodules in the brain 
of a Duchenne patient with severe mental retardation [150]. 
Increases of glial fibrillary acidic protein indicate ongoing 
neurodegeneration-associated astrogliosis with accumula-
tion of this intermediate filament component in the brain 
lacking certain dystrophin isoforms, such as Dp427 and 
Dp140.

Impaired energy metabolism, abnormal liver 
function and gastrointestinal abnormalities 
in dystrophinopathy

The recent comparative proteomic profiling of muscle 
biopsy samples from Duchenne patients, as compared to 
healthy controls, has demonstrated metabolic disturbances 

both at the level of anaerobic pathways and lipogenesis [38]. 
Since skeletal muscle tissue plays a crucial role in the inter-
organ crosstalk of metabolic regulation [10] and because 
of a close relationship between nutritional uptake by the 
gastrointestinal tract, liver metabolism and skeletal muscle 
function, dystrophinopathy-associated changes that affect 
the efficient crosstalk between these vital organs are col-
lectively discussed in this section. The combined skeletal 
musculature is a key organ system involved in the integra-
tion of carbohydrate, lipid and protein metabolism [10]. The 
absorption of digested nutrients through the gastrointesti-
nal tract leads to the transportation of vital biomolecular 
building blocks via the circulatory system towards muscle, 
adipose and liver tissue. Contractile fibre protein forms an 
essential primary amino acid reservoir for the regulation of 
whole-body protein. This is crucial for substrate provision 
to maintain protein synthesis during periods of starvation 
and disease [286]. In addition, muscle tissues serve as the 
most abundant primary location for insulin-dependent glu-
cose uptake throughout the body and storage of glycogen for 
utilisation within skeletal muscles. The shuttling of lactate 
and glucose between muscle and liver, also known as the 
Cori cycle, is a key interorgan pathway that links anaerobic 
skeletal muscle glycolysis with liver metabolism [313]. The 
interrelationship between liver, adipose tissue and skeletal 
muscles also determines the rate of fatty acid transportation 
and the regulation of oxidative metabolism [87].

A variety of muscular dystrophies are associated with a 
considerably perturbed skeletal muscle metabolism in both 
the early and acute phase of these disorder [318], including 
changed lipid utilisation and impaired energy metabolism 
in Duchenne patients [60, 176, 317]. Pathological develop-
ments in Duchenne children are not only characterised by 
highly progressive muscle wasting, but also delayed growth 
resulting in relatively short stature and increased fat mass. 
The altered muscle-to-fat ratio and overall body mass altera-
tions in dystrophinopathy cause a high prevalence of obe-
sity in Duchenne children and these body mass changes are 
linked to metabolic disturbances [294]. This in turn has an 
impact on bioenergetic requirements and nutritional sta-
tus. While weight gain due to corticosteroid therapy might 
require weight management in younger Duchenne patients, 
issues with malnutrition [94] could necessitate supplemental 
feeding regimes at more advanced stages of the disease [26, 
62]. The implementation of nutritional interventions, includ-
ing micronutrient supplements such as calcium, creatine and 
vitamins, is a potential way to address certain aspects of 
bioenergetic dysregulation and loss of motor function due 
to progressive fibre degeneration [288].

Disturbed metabolism in X-linked muscular dystrophy 
is associated with abnormal calcium handling and mito-
chondrial dysfunction, reduced ATP levels, enhanced 
phosphorylation of the AMP-activated protein kinase and 
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accumulation of reactive oxygen species [126]. Abnormal 
bioenergetic processes are also observed in dystrophic ani-
mal models including defective regulation of metabolic 
pathways [91]. Substrate-selective limitation of biochemi-
cal reaction rates of anaerobic metabolism in fast muscles 
and aerobic metabolism in slow muscles were shown to be 
associated with decreased oxidative utilisation of both glu-
cose and free fatty acids [184, 322]. Excellent indicators of 
disturbed fatty acid metabolism are the various isoforms of 
fatty acid binding protein (FABP) [78]. A large number of 
proteomic surveys have established a reduced abundance of 
the FABP3 (H-FABP) isoform in various dystrophic skeletal 
muscles and the heart [116, 138, 230, 232, 239] and con-
comitant increase in serum [123, 231, 316]. In contrast to 
contractile tissues, the liver exhibits increased levels of the 
FABP5 (E-FABP) isoform of fatty acid protein in X-linked 
muscular dystrophy [236]. Elevated amounts of liver-asso-
ciated FABP5 suggests changes in the binding of long-chain 
fatty acids in dystrophinopathy and agrees with fatty liver 
disease and ectopic fat accumulation being associated with 
the dystrophic phenotype [78]. This agrees with elevated 
serum levels of the liver damage marker alanine aminotrans-
ferase in the majority of Duchenne patients [167].

Besides skeletal and cardiac muscle, the dystrophin iso-
form Dp427 and its associated glycoprotein complex are 
also present in smooth muscle cells [120, 134]. A recent 
proteomic survey of the stomach wall identified dystrophin 
Dp427-M in association with alpha/beta-dystroglycan, 
alpha/beta/delta-sarcoglycan, gamma/epsilon-sarcoglycan, 
alpha/beta-dystrobrevin and alpha1/beta1/beta2-syntrophin 
[77]. The interface between the pancreas and the stomach of 
the mdx-4cv mouse model of X-linked muscular dystrophy 
wall was confirmed to be characterised by a loss in dystro-
phin and reduced abundance of sarcoglycan and dystrogly-
can, in addition to lower expression levels of the extracel-
lular matrix component laminin, the sarcomeric protein titin 
and the actin-binding protein filamin [77]. The DMD pig 
model of muscular dystrophy also exhibits abnormal diges-
tion and absorption capacity in the gastrointestinal tract 
[384]. The associated patterns of malnutrition are in agree-
ment with gastrointestinal dysfunction in the dystrophic 
phenotype [26, 177, 186, 200].

Abnormal kidney and bladder function 
in dystrophinopathy

The kidney contains the Dp140-B/K dystrophin isoform and 
the shorter Dp71 proteoform of dystrophin [182] and dystro-
phin-associated proteins are present at relatively high abun-
dance in renal cells [83, 119]. Dystroglycans were shown to 
play a crucial role during kidney epithelial morphogenesis 
[86]. However, in contrast to contractile fibres, the dystro-
phin-related protein β-dystrobrevin appears to occupy the 

central position in the anchoring of dystrophin-associated 
proteins in non-muscle tissues instead of dystrophin [187]. 
These dystrobrevin complexes were found to be present in 
endothelial cells and the basal region of renal epithelial cells 
[188]. The smooth muscle system and afferent nerve fibres 
of the bladder express the short dystrophin isoforms Dp71 
and Dp140 [185]. Dystrophin expression might therefore be 
primarily affected in the bladder and kidney of patients with 
certain mutations in the DMD gene [28, 99, 243], or these 
organ systems are altered due to secondary and body-wide 
adaptations.

With advancing age, the prevalence of urological mani-
festations increases in Duchenne patients [11, 172]. How-
ever, relatively little is known about the pathophysiological 
mechanisms of bladder smooth muscle dysfunction and uri-
nary incontinence and their full clinical extend in patients 
afflicted with dystrophinopathy [200, 222]. In contrast, a 
variety of studies have characterised renal dysfunction in 
X-linked muscular dystrophy. Duchenne patients at advanced 
stages of muscular dystrophy are especially susceptible to 
kidney disease [223], including fatal cases of acute renal 
failure [207]. Kidney disease was shown to also correlate 
with cardiomyopathic complications causing in some cases 
the cardio-renal syndrome [357]. Symptomatic nephrolithi-
asis [303, 308], abnormal filtration rates [33] and impaired 
kidney perfusion [223] were shown to occur in large cohorts 
of non-ambulatory Duchenne patients.

It is possible to monitor the dysfunction of the kidney by 
routine clinical tests, such as the cystatin C–estimated glo-
merular filtration rate [357, 361]. Studies of the dystrophic 
mdx-type mouse models revealed cellular changes in the 
kidney [118] and reduced renal function [363] and were 
also instrumental to test for toxic side effects on the kidney 
due to drug treatment or experimental exon-skipping ther-
apy [270, 381]. The systematic identification of proteome-
wide changes in the kidney has demonstrated the increased 
expression levels of the FABP1 (L-FABP) isoform of fatty 
acid–binding protein [83]. Changes in this crucial metabolic 
protein [145] are most likely associated with ectopic fat dep-
osition and chronic renal dysfunction [78, 373].

Disease processes occurring in the kidney and bladder can 
be studied completely non-invasively by analysing changes 
in biomarkers in urine specimens [153, 370]. Urine displays 
a highly complex metabolome and proteome with a large 
number of biomolecules that exhibit excellent diagnostic and 
prognostic properties [191, 369, 382]. However, it is dif-
ficult to establish bladder- or kidney-specific tissue damage 
markers [380]. The most drastic proteomic or metabolomic 
changes in urine samples from Duchenne patients are linked 
to muscle-specific or body-wide alterations, i.e. the presence 
of muscle titin fragments [107, 205, 283], high levels of fer-
ritin [282] and an elevated concentration of the prostaglandin 
tetranor-PGDM [330]. An exception is the kidney-specific 
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protein named uromodulin, which is exclusively produced 
in the ascending limb of the loop of Henle and in the distal 
tubular region of the nephron. Uromodulin is highly abun-
dant in urine and a marker of chronic renal disease [143, 
217] and was identified to be significantly increased in urine 
from Duchenne patients [283]. This indicates considerable 
renal injury in dystrophionapthy. Another striking feature 
is enhanced oxidative damage to urinary proteins, which is 
proposed to be generated by oxidant hypochlorous acid via 
the enzyme myeloperoxidase from neutrophils [333].

Novel proteomic biomarkers of the complex 
aetiology of Duchenne muscular dystrophy

X-linked muscular dystrophy is characterised by a highly 
complex process of skeletal muscle wasting and secondary 
pathophysiological effects that are reflected by consider-
able levels of multi-systemic change and organ crosstalk 
[84, 111, 213]. This body-wide aetiology requires multi-
disciplinary approaches for the optimum diagnosis, prog-
nosis and management of dystrophinopathy [25–27, 340]. 
Although standard serum enzyme assays used for the rou-
tine evaluation of skeletal muscle damage, such as creatine 
kinase or myoglobin tests, are useful indicators of tissue 
changes and the release of intracellular muscle content, these 
analytes are not specific enough for the monitoring of neuro-
muscular disease progression and therapeutic impact [250]. 
Thus, there is an urgent clinical need for the establishment 
of novel biomarker signatures that are suitable for the proper 
differentiation between muscle-related degeneration versus 
non-muscle-associated abnormalities in Duchenne patients, 
as well as monitoring of signalling events between differ-
ent tissues and organ systems [79]. Improved diagnostic and 
prognostic tools would help to better predict the complexity 
of disease progression in relation to fibre necrosis, reactive 
myofibrosis, fat substitution and sterile inflammation. Thera-
peutic biomarkers should be able to evaluate both intended 
outcomes versus adverse effects of innovative therapeutic 
approaches at the genetic, pharmacological and cellular level 
[82, 237, 250]. As reviewed by Szigyarto and Spitali [328], 
biomarkers in the field of dystrophinopathy can be divided 
in relation to susceptibility, screening, diagnosis, prognosis, 
prediction, therapy monitoring and safety.

Clinical assays based on marker molecules, such as DNA, 
miRNA, metabolites, lipids and/or proteins [43, 146, 168], 
should on the one hand be highly specific, robust, sensitive 
and cost-effective and on the other hand exhibit ideally only 
a minimum susceptibility to interference by gender, age, eth-
nicity, nutrition, lifestyle and circadian rhythm [250]. User-
friendly biomarker tests could be highly useful to improve 
prenatal analysis, new-born screening and estimating dis-
ease initiation in order to decisively reduce the time between 
observation of initial symptoms and consolidated differential 

diagnosis [156, 281]. The establishment of sets of prognostic 
and predictive biomarkers would allow the monitoring of 
pathological progression, potential adverse clinical events, 
the differential screening of patient populations and the 
determination of the sensitivity of individual patients to new 
treatment protocols [328]. While body-wide responses to 
new drug treatments can be examined by pharmacodynamic 
markers and potential cytotoxic effects by safety markers, the 
repeated assessment of improved disease status and possi-
bly convalescence should be enabled by therapy-monitoring 
marker molecules [1, 237].

Besides systematic transcriptomic surveys [190, 306] and 
metabolomic research [60, 178, 345] in the field of dystro-
phinopathy, a major area of omics-based biomarker discov-
ery employs mass spectrometric and proteomic screening 
protocols for the large-scale identification of new peptides, 
protein fragments and protein biomarker candidates [42, 82]. 
A few studies have also used multi-omics approaches for 
studying dystrophic changes at the various levels of biologi-
cal organisation from gene to mRNA to protein expression 
[122, 224, 352]. The integration of genomics and proteomics 
for the in-depth proteogenomic characterisation of rare neu-
romuscular disorders is an attractive approach that combines 
advanced proteomic screening with gene discovery [279].

The initial experimental design of mass spectrometry-
based proteomic workflows should ideally take into account 
the following: (i) an optimised experimental and bioana-
lytical design for tissue preparation, sample collection, 
specimen storage, subcellular fractionation and protein 
extraction prior to biochemical analysis; (ii) a suitable prot-
eomic discovery strategy (i.e. a specific mass spectrometric 
technique and labelling method) following large-scale pro-
tein separation using either bottom-up (liquid chromatog-
raphy) or top-down (two-dimensional gel electrophoresis) 
approaches; (iii) the unequivocal demonstration of disease/
therapy-associated differential protein expression patterns 
using advanced bioinformatic analysis of proteomic data; 
(iv) the independent verification of the specificity, sensitivity 
and robustness of new protein biomarker candidates using 
standardised biochemical, immunochemical, molecular bio-
logical, cell biological and physiological assays; and finally 
(v) a preliminary prioritisation of the most promising bio-
marker signature for the tissue/biofluid-specific evaluation 
related to specific goals such as improved screening, diag-
nosis, prognosis, pharmacodynamics or therapy monitoring 
[82]. Following the identification of new peptides or pro-
teins using patient biopsy or biofluid material, cell culture or 
animal models, new biomarker candidates undergo then an 
intense validation process using retrospective or prospective 
investigations to test their validity and significance prior to 
clinical usage [1].

The skeletal muscle proteome [37] consists of at least 
10,000 proteoforms [65, 66, 229], and systematic screening 
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of changes in both muscle-associated proteins and released 
proteoforms in biofluids has identified a large number of 
potential biomarker candidates [42, 82, 124, 237]. This 
includes significant expression changes in skeletal mus-
cle proteins that are involved in ion homoeostasis, cellular 
signalling cascades, the regulation of excitation–contrac-
tion coupling, the sarcomeric units and the maintenance of 
contraction-relaxation cycles, the formation of the extracel-
lular matrix, the stabilisation of the cytoskeletal network, 
the cellular stress response, metabolism and bioenergetics 
in X-linked muscular dystrophy [38, 137, 138, 140, 230, 
239, 269, 353]. Abnormal protein expression was also docu-
mented in the heart, stomach, brain, liver, kidney and spleen 
of the dystrophic phenotype [77, 83, 232, 235, 236]. How-
ever, muscle tissue–associated markers are only of limited 
usefulness for routine and repeated sampling approaches. 
In order to avoid unnecessary complications due to highly 
invasive tissue biopsy procedures, instead suitable and rep-
resentative biological fluids can be tested for the presence 
of disease markers.

Proteomic serum profiling has been successfully applied 
to study inflammation, mitochondrial abnormalities, mem-
brane instability and fibrosis in muscular dystrophy [123, 
124, 231, 237]. While serum and plasma specimens are 
harvested by minimally invasive methods, biofluids such 
as saliva or urine have the advantage of being sampled 
in a completely non-invasive way. Both biological fluids 
contain large and complex proteomes that are suitable for 
the routine diagnostic analysis of body-wide health status 
[107, 238]. Promising new biofluid markers of Duchenne 
muscular dystrophy include fibronectin, titin fragments, 
fatty acid–binding protein FABP3, malate dehydrogenase 
MDH2, the inflammation-inducible plasma marker hapto-
globin, carbonic anhydrase CA3, myosin light-chain MLC3 
and matrix metalloproteinase MMP9 [14, 168, 194, 231, 
305, 323]. Some of these markers can now be validated in a 
number of new therapeutic applications [5].

Therapeutic implications and future perspectives

New treatment approaches to ameliorate the dystrophic 
phenotype include (i) pharmacological interventions using 
drugs that modulate the immune response and inflamma-
tion, abnormal ion homeostasis, impaired excitation–con-
traction coupling, cellular growth patterns, abnormal meta-
bolic pathways, cholesterol metabolism, oxidative stress and 
cardio-respiratory complications [8, 132, 155, 209, 214]; 
(ii) myoblast transfer therapy [15, 225, 304]; (iii) stem cell 
therapy [24, 40, 325]; (iv) somatic genome editing using 
CRISPR/Cas9-mediated exon excision [12, 171, 218]; (v) 
heat shock protein induction to enhance the natural cellu-
lar stress response provided by molecular chaperones [108, 
334]; (vi) stop codon read-through therapy [127, 264, 326]; 

(vii) vector transfer therapy [121, 242, 296]; (viii) exon-skip-
ping therapy [49, 131, 180]; (ix) electrical nerve stimulation 
to induce muscle transitions [122]; and (x) utrophin substitu-
tion therapy [193, 312, 362]. An interesting approach is the 
repurposing of established pharmacological substances and 
testing of multi-drug combinations in experimental trials 
using genetic animal models of Duchenne muscular dys-
trophy [383].

Detailed discussions of the clinical advantages versus 
potential limitations of these new treatment options and 
their current validation status in preclinical or clinical stud-
ies have been published [101, 299, 354]. Recently, several 
novel compounds have emerged which have been approved 
or await final approval by medicines agencies. This includes 
the FDA-approved novel corticosteroid Deflazacort that was 
shown to be associated with improved muscle strength [267] 
and agents with conditional approval such as Casimersen for 
skipping exon 45 resulting in the elevated production of dys-
trophin in skeletal muscle [301] and Eteplirsen for skipping 
of exon 51 which causes delayed loss of ambulation in some 
patients [211] and Golodirsen and Viltolarsen for skipping 
exon 53 resulting in increased dystrophin levels [49, 102], 
as well as the oxadiazole drug named Ataluren, approved 
by the European Medicines Agency, which is supposed to 
help restore dystrophin by supressing nonsense mutations 
[22]. Ongoing clinical evaluations of further pharmaco-
logical interventions that focus on skeletal muscle abnor-
malities in dystrophinopathy include the anti-inflammatory 
substances Valmorolone and Cosyntropin, the anti-fibrotic 
drugs Givinostat and Pamrevlumab and the myostatin inhibi-
tor RO7239361 [284, 298].

Since reactive myofibrosis plays such an important patho-
physiological role in muscular dystrophy [64, 141, 254], the 
prevention, halting or reversal of fibrosis is a key factor for 
avoiding complications and providing optimised conditions 
prior to the application of novel therapeutic approaches, such 
as gene transfer or interventions with stem cells [163, 295]. 
A potential way to address the issue of excess tissue scarring 
would be to drastically decrease the expression levels of pro-
fibrotic proteins via antisense oligonucleotide therapy [201].

Conclusions

Although Duchenne muscular dystrophy is primarily defined 
as a skeletal muscle wasting disorder, its pathophysiological 
changes also affect multiple non-muscle tissues and organ 
systems. This makes dystrophinopathy a multi-systems dis-
order with complex disturbances of whole-body homeosta-
sis. Hallmarks of both sequential and overlapping alterations 
due to deficiency in dystrophin include (i) progressive skel-
etal muscle degeneration in association with fat replacement, 
chronic inflammation and reactive fibrosis; (ii) scoliosis, 
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joint deformation and contractures; (iii) respiratory insuf-
ficiency; (iv) late-onset cardiomyopathy; (v) neurological 
deficiencies that may cause cognitive impairments, emo-
tional issues and attention deficit; (vi) endocrine, metabolic 
and bioenergetic disturbances; (vii) gastrointestinal dysfunc-
tion; (viii) fatty liver disease; and (ix) renal and urinary tract 
dysfunction. Therefore, for the future development of new 
treatment approaches, such as gene therapy, as well as the 
establishment of novel biomarkers to improve differential 
diagnosis, prognosis and therapy monitoring of Duchenne 
muscular dystrophy, both multi-system pathology and organ 
crosstalk should be taken into account. In order to decisively 
increase the long-term survival of Duchenne patients, new 
combinations of pharmacological therapy, cellular interven-
tions and gene substitution approaches should be designed 
that can be employed together with physiotherapy and opti-
mum nutritional support to address the complex and body-
wide pathology of dystrophinopathy.
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