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Abstract
The aim of the present study was to compare the content of cytokines, chemokines, and oxidative stress markers in the pancreas
of spontaneously hypertensive rats (SHRs) and Wistar Kyoto Rats (WKYs) serving as controls. Enzyme-like immunosorbent
assay (ELISA) and biochemical methods were used to measure pancreatic levels of interleukin-1ß, interleukin-6, tumor necrosis
factor α, transforming growth factor β, RANES, monocyte chemoattractant protein 1, interferon gamma-induced protein 10,
malondialdehyde, and sulfhydryl groups. The results showed that the pancreatic concentrations of all studied cytokines and
chemokines did not differ between 5-week-old SHRs and WKYs, except RANTES which was significantly reduced in juvenile
SHRs. In 10-week-old animals, except interleukin-1ß, the levels of all these proteins were significantly reduced in SHRs. The
pancreatic levels of malondialdehyde were significantly reduced in 5-week-old SHRs and significantly elevated in 10-week-old
SHRs while the contents of sulfhydryl groups were similar in both rat strains at any age studied. In conclusion, these data provide
evidence that in maturating SHRs, the pancreatic levels of cytokines and chemokines are significantly reduced, while
malondialdehyde significantly elevated. This suggests that in the pancreas of mature SHRs, the inflammation process is sup-
pressed but there is ongoing oxidative damage.
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Introduction

It is generally known that the pancreas is an exocrine and
endocrine organ. These functions are performed by acinar
cells responsible for secretion of the pancreatic juice contain-
ing various digestive enzymes and endocrine cells responsible
for release of pancreatic hormones such as glucagon (α cells);
insulin, amylin, and C-peptide (β cells); pancreatic polypep-
tide (γ cells); somatostatin (δ cells); and ghrelin (ɛ cells) [7,

13, 33, 72]. It should be kept in mind, however, that under
physiological conditions there are many external factors af-
fecting exocrine and/or endocrine pancreatic secretion such as
some hypothalamic neuropeptides (ghrelin, orexin A and B),
cholecystokinin, serotonin and/or melatonin [13].

Pancreatic hormones play especially an important role in
the regulation of glucose homeostasis [61]. Thus, dysfunc-
tions of this organ usually lead to diabetes mellitus. On the
other hand, diabetes mellitus may change the morphology and
functions of the pancreas and can lead to other serious disor-
ders [53]. For example, it was reported that type 1 and type 2
diabetes usually lead to the reduction of the pancreatic volume
[44, 47]. Moreover, irregular pancreatic morphology associat-
ed with the decrease in the number of insulin-producing β
cells was also observed in diabetic patients [9, 17, 37, 49].
In both types of diabetes, a deficit of β cell mass leads to
insulin deficiency and hyperglycemia [27, 66]. It is worth
mentioning that diabetes might be associated with chronic
pancreatitis as well as pancreatic cancer [25–26]. It was also
found that the inflammatory processes alone are highly in-
volved in pancreatic cancer pathogenesis [28]. For pancreatic
cancer, a recent study showed that hypertension can also in-
crease the risk of this disease [39]. Moreover, many years ago,
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a relationship between acute pancreatitis and malignant hyper-
tension with renal failure was also demonstrated [5].

Hypertension is one of themost common causes of mortality
in both, developed and developing countries. As hypertension
is a very serious social problem, several experimental animal
models were developed as a valuable tool to study the etiology,
pathophysiology, and treatment of this disease [39]. One of
these models, which spontaneously develops hypertension
without any involvement of pharmacological and/or surgical
methods, is the genetic strain of hypertensive rat known as the
spontaneously hypertensive rat (SHR) [52]. Moreover, SHR is
not only a model of hypertension but it also displays various
consequences associated with this condition such as cardiac
hypertrophy, cardiac failure, and renal dysfunction [38].

Our previous work with the use of SHR model to study
selected factors responsible for pathogenesis of ADHD [36]
revealed that the levels of various cytokines (interleukin-1β:
IL-1β, IL-6, tumor necrosis factor alfa and transforming
growth factor beta), chemokines (regulated on activation, nor-
mal T cell expressed and secreted, monocyte chemoattractant
protein-1, and interferon gamma-induced protein 10), and ox-
idative stress markers (malondialdehyde and sulfhydryl
group) in the serum and/or spleen were significantly elevated
in 5-week-old SHR rats (SHRs) when compared to age-
matched control strain (Wistar Kyoto Rats, WKYs).
However, to the best of our knowledge, there is no data avail-
able regarding the pancreatic content of these substances in
the juvenile (5-week-old) and maturating (10-week-old)
SHRs and WKYs. Such data seems to be important because
it was earlier reported that an adult SHR develops spontaneous
pancreatitis [54]. Moreover, it develops also hypertension
[45], and recent evidence clearly demonstrated that sustained
hypertension increases pancreatic oxidative stress which
might lead to the pancreas damage in the hypertensive rats
[23]. Thus, it seems that elevated levels of cytokines,
chemokines, and oxidative stress markers observed in the se-
rum and/or spleen of juvenile SHRs might be involved in
development of pancreatitis in the maturating animals [36].
To test this hypothesis, enzyme-linked immunosorbent assay
was used to detect the pancreatic levels of cytokines and
chemokines. Furthermore, biochemical methods were used
to investigate the oxidative stress markers in this organ.

Materials and methods

Animals

Juvenile (5-week-old) andmaturating (10-week-old) male spon-
taneously hypertensive rats (SHRs, n = 12) and Wistar Kyoto
Rats (WKYs, n = 12) were used in the present study. Both these
time points of the rat’s lifetime were intentionally chosen.
Considering that pre-pubertal SHRs are characterized primarily

by ADHD abnormalities and symptoms [30], and they are de-
void of hypertension [57], 5-week-old animals were selected for
investigation. In post-pubertal and mature SHRs, ADHD symp-
toms disappear [30] but hypertension develops [57]; thus, 10-
week-old animals were chosen. Both SHRs and WKYs aged 3-
week were provided by Charles River (Germany). All subjects
were housed in groups of two or three in sanitized polypropyl-
ene cages (to prevent isolation stress) under controlled temper-
ature (21 ± 1 °C), 12/12-h light/dark cycle (lights on 06:00 to
18:00) and ventilated (12–20 exchanges/h) animal room. All
animals were fed with a grain mixture (VRF1 diet; Charles
River, Germany) and tap water ad libitum. All experiments were
carried out in accordance with the European Union Directive for
animal experiments (2010/63/EU) and approved by the Local
Ethical Commission of the University ofWarmia andMazury in
Olsztyn (no. 43/2014). All efforts were made to minimize ani-
mal suffering and to use the minimum number of animals nec-
essary to produce reliable scientific data.

Experimental procedure

Following the habituation phase, the experimental rats were
divided into four groups according to study design: (1) 5-
week-old SHR rats (n = 6; b.w. 111.1–123.38 g); (2) 5-
week-old WKY rats (n = 6; b.w. 111.25–130.96 g); (3) 10-
week-old SHR rats (n = 6; b.w. 254.72–281.38 g), and (4) 10-
week-old WKY rats (n = 6; b.w. 247.33–266.95 g).

Pancreas collections

Rats were deeply anesthetized with an intraperitoneal injec-
tion of Morbital (Biowet, Poland; 50 mg/kg); then, the
pancreases were carefully dissected from all studied animals.
All these tissue samples were immediately placed in liquid
nitrogen (− 196 °C) for 30 min and then stored at low temper-
ature (− 80 °C) for further analyses.

Immunoenzymatic determination (ELISA)
of cytokines, chemokines, and oxidative stress
biomarkers in the pancreas

To determine concentrations of cytokines, chemokines, and
oxidative stress markers in the rat tissues, commercial
ELISA Kits were used according to the manufacturer’s in-
structions (Table 1). The absorbance in ELISA test plate was
measured by plate reader TECAN infinite m200 pro (Austria)
at the wavelength λ = 492 nm.

Measurement of malondialdehyde and sulfhydryl
group in the pancreas

The level of malondialdehyde (MDA) and sulfhydryl groups
(-SH) was measured according to the method described earlier
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by Weitner et al. [71] as well as Chan and Wasserman [10],
respectively with own modifications. All details concerning
both of these methods were described in our previous paper
Kozłowska et al. [36].

Statistical analysis

The Mann-Whitney U test was conducted for significant dif-
ferences between WKYs and SHRs using GraphPad Prism 6
software (Graph Pad Software, La Jolla, CA, USA). p < 0.05
was considered to be statistically significant.

Results

The concentration of cytokines, chemokines,
and oxidative stress markers in the pancreas

In the present study, the levels of almost all cytokines,
chemokines, and/or oxidative stress markers (except –SH
groups) differed significantly when animals from both age
periods and/or strains were compared.

Cytokines

The concentrations of interleukin-1ß (IL-1ß), IL-6, tumor ne-
crosis factor α (TNF-α), and transforming growth factor β-1
(TGF-β) did not differ in 5-week-old SHRs and WKYs
(Fig. 1a–d). These concentrations significantly dropped in

10-week-old animals of both rat strains (except TGF-β), but
reductions were particularly strong in SHRs. In effect, the
concentration of IL-6, TNF-α, and TGF-β was significantly
lower in 10-week-old SHRs when compared to age-matched
WKYs (Fig. 1b–d).

Chemokines

The pattern of chemokine contents was quite similar to
that of cytokine contents. For example, these levels were
significantly higher in 5-week-old WKYs and SHRs than
in the i r 10-week-o ld counterpar t s (F ig . 2a–c) .
Furthermore, the levels of monocyte chemoattractant
protein-1 (MCP-1) and interferon gamma-induced protein
10 (IP-10) did not differ in 5-week-old animals and were
significantly reduced in 10-week-old SHRs (Fig. 2a–c).
The level of RANTES was significantly reduced in
SHRs at any age studied (Fig. 2a).

Oxidative stress markers

The pancreatic levels ofMDAwere significantly reduced in 5-
week-old SHRs when compared to age-matched WKYs
(Fig. 3a). In contrast, in 10-week-old SHRs, these levels were
significantly elevated (Fig. 3a). The concentrations of –SH did
not differ between SHRs and WKYs at any of the age studied
and they were quite similar in 5-week-old and 10-week-old
animals (Fig. 3b).

Table 1 The ELISA kits used for the determination of cytokine and chemokine concentrations in the present study

Antigen ELISA kit catalogue number Manufacturer, country Assay range (pg/ml)

1. RAT IL-1β Rat IL-1β Mini ABTS ELISA Development Kit
900-M91

Peprotech, USA 63–4000 pg/ml
Intra-assay: CV < 9%
Inter-assay: CV < 10%

2. RAT IL-6 Rat IL-6 Mini ABTS ELISA Development Kit
900-M86

Peprotech, USA 31–2000 pg/ml
Intra-assay: CV < 9%
Inter-assay: CV < 10%

3. RAT TNF-α Rat TNF-α Mini TMB ELISA Development Kit
900-TM73

Peprotech, USA 47–6000 pg/ml
Intra-assay: CV < 9%
Inter-assay: CV < 10%

4. TGFβ TGF beta-1 Multispecies Matched Antibody Pair, CHC1683 ThermoFisher Scientific, USA 62.5–4000 pg/ml
Intra-assay: CV < 6%
Inter-assay: CV < 5%

5. RAT MCP-1 Rat MCP-1 (CCL-2) Mini ABTS ELISA Development Kit
900-M59

Peprotech, USA 16–2000 pg/ml
Intra-assay: CV < 9%
Inter-assay: CV < 10%

6. RAT RANTES Rat RANTES (CCL5) Mini ABTS ELISA Development Kit
900-M72

Peprotech, USA 16–2000 pg/ml
Intra-assay: CV < 9%
Inter-assay: CV < 10%

7. RAT IP-10 Rat IP-10 (CXCL10) Mini ABTS ELISA Development Kit
900-M449

Peprotech, USA 16–1000 pg/ml
Intra-assay: CV < 9%
Inter-assay: CV < 10%
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Discussion

This is the first paper that provides a description of selected
cytokines, chemokines, and oxidative stress marker contents
in the pancreas of juvenile and maturating SHRs and WKYs.
The results show that the pancreatic levels of cytokines and/or
chemokines did not differ in juvenile animals of both rat
strains but they are significantly reduced in maturating
SHRs. The pancreatic levels of MDA were significantly re-
duced in juvenile SHRs and significantly elevated in maturat-
ing SHRs while the content of sulfhydryl groups did not differ
in both rat strains at any age studied. These results suggest that
in the pancreas of maturating SHRs, the inflammation process
is strongly suppressed while in parallel, a slow oxidative dam-
age develops. However, it should be kept in mind that abnor-
malities observed in the present study are rather before or just
at the very beginning of establishing pathological changes as
various degenerative alterations in the pancreatic tissues due
to spontaneous pancreatitis became evident in SHRs at the age
of 12 weeks and they become more prominent or severe in
older animals [54].

Pancreatic cytokines

The present results demonstrate that the pancreatic levels
of various cytokines were quite similar in 5-week-old

SHRs when compared to age-matched WKYs. With age
in both rat strains, these levels usually undergo significant
reductions which were especially strong in SHRs. In effect,
the contents of IL-6, TNF-α, and TGF-β were significantly
lower in 10-week-old SHRs when compared to age-
matched WKYs. These results are very interesting and
quite surprising as they significantly differ from the results
reporting the pattern of cytokine content in the serum and
spleen in our previous study [36]. For example, in the se-
rum and spleen, the levels of IL-1β, IL-6, and TNF-α were
significantly elevated in 5-week-old SHRs when compared
to age-matched WKYs whereas in 10-week-old of both rat
strains, these levels were similar [36]. It is difficult to ex-
plain the reason for these differences because in the avail-
able literature, data on this topic is lacking. However, one
of the possible explanations is the fact that the inflamma-
tion may show unique features in different body organs
that was previously observed in the heart tissue of aged
rats following severe acute pancreatitis [2]. The results of
the present study demonstrate also that the pancreatic
levels of IL-1β, IL-6, and TNF-α were significantly higher
in 5-week-old SHRs and WKYs when compared to their
10-week-old counterparts. Thus, these results coincide
well with the studies of Kiely et al. [35] who suggested
that the enhanced level of various pro-inflammatory cyto-
kines during β cell growth is probably required for their
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Fig. 1 The level of IL-1ß (a), IL-6 (b), TNF-α (c), and TGF-β (d) in the
pancreas of SHR (n = 6) and WKY rats (n = 6). The following statistical
levels were applied: p < 0.05 indicates differences between the juvenile

and mature rats of the same strain; **, *** indicate differences (p < 0.01;
p < 0.001) between the SHR and WKY rats
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protection and survival. There is also evidence from stud-
ies in humans that there is continuous increase of β cell
mass from neonates through children to reach a stable level
in adolescents [65]. The present results show also that the
levels of IL-6 and TNF-α were significantly reduced in 10-
week-old SHRs when compared to age-matched WKYs.
Although, data on the pancreatic levels of IL-6 and
TNF-α in maturating SHRs is lacking, we can assume that
the reduction in these pro-inflammatory cytokine content
may be at least partially associated with an elevated serum
and/or adrenal contents of progesterone (P4) and glucocor-
ticoids (GC) observed in these animals [36–37]. Such sup-
position may be supported by well-known facts that P4 and
GC might inhibit secretion of IL-6 and TNF-α [16, 24, 68].
Moreover, there is a strong dependence between TNF-α
and GC causing that this cytokine might reduce 11β-
hydroxysteroid dehydrogenase types 2 activity and in this
way increase GC access to their receptors to modulate the
inflammatory response [29]. The pattern of TGF-β content
in the present study was quite different from that of IL-6
and TNF-α. For example, the level of this cytokine was
significantly higher in maturating WKYs than in juvenile
WKYs. The reason for this increase is not fully under-
stood. However, there is evidence that higher level of

TGF-β promotes Foxp3 expressing Treg cells which are
critical in maintaining self-tolerance and immune homeo-
stasis [69, 78]. Thus, it is plausible that in this way 10-
week-old WKYs developed immune tolerance [48, 77].
On the other hand, the levels of TGF-β in SHRs did not
change with age and in effect being significantly lower in
10-week-old SHRs than in 10-week-old WKYs.
Significantly reduced content of TGF-β in maturating
SHRs was also observed in the spleen [36]. Interestingly,
low levels of TGF-β together with IL-6 and IL-21 promote
IL-23 receptor expression and in this way stimulate Th17
cell differentiation (by inducing RORγt expression) [78].
As Th17 cells play an important role in variety of human
autoimmune diseases, it is plausible that lowered TGF-β
content in maturating SHRs may be a mark of reduced
immune tolerance in these animals [31, 78].

Pancreatic chemokines

The present results demonstrate that the pancreatic levels of
RANTES, MCP-1, and IP-10 were significantly higher in
the 5-week-old SHRs and WKYs than in their maturating
counterparts. Furthermore, the levels of MCP-1 and IP-10
did not differ in 5-week-old animals and were significantly
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Fig. 2 The level of RANTES (a), MCP-1 (b), and IP-10 (c) in the
pancreas of SHR (n = 6) and WKY rats (n = 6). The following
statistical levels were applied: p < 0.05 indicates differences between

the juvenile and mature rats of the same strain; *, *** indicate
differences (p < 0.05; p < 0.001) between the SHR and WKY rats
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reduced in 10-week-old SHRs whereas the level of
RANTES was significantly reduced in SHRs at any age
studied. Thus, the pattern of pancreatic chemokine contents
mimics that of pancreatic cytokine contents and is very
different from the pattern of chemokine contents in the
serum and spleen [36]. It should be pointed out that there
is a lack of data concerning the pancreatic levels of
RANTES, MCP-1, and IP-10 in the juvenile and/or matu-
rating SHRs. As of yet, it was only reported that some
chemokines might (similarly to cytokines) promote pancre-
atic β cell protection and survival during their development
which could explain elevated levels of these proteins in
juvenile animals [14]. Moreover, low levels of MCP-1
due to suppression by elevated amounts of P4 and GC were
previously observed by several authors [34, 50, 76] what
coincide well with lowered chemokine contents in 10-
week-old SHRs (present study). Based on the present data,
it can be assumed that the low levels of selected
chemokines (and pro-inflammatory cytokines) found in
the 10-week-old SHRs are not accidental and may play an
important role in the attenuation of inflammatory process
[42]. However, it should be kept in mind that cytokines
and/or chemokines are required during proper pancreas de-
velopment and in normal pancreatic tissue maintenance.
For example, as it was already mentioned, they might

promote pancreatic β cell protection and survival during
development [14, 35]. These proteins also direct ductal-
to-endocrine cell differentiation, with implications for β
cell regeneration (via STAT3-dependent NGN3 activation)
[74]. In the mature pancreas, cytokines such as IL-1β, IL-6,
TNF-α, and TGF-β seem to be involved in the regulation
of pancreatic chemokine, insulin, and/or glucagon secre-
tion [4, 8, 41, 64] while chemokine MCP-1 which is con-
stitutively present in pancreatic islet cells might play a
role as a chemotactic factor [56]. The role of cytokines/
chemokines in the pancreatic homeostasis may demon-
strate among others studies on p38 mitogen-activated pro-
tein kinase which upregulates various cytokines and
chemokines including IL-6, TNF-α, and MCP-1 [6] and
at the same time suppresses chronic pancreatitis [77].

Pancreatic oxidative stress markers

The present results revealed that the pancreatic levels of
MDA were significantly lower in 5-week-old SHRs when
compared to age-matched WKYs whereas in 10-week-old
animals, these levels were significantly higher in SHRs
than WKYs. The concentrations of –SH did not differ be-
tween SHRs and WKYs at any of the age studied. Thus, the
pancreatic pattern of oxidative stress markers differs sig-
nificantly from that in the spleen [36]. For example, in the
pancreas, the level of MDA was significantly higher in
juvenile than in maturating WKYs while in the spleen,
the levels of MDA did not differ between juvenile and
maturating rats of the same strain [36]. It is possible that
in the pancreas of WKYs, the elevated level of TGF-β
might modulate lipid peroxidation levels. Such mechanism
was reported in rabbits in which during oral mucosal
wound healing and after TGF-β administration, the nitric
oxide and MDA levels increased on the third day to de-
crease on day 5 after wounding [15]. However, this as-
sumption needs to be verified experimentally, since in the
available literature, there is a lack of data addressing this
topic in detail. The present results revealed also that the
pancreatic level of MDA was significantly reduced in 5-
week-old SHRs when compared to 5-week-old WKYs and
10-week-old SHRs. This result is also in contrast with our
previous findings in the spleen where the level of MDA
was significantly higher in the juvenile SHRs when com-
pared to age-matched WKYs and 10-week-old rats of both
strains [36]. We suppose that difference between pancreatic
and splenic level of MDA may be a consequence of differ-
ent oxidative stress levels which is organ specific [32]. In
addition, strongly reduced pancreatic level of MDA in 5-
week-old SHRs might be associated with internal mecha-
nisms that protect the pancreas from oxidative damage.
Such protection seems to be especially important in
SHRs because in young and adult SHRs, the β cell

-SH

0.0

0.5

1.0

WKY

SHR

5-week-old 10-week-old

      *

(P<0.03)

[
p

m
o

l
/
m

g
]

[
p

m
o

l
/
m

g
]

MDA

0

1

2

3

4

5

WKY

SHR

5-week-old 10-week-old

      *

(P<0.03)       ***

(P<0.0007)

       ***

(P<0.0004)

(P<0.0002)

(P<0.001)

a

b
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and WKY rats (n = 6). The following statistical levels were applied: p <
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WKY rats
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component of pancreatic islets is reduced when compared
to normotensive Wistar rats [58]. Moreover, the pancreas
(especially pancreatic β cells) is sensitive to oxidative
stress and pancreatic β cells had lower levels of antioxida-
tive enzymes when compared to the liver [67, 70]. In turn,
strong elevation of pancreatic MDA level in 10-week-old
SHRs, observed in the present study, could be associated
with progressive oxidative damage of this organ which
may lead finally to pancreatitis [40, 51]. This assumption
is supported by the results in adult SHRs in which sponta-
neous pancreatitis was found [54]. Moreover, it was report-
ed that low expression of the mitochondrial superoxide
dismutase (SOD) results in higher concentration of MDA
in the SHR brain [11]. Thus, similar situation in the pan-
creas cannot be ruled out. It is generally accepted that the
SOD is the first line of defense against superoxide anion
radical (O2¯*) because it catalyzes dismutation of O2¯* to
hydrogen peroxide [3]. It is plausible that an increase of
O2¯* in SHRs is connected with depletion of the SOD
which could lead to peroxidation of lipids and in conse-
quence to the higher level of MDA likewise [12].
However, further studies are necessary. It is worth men-
tioning here that although elevated levels of MDA in ma-
ture SHRs indicate an ongoing oxidative damage of the
pancreas, this aldehyde is only the main product of lipid
peroxidation [51] and data on other oxidative mechanisms
in this organ is still lacking. Protein oxidation, i.e., methi-
onine residue oxidation, tyrosine, or tryptophan residue
oxidation could also shed some light in the future on the
pancreatic pathology in mature SHRs. The present results
indicated also that the pancreatic contents of sulfhydryl
groups did not differ in both rat strains at any age studied.
This phenomenon may be explained by the fact that –SH
group is closely related with the level of glutathione (GSH)
which in cells is the basic antioxidative substance [19].
GSH can react with sulfenic acid and reduce to –SH group
[43] which is formed from this group during oxidative
stress [46]. Interestingly, TNF-α is one of the most impor-
tant agents to activate synthesis of GSH [59], and in the
present study, the level of TNF-α in maturating SHRs is
reduced. On the other hand, low concentration of –SH
group observed in the present study might also be due to
the high level of GC [36], which causes depletion of GSH
and activity decrease of γ-glutamylcysteine synthetase
what was earlier observed in the alveolar epithelial cells
after dexamethasone (synthetic GC) administration [59].

The present results provide evidence that in maturating
SHRs, the pancreatic levels of cytokines and chemokines
are significantly reduced, while malondialdehyde signifi-
cantly elevated. This suggests that in the pancreas of mature
SHRs, the inflammation process is suppressed but there is
ongoing oxidative damage. This may also suggest that in
mature SHRs, inflammation is rather inversely correlated

with oxidative stress. Generally less inflammation should
be correlated to less oxidative stress and such phenomenon
is clearly visible in mature WKYs. However, SHRs during
lifetime develop ADHD [63] and hypertension [57], and
they have significantly altered serum [37] and adrenal
[36] concentrations of various steroid hormones which
have direct influence on cytokine/chemokine synthesis
and oxidative stress. For example, it is widely accepted that
P4 and GC might downregulate a great number of cytokines
such as IL-1β, IL-6, IL-8, IL-12, IL-18, and TNF-α as well
as chemokines, such as RANTES and MCP-1 [16, 18,
20–22, 24, 60, 68, 73]. On the other hand, GC might in-
crease oxidative stress [1]. Thus, steroid hormone upreg-
ulation in mature SHRs seems to be enough potent factor
to downregulate cytokine/chemokine synthesis on the one
hand and to increase oxidative stress on the other. Another
potent factor which may have huge impact on oxidative
stress in mature SHRs is hypertension. For example, re-
cent evidence clearly demonstrated that sustained hyper-
tension increases pancreatic oxidative stress which might
lead to the pancreas damage in the hypertensive rats [23].
It is worth mentioning that an anti-inflammatory and pro-
tective mechanism in maturing SHRs through steroid hor-
mone upregulation coincides with studies in WBN/Kob
rats which are another animal model of chronic pancrea-
titis. For example, in male WBN/Kob rats, TNF-α and IL-
6 concentrations peak well before the peak of disease
severity what may suggest that both these proteins are
involved in the onset of pancreatitis [75]. However,
estrogen-treated males and non-treated females (with
healthy ovaries producing estrogens and/or P4) do not
develop pancreas damage suggesting that female sex hor-
mones may be quite efficient protecting mechanism [62].
Steroid hormone levels including P4 and GC are unfortu-
nately unknown in WBN/Kob rats and these animals do
not develop hypertension. In maturing male SHRs, P4 and
GC are highly elevated but estradiol is not [37], and these
rats develop hypertension [57]. Thus, it seems that in
SHRs, steroid hormone upregulation is sufficient to treat
inflammation but it may be insufficient to counteract pan-
creas damage.

In conclusion, the present study provides evidence that the
pancreatic levels of cytokines and/or chemokines are signifi-
cantly reduced, while MDA significantly elevated in the mat-
urating SHRs when compared to age-matched WKYs. This
suggests that in the pancreas of maturating SHRs, the inflam-
mation process is suppressed while in parallel, a slow oxida-
tive damage develops. Moreover, a comparison of the present
results with our previous studies [36–37] suggests that both
these processes in mature SHRs could be induced by highly
elevated levels of steroid hormones which are enough potent
to downregulate cytokine/chemokine synthesis and increase
oxidative stress.
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