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Abstract

White matter (WM) is a highly prominent feature in the human cerebrum and is comprised of bundles of myelinated axons that
form the connectome of the brain. Myelin is formed by oligodendrocytes and is essential for rapid neuronal electrical commu-
nication that underlies the massive computing power of the human brain. Oligodendrocytes are generated throughout life by
oligodendrocyte precursor cells (OPCs), which are identified by expression of the chondroitin sulphate proteoglycan NG2
(Cspg4), and are often termed NG2-glia. Adult NG2+ OPCs are slowly proliferating cells that have the stem cell-like property
of self-renewal and differentiation into a pool of ‘late OPCs’ or ‘differentiation committed” OPCs(COPs) identified by specific
expression of the G-protein-coupled receptor GPR17, which are capable of differentiation into myelinating oligodendrocytes. In
the adult brain, these reservoirs of OPCs and COPs ensure rapid myelination of new neuronal connections formed in response to
neuronal signalling, which underpins learning and cognitive function. However, there is an age-related decline in myelination
that is associated with a loss of neuronal function and cognitive decline. The underlying causes of myelin loss in ageing are
manifold, but a key factor is the decay in OPC ‘stemness’ and a decline in their replenishment of COPs, which results in the
ultimate failure of myelin regeneration. These changes in ageing OPCs are underpinned by dysregulation of neuronal signalling
and OPC metabolic function. Here, we highlight the role of purine signalling in regulating OPC self-renewal and the potential
importance of GPR17 and the P2X7 receptor subtype in age-related changes in OPC metabolism. Moreover, age is the main
factor in the failure of myelination in chronic multiple sclerosis and myelin loss in Alzheimer’s disease, hence understanding the
importance of purine signalling in OPC regeneration and myelination is critical for developing new strategies for promoting
repair in age-dependent neuropathology.
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Introduction
White matter (WM) is a prominent feature of the human ce-

rebral hemispheres and comprises bundles of myelinated
axons that form the connectome of the brain (Fig. 1). Myelin
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communication throughout the CNS, which underlies the

>< Arthur M. Butt massive computing power of the human brain [9]. The largest
Arthur.butt@port.ac.uk WM tract in the brain is the corpus callosum, which is respon-

sible for interhemispheric communication and enables higher-
order functions of the cerebral cortex, including intellectual
processing and behaviour [21]. Cortical function areas, such
as those for language and speech, are not symmetrically rep-
resented in the two hemispheres and damage to the corpus
callosum results in disconnection of the cerebral hemispheres,
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Fig. 1 White matter is a
prominent feature of human
cerebral hemispheres. The white
matter contains bundles of
myelinated axons that
interconnect neurons located in
the widely dispersed grey matter
areas. The corpus callosum is the
largest white matter tract in the
brain and interconnects the two
cerebral hemispheres, shown in
black in sagittal, dorsal and
coronal views. Adapted from [58]
and [21]

Sagittal

or ‘split brain’, when each hemisphere has separate percep-
tion, concepts and impulses to act [32]. During ageing, there is
a gradual shrinkage of cerebral WM and loss of myelin, which
are key factors in cognitive decline [6]. These ageing changes
are accelerated in Alzheimer’s disease (AD) [55], and underlie
the reduced capacity for remyelination and repair in chronic
MS [67]. Furthermore, defects in callosal myelination are also
features of neuropsychological disorders, including bipolar
disorder, schizophrenia and autism [42]. The life-long gener-
ation of oligodendrocytes is the function of adult oligodendro-
cyte progenitor cells (OPCs) that are identified by expression
of platelet-derived growth factor-alpha receptor (PDGFR)
and the NG2 chondroitin sulphate proteoglycan (CSPG4)

2/Hoechst

Fig. 2 Adult NG2+/Pdgfra+ OPCs divide to undergo self-renewal and
generate a reservoir of GPR17+ differentiation committed OPCs (COPs),
which differentiate into CC1+ mature oligodendrocytes. a OPCs
immunolabeled for NG2 in the hippocampus of the adult brain. White
arrows show duplets of recently divided sister cells, as illustrated in the
inset showing a high magnification confocal image of an OPC duplet. b—
d Oligodendroglial cells in 3-month-old Pdgfra-CreER"*:Rosa26R-YFP
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(Fig. 2) [64, 81]. Significantly, myelin loss in the ageing brain
is associated with diminished regenerative function of OPCs,
which is the focus of this review.

Myelination is regulated by neuronal activity
and is disrupted in ageing WM

In the corpus callosum, myelination commences postnatally
and is more or less complete by 10 years of age in humans
(Krupa and Bekiesinska-Figatowska, 2013) and by 4 weeks in
mice [64]. Nonetheless, myelination continues long into adult-
hood and is important for neural circuit plasticity and

mouse, 10 days following tamoxifen injection, immunolabelled for YFP
to identify OPCs and their progeny (green, co-expression appears yel-
low), double immunofluorescence labelled for the OPC marker NG2 (B,
red), GPR17 for COPs* (¢, red, arrows) and CC1 for mature oligoden-
drocytes (d, red, arrows). Scale bars= 50 pum in A-D, and 10 pum in insets
ina
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cognitive learning in mice and man [66]. Oligodendrocytes
are generated throughout adulthood by a significant popula-
tion of ‘adult OPCs’, which slowly divide to maintain their
own population, termed ‘self-renewal’, and to generate newly
formed oligodendrocytes [79]. A characteristic of OPCs is that
they form synapses with neurons and respond to neuronal
signalling [7]. Neuronal activity regulates oligodendrogenesis
and myelination [35, 38, 53], which is critical for adaptive
changes in learning and cognitive function [33, 69, 78].
Recent studies have determined that cortical OPCs receive
extensive afferent synaptic inputs from brain-wide projection
networks [54], and neurotransmission regulates both the ex-
pansion of OPCs and their differentiation into oligodendro-
cytes [35]. Synaptic input is important for maintaining OPC
numbers [14], and age-related changes in neuronal signalling
are intrinsically associated with a decline in OPC regenerative
capacity [72] (Fig. 3). In this context, there are prominent roles
for purinergic and glutamatergic signalling in regulating OPC
proliferation and differentiation, notably via P2X7R, which
are the purinergic receptor with the highest expression in
OPC [43], and AMPA-type glutamate receptors [15].
Significantly, P2X7R is central to white matter pathology
[28], but it is implicit that expression of P2X7R by OPCs
must also have a physiological role [10], and there is evi-
dence that P2X7R induce calcium rises in OPCs and regulate
their migration, proliferation and differentiation [3, 27].
Moreover, using an NG2-DsRed mouse line to unambiguous-
ly identify NG2+ OPCs in the mouse optic nerve, we have
demonstrated that OPCs respond to ATP and glutamate re-
leased by neuronal activity with increases in intracellular
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Fig. 3 Two distinct pools of adult OPCs maintain life-long generation of
myelinating oligodendrocytes. Slowly dividing NG2+ OPCs are respon-
sible for self-renewal and maintaining a reservoir of GPR17+ COPs that
are devoted to rapidly generating myelinating oligodendrocytes.
Neuronal signalling involving P2X7R and GPR17, together with

UDP-glucose

Ca**, and showed that P2X7R and AMPAR are major con-
tributors to such OPC functions [37]. Of course, neurotrans-
mitters other than ATP and glutamate also regulate OPCs,
including noradrenaline [12], which acts not only as a mes-
senger, but also as a growth factor and as an inhibitor of pro-
inflammatory conditions that are prominent in the aged brain
[44]. Hence, reduced noradrenergic innervation in the aged
brain due to the demise of the Locus coeruleus [76] may play
an important role in OPC decline in ageing WM, either di-
rectly or via altered astrocyte function [58]. Furthermore,
OPCs sense potassium released during neuronal activity
through the potassium channels they express, notably
Kir4.1, as well as sensing metabolites, including L-lactate,
which represent further modes of OPC signal integration
[12, 58]. Overall, OPC self-renewal is at least
partly dependent on neuronal activity and age-related dysreg-
ulation of neurotransmission is a potential causative factor in
the loss of OPCs and myelin [13, 73].

The adult brain contains distinct pools
of NG2+ and GPR17+ OPCs that are altered
in ageing

During development, OPCs arise from focal sources to mi-
grate throughout the CNS, where they proliferate and differ-
entiate into oligodendrocytes, under the control of multifari-
ous intrinsic and extrinsic factors [26]. Although adult OPCs
are generally treated as a single uniform population, it is evi-
dent they are a heterogeneous population and that not all

Myelinating Oligodendrocyte

GPR7+
Differentiation committed OPC
(Cop)

glutamate, noradrenaline and potassium, play an important role in regu-
lating OPC function. There are marked decreases in both NG2+OPCs and
GPR17+ COPs in the ageing brain, which results in impaired replacement
of myelin lost through ageing, and is a key factor in the age-related
decline in neuronal network plasticity and cognitive function
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OPCs are directly involved in the generation of myelinating
oligodendrocytes [11]. Prior to differentiating into mature
myelinating oligodendrocytes, NG2+ OPCs pass through a
distinct differentiation phase characterised by expression of
the G-protein-coupled receptor subtype GPR17 [30] (Fig. 4).
Single-cell RNAseq has identified multiple cell subpopula-
tions belonging to the oligodendrocyte lineage and GPR17
expression was identified in clusters that can be collectively
defined as ‘differentiation committed OPC* (COPs) [49]. In
support of this, analysis of OPC heterogeneity in zebrafish
spinal cord revealed that GPR17 is differentially expressed
in a subset of OPCs that generate differentiated oligodendro-
cytes, while it is virtually absent in a subgroup of OPCs that
seem to be more involved in synaptic signalling [48]. Adult
OPCs can be broadly subdivided into two functionally distinct
pools of slowly dividing NG2+ OPCs that have the stem cell-
like property of self-renewal [12], and GPR 17+ COPs, that are
normally quiescent and differentiate into myelinating oligo-
dendrocytes when needed [18, 75]. Thus, the function of
NG2+ OPCs is self-renewal and replenishment of GPR17+
COPs, which serve as ‘reservoir’ of cells devoted to rapidly
generating myelinating oligodendrocytes [45]. It is signifi-
cant, therefore, that we have recently demonstrated a marked
decrease in both NG2+OPCs and GPR17+ COPs in the age-
ing brain [63], caused by reduced self-renewal of OPCs [56],
together with their diminished replenishment of the reservoir
of GPR17+ COPs [63]. The dysregulation of OPCs and COPs
results in impaired replacement of myelin lost through ageing
[56, 63], which is a key factor in the age-related decline in
neuronal network plasticity and cognitive function [6], and for
myelin loss in AD and the failure of remyelination in chronic
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Fig. 4 Specific expression of GPR17 and P2RX7 in mouse
oligodendroglial cells. Transcript signals values of mouse brain cells
from publically available datasets of bulk sequencing [80] and single-
cell sequencing [40] were analysed using the DeSeq2, Seurat and ggplot2
packages in RStudio, following standard published procedures [59, 63].
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MS [55, 67]. Transcriptomic studies are beginning to unravel
the signalling pathways and biological processes that are al-
tered in aged OPCs, and notable amongst these are cell me-
tabolism and synaptic signalling [20, 63]. Our meta-analysis
of the stage-specific transcriptional signatures of ageing corti-
cal OPC identified novel interactions between Gprl7 and
Cacng4 (Stargazin) [63], which targets AMPA receptors to
the OPC cell membrane [82], to regulate OPC proliferation,
differentiation and myelination [15]. Furthermore, P2X7R
have also been shown to regulate AMPAR trafficking and
enhance glutamatergic synaptic signalling [60].
Transcriptomics evidence has indicated both AMPAR and
P2X7R are disrupted in ageing white matter [72]. Moreover,
GPR17 and P2X7R are both important regulators of cellular
metabolism [17, 61], which is central to age-related dysregu-
lation of OPCs [56]. Thus, the collective disruption of GPR17
and P2X7R could result in severe disruption of aged OPCs, as
both genes are detected at very low expression compared to
young OPCs (Fig. 5), in addition to other factors, such as
reduced noradrenergic signalling and metabolic support by
astrocytes [58, 74, 76].

Roles for P2X7R and GPR17 in OPC ageing
and cellular metabolism

P2X7R are usually considered cytotoxic receptors, butalso
have an important physiological function as sensors of cellular
metabolic state and, on activation, can regulate cell metabo-
lism [22]. Furthermore, although it is generally held that
P2X7R are activated only at pathologically high
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Bulk sequencing profiles indicate highest expression of P2rx7 corre-
sponds to Gpr!7 in OPCs and COPs, compared to other cells. This was
confirmed in single-cell sequencing profiles, which indicate a marked
decrease in expression levels of both P2rx7 and Gprl7 in aged OPCs
(22 months ofage, 22 M) compared to adult OPCs (2 months of age, 2 M)
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Fig. 5 Prominent roles for purinergic and glutamatergic signalling in
regulating OPC proliferation and differentiation. AMPA-type glutamate
receptors and P2X7R subtype of ATP receptors are highly expressed by
OPCs, which are charecterised by expression of the NG2 CSPG and

concentrations of extracellular ATP, there is evidence that
ATP is released physiologically in the CNS during neuronal
activity at high enough concentrations to activate P2X7R, as a
neurotransmitter in its own right, or as a co-transmitter with
glutamate or other neurotransmitters [1]. A recent study mea-
sured ATP changes in response to neuronal activity in the
cerebral cortex of living mice and demonstrated an ATP wave
that propagated at the speed of ~2 mm/min, comparable to the
rate of neuronal propagation, with a precipitous rise of ATP at
the wave front that occurred across a broad area of the brain
[41]. In addition, we have shown an equivalent rise in ATP in
response to neuronal activity that is propagated by ATP re-
lease from astrocytes in WM of the mouse optic nerve [36], at
elevated levels sufficient to activate P2X7R on OPCs [37].
Furthermore, it is now evident that ATP is continuously re-
leased in the brain and extracellular levels are altered in re-
sponse to metabolic demand [25, 47, 51], linked to reciprocal
changes in the levels of phosphorylated AMP-activated pro-
tein kinase (P-AMPK), well known for its role in cellular
energy sensing and regulation [25]. Controlled activation
ofP2X7R supports mitochondrial ATP synthesis in multiple
ways, including facilitating glucose uptake by regulating glu-
cose transporter expression and function [4], and stimulation

Presynaptic Membrane

Neurexin

Neuroligin

GPR17. Potential interactions between GPR17, P2X7R and the
targeting of AMPA receptors to the OPC cell membrane are implicated
in age-related dysregulation of OPCs

ofP2X7R has been shown to enhance energy metabolism in
mice [34]. In addition, circadian regulation of extracellular
ATP levels suggests that ATP may be an important circadian
output in thesuprachiasmatic nucleus and other brain regions
[77]. Similarly, physiological ligands for GPR17 include UDP
and UDP-glucose[16], which are important factors in glyco-
genesis [29], and may be released from neurons and astrocytes
to activate receptors on OPCs [24]. Importantly, oligoden-
droglial GPR17 has been shown to regulate whole-body me-
tabolism and food intake by modulating hypothalamic neuro-
nal activity [57, 61, 70]. In this context, P2X7R and GPR17
act as bioenergetics sensors and provide mechanisms by
which OPCs regulate cellular metabolism and survival.
Moreover, evidence that activation of GPR17 by uracil nucle-
otides is reversed by some purinergic antagonists [30] raises
the possibility of interactions between GPR17 and P2X7R. It
is significant, therefore, that GPR17 and P2X7R regulate
whole-body metabolism and are implicated in type-2 diabetes
[17, 61] and regulate mTOR and AMPK [8, 62], which also
contribute to type-2 diabetes [39], since dysregulation of these
pathways are central to age-related changes in OPCs and
targeting these pathways rejuvenates ageing OPC stemness
[56, 63]. Moreover, activation of P2X7R modulates GSK3[3
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and intracellular glycogen stores [23], and we have demon-
strated that inhibition of GSK3f profoundly promotes
oligodendrogenesis and rejuvenates the regenerative capacity
of OPCs [5]. In this respect, it is worth noting that astrocytes
are the primary store of glycogen in the brain, which is a
source of metabolic support for OPCs [58]. Moreover, activa-
tion of GPR17 in OPCs decreases intracellular levels of cAMP
[68], which is an important regulator of glycogenolysis, and
the decline in excitation-energy coupling is likely to be an
important factor in the ageing brain [74].

Oligodendrocytes provide metabolic support
for axons

In addition to myelination, oligodendrocytes provide metabol-
ic support for axons, possibly in the form of glucose [52], but
mainly by delivering lactate to axons, which they release
through MCT1 into the periaxonal space, from where it is
taken up by axons via MCT2 [31, 46]. Metabolic support is
coupled to axonal activity, which stimulates oligodendroglial
expression of the glucose transporter GLUT1 and glucose
uptake, which is metabolised to lactate and released to axons
[65]. The physiological importance of oligodendrocyte-axon
metabolic support is critical under conditions of glucose dep-
rivation [71]. Interestingly, downregulation of GPR17 in oli-
godendroglia enhanced glycolysis and lactate production,
which then activated neurons in the hypothalamus [57], sug-
gesting that the loss of GPR17 during the maturation of
myelinating oligodendrocytes would increase their capacity
for metabolic support of axons. As noted above, oligoden-
droglial P2X7R are activated by ATP released during neuro-
nal activity [36, 37], and extracellular ATP levels increase
under metabolic stress [51]. Furthermore, evidence that acti-
vation of P2X7R regulates glycolysis and facilitates glucose
uptake via increased GLUT1 expression and function [4] pro-
vides a physiological function for oligodendroglial P2X7R in
supporting axonal metabolism and integrity, as shown for glu-
tamate and NMDAR [65]. Hence, in addition to resulting in
dysregulation of OPC cellular metabolism, age-related chang-
es in oligodendroglial P2X7R and GPR17 may have adverse
effects on axonal metabolism, in particular under times of
metabolic stress, which is a hallmark of brain ageing [50],
and is postulated to play a key role in neuronal demise in
AD [19] and MS [2].

Summary and conclusions
In summary, WM shrinkage and myelin loss in the ageing
brain underpin a decline in neuronal plasticity and cognitive

function. A key factor in the loss of myelin is the age-related
decay in OPC regenerative capacity, which is associated with

@ Springer

dysregulation of cellular metobilism. Notably, OPCs express
GPR17 and P2X7R, which are key regulators of OPC differ-
entiation and can be considered bioenergetics sensors that
regulate cellular metabolism to meet changes in energy de-
mands. Overall, evidence for dysregulation of GPR17 and
P2X7R in ageing supports key roles for these receptors in
the age-related loss of OPC stemness and their regeneration
of myelinating oligodendrocytes. Furthermore, such changes
in P2X7R and GPR17 would have adverse effects on axonal
trophic support and is likely to contribute to neurodegenera-
tive changes in ageing WM, both through disruption of their
metabolic roles in oligodendroglial glycolysis and their impor-
tance in regulating oligodendrocyte regeneration and
myelination. Thus, P2X7R and GPR17 are potential therapeu-
tic targets for rejuvenating OPCs and promoting myelin repair
and neuroprotection in age-dependent neuropathology, in-
cluding MS and AD.
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