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Abstract

Human-induced pluripotent stem cells (hiPSC) can be differentiated to cardiomyocytes at high efficiency and are increasingly
used to study cardiac disease in a human context. This review evaluated 38 studies on hypertrophic (HCM) and dilated
cardiomyopathy (DCM) of different genetic causes asking to which extent published data allow the definition of an in vitro
HCM/DCM hiPSC-CM phenotype. The data are put in context with the prevailing hypotheses on HCM/DCM dysfunction and
pathophysiology. Relatively consistent findings in HCM not reported in DCM were larger cell size (156 +85%, n =15), more
nuclear localization of nuclear factor of activated T cells (NFAT; 175+ 65%, n=3), and higher (3-myosin heavy chain gene
expression levels (500 + 547%, n = 8) than respective controls. Conversely, DCM lines showed consistently less force develop-
ment than controls (47 +£23%, n=9), while HCM forces scattered without clear trend. Both HCM and DCM lines often showed
sarcomere disorganization, higher NPPA/NPPB expression levels, and arrhythmic beating behaviour. The data have to be taken
with the caveat that reporting frequencies of the various parameters (e.g. cell size, NFAT expression) differ widely between HCM
and DCM lines, in which data scatter is large and that only 9/38 studies used isogenic controls. Taken together, the current data
provide interesting suggestions for disease-specific phenotypes in HCM/DCM hiPSC-CM but indicate that the field is still in its

carly days. Systematic, quantitative comparisons and robust, high content assays are warranted to advance the field.
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Introduction

The seminal discovery of means to reprogram human somatic
cells into embryonic stem cell-like induced pluripotent stem
cells (hiPSC; [89]) opened the possibility to generate patient-
and disease-specific hiPSC lines and study disease mecha-
nisms in an individualized and human context. An underlying
assumption is that human diseases can be studied in hiPSC-
derived differentiated cells cultured in vitro or, in other words,
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that such cells exhibit disease-specific phenotypes. Indeed,
soon after the discovery by Yamanaka and colleagues, the first
papers appeared that reported specific abnormalities in the
function of patient-derived hiPSC derivatives compared to
unrelated genetically normal controls. In the cardiac field,
the first examples were longer action potentials in hiPSC-
cardiomyocytes (hiPSC-CM) from patients with genetically
determined long QT syndrome 1 (LQT1 [68] or LQT2 [40])
and larger cells with a higher degree of sarcomeric organiza-
tion and preferential localization of NFATc4 in the nucleus in
hiPSC-CM from a patient with Leopard syndrome [11]. In the
meantime, most genetically determined cardiac diseases have
been studied in hiPSC-CM and generally revealed some phe-
notypic abnormalities that have been described before in na-
tive cardiomyocytes from patients with the respective disease.
However, it was soon realized that hiPSC-CM are relatively
immature cells (for review, see [105]) that exhibit large phe-
notypic heterogeneity, e.g. in terms of action potential width
and shape [68], cell size and sarcomeric organization. Reasons
include variability of the original somatic cells used for
reprogramming (e.g. skin cells with mosaic mutations or
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variable levels of epigenetic modifications [53], the
reprogramming procedure itself [46], differentiation protocols
with less than 100% efficiency, a varying level of maturity in
hiPSC-CM in culture as well as methodological issues such as
the difficulty to measure action potentials in small cells by
patch clamping [38]). The recent introduction of transcription
activator-like effector nuclease-mediated gene correction
(TALEN) or CRIPSR/Cas9-based methods for gene editing
has increased the level of trust in the conclusion that the ob-
served phenotypes were indeed the consequence of the
suspected gene mutation [4]. The reader is referred to several
excellent reviews on this subject (e.g. [8, 70, 107]).

Hypertrophic and dilated
cardiomyopathy—clinical phenotype
and pathophysiology

This review will concentrate on the question to which extent a
specific “cardiomyopathy phenotype” exists, which can be
studied in hiPSC-CM in the dish. It restricts itself to hypertro-
phic cardiomyopathy (HCM) and dilated cardiomyopathy
(DCM), because they are the two most common and clinically
relevant cardiomyopathies, often have a defined genetic
cause, have been most often studied in hiPSC-CM and present
with relatively clearly defined and partially opposing clinical
phenotypes (Table 1). The key morphological features of
HCM are thickened left ventricular (LV) walls in the absence
of apparent hemodynamic reason (e.g. aortic stenosis, severe
hypertension). Hypertrophy preferentially affects the interven-
tricular septum, whose thickness is commonly used as inclu-
sion criterion for patients in clinical studies. HCM is generally
associated with a normal or rather small LV cavity, preserved
LV systolic contractile function and early diastolic dysfunc-
tion [37, 66, 102]. Most patients develop various degrees of

LV obstruction [60]. Histomorphological signs of HCM are
myocardial disarray and increased fibrosis. DCM in contrast
is characterized by LV systolic dysfunction, dilation of LV
cavities and normal wall thickness. While HCM is the proto-
typic genetic cardiomyopathy (likely disease-causing muta-
tions can be found by cardiac gene panel, exome or whole
genome sequencing in approximately 32—-70% of cases [2,
16, 58, 78]), DCM is classified as a mixed cardiomyopathy,
which is familial in ~20-35% [25, 60], and a recent whole
exome sequencing identified mutations in only 12% of cases
[58]. The majority of DCM cases are caused by (mainly viral
or parasitic) infection, toxins such as alcohol or anti-tumour
agents and mitochondrial disorders.

While the partially opposing clinical pictures of HCM and
DCM allow a relatively straightforward clinical differentia-
tion, overlaps between the two types of cardiomyopathies ex-
ist. Both HCM and DCM exhibit increased serum levels of
brain natriuretic peptide and cardiac fibrosis, and HCM pa-
tients can develop severe systolic dysfunction requiring heart
transplantation. Both can lead to life-threatening ventricular
arrhythmias [60] and are accompanied by an increased rate of
atrial fibrillation [81, 106] and dilation of the left atrium [36].

Despite the discovery of numerous mutations in genes that
underlie HCM and DCM, our understanding of the
pathomechanisms leading from the mutation to the phenotype
remains incomplete. Reasons are not only the diversity of
mutations causing similar clinical pictures, particularly in
DCM, the incomplete and highly variable penetrance of both
HCM and DCM, but also the fact that mouse models only
partially recapitulate the human phenotype. For example, no
single mouse model in which a classical HCM mutation in the
gene coding for cardiac myosin-binding protein C (MYBPC3,
cMyBPC) or 3-myosin heavy chain (MYH7, 3-MHC) has
been introduced in the heterozygous state develop the patho-
gnomonic septal hypertrophy seen in patients (for review, see

Table 1 Clinical, morphological

and functional characteristics of HCM

DCM

patients with hypertrophic

(HCM) or dilated cardiomyopa- Symptoms and Arrhythmias and sudden cardiac death Dyspnoe (initially exercise-induced)
thy (DCM) biomarkers Atrial fibrillation Heart failure
Exercise-induced dyspnoe Arrhythmias and sudden cardiac death
Heart failure Atrial fibrillation
Increased serum BNP levels Increased serum BNP levels
Morphology LV hypertrophy + outflow tract obstruction LV chamber dilatation
Cardiac myocyte hypertrophy (width) Cardiac myocyte hypertrophy (length)
Myofiber/myocardial disarray
Fibrosis Fibrosis
Function Diastolic dysfunction (pre-hypertrophy stage) Systolic dysfunction

Hypercontractility (inconsistent)

Diastolic dysfunction

Systolic dysfunction (late stage)

Energy depletion (early stage)

Energy depletion (early stage)

Parameters distinguishing between HCM and DCM are marked in italics. Note overlap of many parameters
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[21]). Neither has LV obstruction been observed in any such
model. Either homozygous knockout or knockin of the respec-
tive gene is lethal (as in the case of a-MHC, the rodent pen-
dant of the dominant myosin isoform [28]) or the animals
develop severe LV dysfunction (as in the case of cMyBPC
[10, 27, 33, 61, 62, 64, 65, 98]). It is also apparent that the
mouse work still did not answer a number of fundamental
questions: (1) What is the exact physiological role of the sar-
comeric proteins most commonly affected in HCM such as
c¢cMyBPC and 3-MHC? (2) How do they cooperate to ensure
proper systolic and diastolic function? (3) What are the spe-
cific consequences of even relatively well-studied gene muta-
tions? (4) How do mutations in numerous sarcomeric and non-
sarcomeric genes with diverse function lead to the uniform
induction of “autonomous” cardiac hypertrophy and disarray
in HCM? These questions have been discussed in recent re-
views to which the reader is referred [21, 26, 59, 94]. In any
case, the experiences with mouse models thus raise the ques-
tion to which extent they really reflect the human disease and
provide an argument to study HCM and DCM in hiPSC-CM.

Another reason for our limited understanding of HCM/
DCM pathophysiology is that access to isolated heart tissue
and cells from patients with HCM and DCM is sparse, and only
very few studies specifically reported on the in vitro phenotype
of these diseases (for review, see [22]). The most commonly
used sources for human tissues are septum biopsies acquired
during surgical correction of LV outflow tract obstruction by
myectomy in the case of HCM and LV tissues obtained during
implantation of LV assist devices or heart transplantation in
case of DCM. Both tissue sources represent a late stage of the
disease, raising the question to which extent the abnormalities
observed in comparison to (even rarer) non-failing heart tissue
comparators reflect primary defects or secondary compensa-
tions or consequences. The highly fibrotic texture of the termi-
nally diseased tissue imposes a further challenge to such studies
as enzymatic isolation of cardiomyocytes requires harsher con-
ditions, introducing a systematic error.

Prevailing in vitro phenotypes of HCM
and DCM

Despite the limitations discussed above, some observations
prevail and have led to hypotheses that can be tested in
hiPSC-CM.

Abnormal myofilament calcium sensitivity The relation be-
tween intracellular Ca®* concentrations and force development
of the myofilaments is a highly regulated biological constant
with half-maximal force development (of skinned myofibers)
at a pCa of ~5.8 (~ 1.6 uM). Numerous studies reported in-
creased Ca>* sensitivity on HCM [3, 13, 19, 23, 67, 95, 96] and
decreased in DCM [19, 20, 56]. The shift in the pCa/force

relation leads to more force development at lower Ca®* con-
centrations in case of HCM and less force development in
DCM. Importantly, the increased Ca®* sensitivity in HCM also
predicts delayed relaxation in the descending part of the intra-
cellular Ca®* transient. Both consequences are well compatible
with the predominant clinical phenotypes of preserved systolic
function and diastolic dysfunction in HCM and systolic dys-
function in DCM. Increased Ca®* sensitivity in HCM would
even predict LV hypercontractility at rest, and indeed, a study
in 36 mutation carriers found significantly increased LV ejec-
tion fraction by echocardiography compared to 36 healthy con-
trols [36]. This observation forms the basis of novel therapeutic
concepts to reduce myosin activity by small molecules to treat
HCM [30]. However, it is also clear that increased Ca®* sensi-
tivity in HCM is not a universal finding. Several studies report-
ed HCM mutations to be associated with either no change [33,
101] or decreased Ca”* sensitivity [88] in various experimental
systems, suggesting mutation-specific differences. Of note,
even the knockout of a protein such as cMyBPC [13, 33, 48]
has been associated with different effects on myofilament Ca**
sensitivity. The latter emphasizes the importance of the respec-
tive experimental context and supports the notion that altered
myofilament Ca®* sensitivity cannot be the sole unifying mech-
anism underlying HCM or DCM.

Abnormal actin-myosin sliding velocity Another parameter of
sarcomere function is the unloaded sliding velocity of thin
filaments on immobilized S1-myosin. Several studies indicate
that HCM mutations are associated with increased sliding ve-
locity [44, 45, 88] and DCM with decreased sliding velocity
[1, 79], and for a review, see [24].

Altered maximal force development Interestingly, both HCM
and DCM mutations were found to generally associate with
decreased maximal force development [95, 101], but normal
or even higher force output and increased force redevelopment
have also been reported [48, 92, 102].

Increased Ca®*-independent cross-bridge cycling in HCM
Mutations (or full deletion) of MYBPC3 or cardiac troponin
T (TNNT2, TnT) have been associated with a shallow pCa-
force relationship (lower Hill coefficient) and residual force
development at very low or nominal absence of Ca®* [3, 56,
75]. In the case of cMyBPC, the effect may be explained by
mutations (or its absence) disturbing its normal role in stabi-
lizing the super-relaxed, inactive state (SRX) of myosin heads
[63]. The concept implies that one of the abnormalities in
HCM is incomplete arrest of crossbridge cycling in diastole,
which could participate in diastolic dysfunction and increased
energy expenditure.

Decreased energetic efficiency Many HCM mutations lead to
decreased energetic efficiency of crossbridge cycling, i.e.
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inefficient usage of ATP to fuel contraction [14, 45, 67, 102].
The phenomenon in a general sense indicates less-than-
normal functioning of the sarcomeres harbouring mutated sar-
comere proteins and may relate to the partial loss of the my-
osin SRX state in the case of cMyBPC. In any case, it may
well contribute to the decreased phosphocreatine/ATP ratio
observed in patients with HCM even in the prehypertrophic
state [17]. Energy starvation is not specific to HCM. In fact, it
has been shown already in 1992 as a common feature of pa-
tients with heart failure due to non-ischemic DCM [71].
However, it is possible that the more diverse causes of DCM
include both decreased energetic efficiency of the myofila-
ments with higher energy expenditure and decreased efficien-
cy of mitochondrial energy generation like in Barth syndrome
[39].

Allelic imbalance of B-MHC as a cause of myocardial disarray
Early work (in skeletal muscle fibres from 3-MHC-
expressing soleus muscle) showed a high variability of myo-
filament Ca”* sensitivity between individual muscle fibres
[47]. This observation was later related to marked cell-to-cell
differences in the expression of the mutated 3-MHC in
cardiomyocytes and marked differences in individual Ca®*
sensitivity [49]. The interesting phenomenon could well con-
tribute to another hallmark of HCM, myocardial disarray, by
individual cardiomyocyte developing different degrees of
contractile force. It is not clear whether allelic imbalance is
restricted to 3-MHC mutations.

HCM and DCM phenotypes
in hiPSC-cardiomyocytes

By searching PubMed (keywords: 4iPSC cardiomyocytes and
hypertrophic cardiomyopathy or dilated cardiomyopathy), we
identified 38 original papers reporting phenotypes of hiPSC-
CM either derived from hiPSC lines of patients with HCM/
DCM (or related syndromes) or from hiPSC lines in which a
HCM or DCM mutation had been genetically introduced
(Tables 2 and 3). Initial studies compared the phenotype of
disease-related hiPSC-CM to unrelated genetically healthy
controls; more recent studies used TALEN or CRISPR/Cas9
gene editing approaches to correct a mutation in a patient-
specific line or introduce it into a wild-type line, allowing
comparison under isogenic conditions. While most studies
validated the absence of off-target effects only at the predicted
top-10 sites, one TALEN-based study performed whole ex-
ome sequencing and reported in two corrected clones 318 and
1331 de-novo indel mutations, respectively, close to possible
off-target sites. The significance of this finding is unclear.
The initial analysis of the papers concentrated on abnor-
malities in contractile function, based on the hypothesis for-
mulated by Davis and Molkentin that differences between
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HCM, DCM and wild type (WT) should primarily result in a
different tension-time integral of the contraction peak, i.e. the
area under the curve of an averaged contraction peak [19]. The
hypothesis corroborates the idea that HCM mutations lead to
increased, DCM mutations to decreased myofilament Ca®*
sensitivity. As elegantly shown in mouse models with differ-
ent cardiac troponin C mutations (and in examples of hiPSC-
CM), this should lead to higher peak force and prolonged
relaxation (T2) in case of HCM and lower peak force and an
abbreviated contraction peak (both contraction [T1] and relax-
ation time [T2]). Unfortunately, contraction kinetics were only
studied in a small minority of cases (Tables 2 and 3). Only two
studies of a DCM mutation (heterozygous phospholamban
(PLN) R14del and truncating titin (77N) mutation) showed a
representative contraction peak, which indicated prolonged
relaxation in one case [43] and lower T1 and T2 in the other
[35]. Statistics were not provided. Two papers on HCM mu-
tations (TNNT2, MYH?7) reported statistically evaluated data
on T1 and T2, showing no alteration or the expected increase
in time of relaxation [69, 100]. Thus, clearly, more work has to
be done to decide whether or not HCM/DCM mutations have
a systematic effect on contractile kinetics in hiPSC-CM.

Many studies reported peak force, size of intracellular Ca®*
transients, sarcomere structure and gene expression (Tables 2
and 3, Fig. 1). Interestingly, while almost all studies on HCM
lines reported cell sizes in 2D culture, only two did in case of
DCM lines (Fig. 1). Similar differences in reporting frequency
were observed with regard to multinucleation, nuclear NFAT,
contraction kinetics (only HCM), ANP/BNP (NPPA/NPPB)
and rhythmicity (more in HCM) or Ca”* transient kinetics
(only DCM). Reasons are unknown, but a reporting bias ap-
pears likely.

Figure 1 summarizes the data from all studies in which
functional data were reported in a quantitative manner and
presents them compared to the respective controls (log scale;
n=16 HCM, 14 DCM). Three abnormalities appeared to be
relatively consistent in both HCM and DCM—sarcomeric
disarray (274 +81%, n=6 HCM; 298 + 146%, n =8 DCM),
increased NPPA or NPPB gene expression (284 £249%, n=
11 HCM; 500%, n=2) and arrhythmic behaviour (327 +
164%, n=12 HCM; 350%, n =2 DCM). HCM lines showed
an increase in cell size (156 +85%, n=15; DCM +/-), in
MYH?7 gene expression (or the ratio of MYH7/MYH6 (500 +
547%, n=8; DCM +/— or reduction) and nuclear accumula-
tion of the transcription factor NFAT (175 + 65%, n=3; DCM
not determined). The most consistent abnormality in DCM
lines was lower peak force development compared to the re-
spective control (47 +23%, n =9; HCM +/— with variability).

Besides the reported disease-associated abnormalities in
function, structure or gene expression, it is apparent that ab-
solute values varied largely. For example, reported cell surface
area in 2D ranged from 100 um? [86] to >2000 [57, 76], with
reported cell volumes from 5.8 [100] to 120 pum?® [69]. Both
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Table 4  Suggestions for a basal set of parameters to be analyzed and reported in hiPSC-CM studies

Parameter Comment

Karyotype Karyotype problems are frequent and increase with passage number. Karyotype checks in iPSC should
be done < 5-10 passages before analysis.

Cardiomyocyte yield The percent of TnT- or actinin-positive cells (e.g. by FACS) per batch evaluated should be presented
as mean + SD.

Number of batches The number of cells/derivatives (n = x) and the number of differentiation runs the cells were derived

Blinding procedures
Age of cardiomyocytes
Expression of disease gene alleles

Gene expression
Indicators of cardiomyocyte maturity

Cell size

Force and force kinetics

from (N=y) in a given experiment need to be reported.

Given the variability of cells and readouts, procedures should be established and described that allow
investigator-blinded assessments.

Many parameters change over time of culture in 2D or 3D, therefore the age of cells at time of analysis
should be presented (mean + SD).

In case of defined mutations, the relative expression of mutant and wild-type alleles should be determined
to get an idea of mechanism.

Transcript levels should be reported as a set of standard genes, not only selected examples.

Absolute transcript levels of o-/3-MHC (+their ratio) in comparison with human heart levels give a
good initial indication of maturity.

High n-numbers and information on cell density are mandatory. Volume data (e.g. FACS) may be more
informative and precise than surface measurements in 2D.

Given the strong dependence of force and force kinetics on beating rate, temperature and pH, these
parameters need to be controlled (e.g. by electrical pacing) and reported.

240 ms [5] to 710 ms [43]. Again, it is likely that not only
biological differences between hiPSC lines and influences of
cell culture conditions and CM maturity but also technical is-
sues explain the large variation. We have shown recently that
the sharp microelectrode technique provides more reliable ac-
tion potential data than patch clamping of single cells [38]. In
this study, patch clamp-recorded APD90 in isolated hiPSC-CM
amounted only to 119+ 17 ms (human atrial cardiomyocytes
220 ms, human LV cardiomyocytes 434 ms), while those in
intact hiPSC-CM or 3D engineered heart tissue were 271 ms
(human right atrial tissue 317 ms, LV tissue 334 ms).

Conclusion

The present overview on published reports on the phenotype
of HCM/DCM-derived hiPSC-CM allows some preliminary
conclusions. (1) The most consistent and to a certain degree
differentiating phenotype of hiPSC-CM appears to be de-
creased force production in DCM, correlating well with the
dominant clinical presentation of the disease. (2) HCM lines
appear not to exhibit consistent alterations in force develop-
ment but show increased CM size, nuclear NFAT and in-
creased MYH7 or MYH7/MYHG6 ratio. Given the paucity of
measurements of these parameters in DCM, it is not possible
at present to decide whether these parameters allow a distinc-
tion between HCM/DCM phenotypes. (3) Sarcomere disorga-
nization is a common finding in all disease lines and does not
appear to allow differentiation between the clinically opposing
phenotypes. (4) Overall, the analysis indicates that hiPSC-

based disease modelling of cardiomyopathies is still in its
early days. Suggestions for a basal set of parameters to be
analysed in future studies are given in Table 4. More statistical
rigor and robust high content methods are necessary to uncov-
er potentially meaningful but discrete abnormalities of cardiac
function in these cells. In this respect, it is interesting to note
that only one study evaluated myofilament Ca>* sensitivity in
skinned fibres [74], yet myofilament Ca®* sensitivity is one of
the most commonly studied parameters in HCM/DCM-related
human or animal specimens.
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