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Abstract
Muscle changes of critical illness are attributed to systemic inflammatory responses and disuse atrophy. GTS-21 (3-(2,4-dimethoxy-
benzylidene)anabaseine), also known as DMBX-A) is a synthetic derivative of the natural product anabaseine that acts as an agonist
at α7-acetylcholine receptors (α7nAChRs). Hypothesis tested was that modulation of inflammation by agonist GTS-21 (10 mg/kg
b.i.d. intraperitoneally) will attenuate body weight (BW) and muscle changes. Systemic sham inflammation was produced in 125
rats by Cornyebacterium parvum (C.p.) or saline injection on days 0/4/8. Seventy-four rats had one immobilized-limb producing
disuse atrophy. GTS-21 effects on BW, tibialis muscle mass (TMM), and function were assessed on day 12. Systemically, methe-
moglobin levels increased 26-fold with C.p. (p < 0.001) and decreased significantly (p < 0.033) with GTS-21. Control BWincreased
(+ 30 ± 9 g,mean ± SD) at day 12, but decreasedwith C.p. and superimposed disuse (p = 0.005). GTS-21 attenuated BW loss in C.p.
(p = 0.005). Compared to controls, TMMdecreased with C.p. (0.43 ± 0.06 g to 0.26 ± 0.03 g) andwith superimposed disuse (0.18 ±
0.04 g); GTS-21 ameliorated TMM loss to 0.32 ± 0.04 (no disuse, p = 0.028) and to 0.22 ± 0.03 (with disuse, p = 0.004). Tetanic
tensions decreased with C.p. or disuse and GTS-21 attenuated tension decrease in animals with disuse (p = 0.006) and in animals
with C.p. and disuse (p = 0.029). C.p.-induced 11-fold increased muscle α7nAChR expression was decreased by > 60% with GTS-
21 treatment. In conclusion, GTS-21 modulates systemic inflammation, evidenced by both decreased methemoglobin levels and
decrease of α7nAChR expression, and mitigates inflammation-mediated loss of BW, TMM, fiber size, and function.
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Introduction

Critical illness, particularly when associated with immobiliza-
tion in bed or decreased mobility, leads to muscle wasting and
muscle weakness (MW) [9, 12, 13, 42, 57] occurring in 32–

100% of hospital patients [37, 39, 58]. This pathological entity
has varying names including critical illness polyneuropathy, crit-
ical illness myopathy, and/or critical illness polyneuromyopathy
[58, 64]. The short-term complications of MW include depen-
dence on respirators with a higher risk for ventilator-associated
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pneumonia, deep vein thrombosis, with pulmonary embolism
and/or decubitus ulcers. The inflammation-associated MW can
be further compounded by disuse atrophy because of immobili-
zation in bed, application of bandages and plaster casts, and/or
decreased motor activity due to illness [22, 23]. The functional
neuromuscular disability after critical illness can persist even at
5 years after the initial insult [20, 21, 53]. Current therapeutic
maneuvers used for prevention of MW, including better nutri-
tion, physical therapy, and anabolic drug therapy (oxandralone,
insulin, metformin, etc.), do not completely reverse the muscle
changes and disability during and after their hospitalization [4,
49]. Despite all or some of these interventions,MWcontinues to
occur in critical illness. Early mobilization within 72 h seems to
be the only effective intervention so far [55, 56]. Early mobili-
zation, however, is not possible in all critically ill patients be-
cause of factors related to the disease itself.

A concomitant pathologic feature of critical illness is the
presence of systemic inflammatory responses with cytokine
release leading to increased protein breakdown and decreased
protein synthesis [9, 38, 65, 66]. A pathognomic biochemical
feature inMW conditions is the presence of a denervation-like
state, evidenced by the upregulation of the fetal (a.k.a. imma-
ture) nicotinic acetylcholine receptors (nAChRs) isoform on
the muscle membrane [45].

Most recently, the de novo expression of another isoform,
the α7-acetylcholine receptors (α7nAChR) (consisting of five
homomeric α7 subunits only) has been described in muscle
wasting conditions [32, 41, 43, 60]. The expression of
α7nAChRs in normal mature muscle is minimal. In contrast
to muscle expression of α7nAChRs only in pathologic states,
the α7nAChRs are constitutively expressed in macrophages
and other circulating leucocytes [25, 40, 44, 62]. During in-
flammation, however, these α7nAChRs are further upregulat-
ed in vitro in macrophages [30] and in vivo in burned patients
[51]. Several studies have documented anti-inflammatory
properties when α7nAChRs are stimulated by agonists.
Exogenous nicotine and endogenous acetylcholine or choline
have been the prototypical α7nAChRs agonists, but all of
them have non-specific effects on other receptors too. The
systemic administration of GTS-21, a highly selective
α7nAChR agonist [28, 61], in vivo decreased cytokine release
and/or inflammation [26] and resulted in improved function in
inflamed pathologic organs (e.g., lungs [35]) or survival [30,
31]. GTS-21 (which is the laboratory name of 3-(2,4-
dimethoxy-benzylidene)anabaseine) also known as DMBX-
A is a synthetic derivative of the natural toxin anabaseine
produced by nemertines [27]. It binds to both the α4β2 and
α7 subtypes, but activates only the α7 to any significant ex-
tent [2, 48]. It has been clinically tested to decrease systemic
inflammatory responses in a phase II clinical trial [34], as well
as in schizophrenic, Alzheimer’s disease and attention-deficit
hyperactivity disorder subjects [11, 29, 33, 50]. Disuse atro-
phy per se leads to inflammation and de novo expression of

α7nAChRs in the wasting muscles, despite absence of sys-
temic inflammation [32, 41]. The ability of the α7nAChR
agonist GTS-21 to mitigate bacteria-induced systemic inflam-
matory responses and the skeletal muscle changes associated
with it have not yet been tested.

We have previously described a model of systemic inflam-
mation or disuse alone, and their combination (double-hit
model) in rats mimicking critical illness induced muscle dis-
use atrophy [9, 12, 57]. In this model, systemic inflammation
was produced by injection ofCorynebacterium parvum (C.p.)
[1, 8, 10, 46] and disuse of one leg was produced by pinning
[9, 12, 57]. The advantages of this model are (1) systemic
inflammation can be maintained over a longer time period
[1, 63] without inducing sepsis with a much higher mortality
like other models (e.g., endotoxemia or caecal ligation) [3, 52]
and (2) the nerve-muscle composition stays intact in compar-
ison to denervation models mimicking an intensive care pa-
tient much better. The inflammation produced by C.p. was
evidenced by increased methemoglobin (MetHb) levels (a
surrogate for increased nitric oxide-levels), as well as in-
creased α1-acid glycoprotein levels (an acute phase reactant
protein) and decreased platelet and erythrocyte counts [9, 63].
Thus, there is a priori evidence that systemic inflammation
and/or muscle wasting (disuse, sepsis and denervation) upreg-
ulate α7nAChRs both in muscle and leucocytes [30, 32, 41,
59]. Based on this evidence, the hypothesis tested in this study
was that these upregulated α7nAChRs could be used to de-
crease systemic and local muscle inflammation and therefore
reverse the systemic inflammation- and/or disuse-induced
muscle changes in the previously described rat model [9, 57].

Materials and methods

Animal model and study design

After approval by the institutional review board (Subcommittee
on Research Animal Care, Committee on Research,
Massachusetts General Hospital, #2010N000168), 125 male
Sprague-Dawley rats (Taconic Farms Inc., Germantown, NY,
USA, 151–175 g) were acclimated to the standard conditions of
our animal facility with free access to chow and water for
≥7 days. The previously described model, consisting of four
groups, was used [9]: (1) sham-immobilization with saline
(sham-inflammation), (2) immobilization with saline, (3)
sham-immobilization with C.p. (inflammation), and (4) immo-
bilization with C.p.. Systemic inflammation was induced by
intravenous injection of 56 mg/kg whole cell preparation of
heat-inactivated C.p. (Roche, Penzberg, Germany) via dorsalis
penis vein during anesthesia at days 0, 4, and 8 as described
previously [1, 8–10, 46, 57]. We use methemoglobin measure-
ments as surrogate marker for the severity of inflammation,
since methemoglobin correlates with the upregulated nitric
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oxide concentration and acute phase proteins [1, 9, 10, 57, 63].
Substitute animals (n = 17) had to be added to the inflammation
groups because of higher mortality (Fig. 1). Injection of 0.9%
normal saline solution (sham-inflammation) served as control.

To induce disuse atrophy of one hind limb was
immobilized for a period of 12 days by pinning of knee and
ankle joints at 90° using 1.0-mm Kirschner wires (immobili-
zation). After a skin incision at each joint, the calcaneus, tibia,
and femur were drilled and the joints were pinned with the
knee in flexion and ankle in dorsiflexion [9, 12, 57]. Sham-
immobilization was achieved by insertion of the Kirschner
wires into the bone, and the wire removed immediately there-
after (sham-immobilization). The contralateral leg of the
immobilized and sham-immobilized animals on which no sur-
gery was performed in saline groups were used to provide
naïve control values.

The four groups were further divided into two subgroups,
depending on the pharmacological therapy received: (A) sa-
line as placebo or (B) 10 mg/kg GTS-21, administered i.p.
twice a day. GTS-21 was provided by William Kem
(University of Florida, Gainesville, FL., chemical purity >
99%). GTS-21, due to its weak light sensitivity, was prepared
with sterile saline 0.9% in a dark room using only yellow light.
The preparation was adjusted to a pH of 7.35, stored in syrin-
ges in the darkroom, transported in a light protected container
to the animal room, and injected with lights switched off using
a small yellow lamp as illumination.

The combination of perturbations described above resulted
in the eight groups (Fig. 1). For the immobilization procedure
and injections of C.p./saline on days 0, 4, and 8, the animals
were anesthetized with isoflurane in a Plexiglas chamber.
After induction of anesthesia, the head of the animal was
placed in a chamber with a continuous flow of isoflurane
while the animal was breathing spontaneously. At day 12 after
the perturbations (induction of inflammation, immobilization
or sham procedures), the Kirschner wires were removed (from
the immobilized animals) and neuromuscular function studies
performed in all animals. For the neuromuscular functional
studies at day 12, anesthesia was induced with pentobarbital
i.p., and maintained with empirical doses of 10–20 mg/kg
given every 10–20 min based on withdrawal response to toe
clamping. After loss of consciousness, the rats were
tracheotomized and mechanically ventilated with air. The jug-
ular vein was cannulated as access for administration of fluids.
A cannula in the carotid artery was used to measure arterial
blood pressure and for blood for gas analyses.

Neuromuscular function test

Before the neuromuscular experiments, ventilation was ad-
justed to maintain a PaCO2 between 35 and 45 mmHg,
PaO2 of > 90 mmHg, and pH between 7.36 and 7.44.
Whenever necessary, base deficit was corrected with 1 mM

sodium bicarbonate to values between − 3 and 3 mM. Blood
glucose levels were controlled between 80 and 130 mg/dl.
Heart rate and mean arterial pressure were continuously mon-
itored to ensure stable hemodynamic conditions throughout
the experiment. Rectal temperature was controlled between
36.8 and 37.2 °C by adjusting the heat generated from the
experiment table and with a heat lamp, if needed. Nerve-
induced neuromuscular function was assessed by evoked
mechanomyography [9, 12, 57]. The functional measures in-
cluded single twitch tension and peak tetanic tension at 50 Hz
stimulation. Following these functional studies, the animals
were euthanized by exsanguination after high dose of pento-
barbital (200 mg/kg).

Ex vivo analyses

α7nAChR expression

The cranial tibialis muscle on each side was dissected out,
weighed, snap frozen in liquid nitrogen, and stored airtight
at − 80 °C for western blot analysis. For western blot of
α7nAChRs expression, each tibialis muscle was homoge-
nized in homogenization buffer (Sigma-Aldrich Chemie
GmbH, Munich, Germany) containing protease inhibitor
(Sigma) as described previously [41], using a tissue lyser
(TissueLyser LT, QIAGEN, Hilden, Germany). The samples
were centrifuged, and aliquots of the supernatant containing
equal amounts of protein (by Bradford Assay) were subjected
to TGX Stain-Free™ Gels (Bio-Rad Laboratories GmbH,
Munich, Germany), and then immunoblotting was performed
[30]. Equal amounts of protein (40 μg) per lane were subject-
ed to NuPAGE and then blotted onto PVDF membrane (Bio-
Rad Laboratories GmbH, Munich, Germany). The membrane
was blocked by Roti®-Block (Carl Roth GmbH + Co. KG,
Karlsruhe, Germany). Anti-α7AChR (dilution 1:2.500,
ab24644, Abcam, Cambridge, UK) was used as primary anti-
body. The membranes were incubated in horseradish
peroxidase-conjugated goat anti-rat secondary antibody
(NA935V, GE Healthcare, Amersham, UK) for 60 min (dilu-
tion 1:10.000). The specific proteins were detected by Bio-
Rad Molecular Imager® ChemiDoc™ XRS+ (Bio-Rad
Laboratories GmbH, Munich, Germany) and analyzed with
ImageLab (Bio-Rad Laboratories GmbH, Munich,
Germany) using total protein normalization using stain-free
technology [14–16, 54].

Immunohistochemistry

After dissection of TA, muscles were snap-frozen in melting
isopentane to prevent freeze artifacts. Fixed with OCT
(Surgipath FSC 22 Clear, Leica, Wetzlar, Germany) muscles
were cut using a cryotome (Kryostat HM 560-V, Thermo
Scientific GmbH, Schwerte, Germany) in 10μm andmounted
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on glass slides (Superfrost Plus, Thermo Scientific GmbH,
Schwerte Germany). Section were stored at − 80 °C until
staining. Before staining, sections were fixed for 5 min in
acetone-isopropanol 1:1 solution − 20°. Prior to staining, un-
specific antibody binding was blocked by 10% bovine serum
albumin in phosphate buffered saline/Tween20 (PBS/T) with
pH 7.4 for 60 min. Subsequently, specific epitopes were de-
tected by using the following primary antibodies: myosin
heavy chain slow (M8421, Sigma, Germany) and myosin
heavy chain fast (M4276, Sigma, Germany). Therefore, the
antibodies were diluted 1:1000 in PBS/T buffer and incubated
over night at 4 °C. Goat-anti-mouse antibody (1070-05,
SouthernBiotech, Birmingham, USA) was used as secondary
antibody diluted in PBS/T 1:5000 for 1 h at room temperature.
This was followed by DAB-staining with DAKO Liquid
DAB+ Substrate chromogen System (K3467, DAKO,
Glostrup, Denmark) with DAB+ Chromogen (3,3′
daiminobenzidine in chromogen solution) using 30 droplets
DAB in 10-ml substrate buffer, staining for 5 min. Two mi-
nutes with Mayer’s hematoxylin (Roth, Germany) was used
for counterstaining thereafter. Finally, sections were rinsed in
aqua dest., dehydrated in ascending ethanol dilutions (70, 96,
and 100% for 5 min each), dipped in xylol and covered with
Dako Mounting Medium (Dako, CA, USA).

Morphometric measurement

All histological analyses were executed blinded as well as in a
random order. Additionally, measurements were done twice
by two independent researchers. Histological images were
acquired using Axio Imager microscope (Zeiss, GER) and
calibrated AxioVision SE64 Rel. 4.9 software tool (Zeiss,
Germany). To quantify the total mean of muscle fiber cross
section area (μm2), 20 fibers of three different sections were
analyzed in the H&E as well as myosin heavy chain (slow/
fast) stains. Mean fiber areas were quantified manually by
using AxioVision measurement tool and computed by Excel
2016 (Microsoft, USA).

Statistical analyses

Three hypotheses were tested for the variables that were re-
corded in each group: (1) effect of therapy, (2) effect of in-
flammation, and (3) effect of mobility. For this purpose, data
were subjected to univariate analyses of variance with the
factors (1) therapy (placebo vs. GTS-21), (2) inflammation
(saline vs. C.p.), and (3) mobility (sham-immobilization vs.
immobilization), as well as all possible interaction terms. If the
respective main effect or interaction term proved to be

Fig. 1 Flow chart
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significant, post hoc analyses were hierarchically performed.
The probability error was set at 0.05. Due to the positively
skewed distribution, the arbitrary values of α7nAChRs ex-
pression were transformed into logarithmic scale. Statistical
analyses were performed using IBM SPSS Statistics 25.0
(SPSS, Chicago, IL), figures were created with STATA 14
(Stata Corp LP, College Station, TX).

Data availability The datasets generated during and/or ana-
lyzed during the current study are available from the corre-
sponding author on reasonable request.

Results

The different perturbations in the four groups were performed
in rats totaling 125. However, only 92 were used in the final
analyses because of mortality before and on day 12 during
neuromuscular function tests (Fig. 1).

Systemic effects on MetHb levels and body weight
and response to GTS-21

The MetHb levels as a fraction of total hemoglobin (percent)
were almost undetectable in all saline groups (0.3 ± 0.1%) re-
gardless of presence or absence of immobilization.

Consequently, GTS-21 had no influence on MetHb levels in
saline groups. MetHb increased 26-fold on average in C.p.
animals (p < 0.001) with a 32-fold increase when compared to
placebo subgroups. GTS-21 significantly decreased the elevat-
ed MetHb levels seen in C.p. treated with saline to 19-fold (p =
0.049, Fig. 2). Immobilization did not affect MetHb levels.

Over the 12-day period, the body weights decreased signif-
icantly with C.p. alone and with immobilization and GTS-21
mitigated these changes (Fig. 3). Rats receiving saline or
GTS-21 alone without C.p. and disuse (Controls) gained body
weight significantly (+30 ± 9 g) or GTS-21 (+31 ± 18 g), re-
spectively, compared to Day 0. With C.p. alone, the body
weight at day 12 significantly decreased (16 ± 20 g on aver-
age, p < 0.001) relative to body weights of saline groups.
Compared to saline treatment, GTS-21 prevented the loss of
body weight that occurred with inflammation (− 23 ± 17 g vs.
− 9 ± 20 g, p = 0.011, Fig. 3).

C.P. and/or immobilization-induced muscle changes
and response to GTS-21

Maintenance of the immobilization for 12 days (without C.p.)
consistently decreased tibialis weight in placebo groups (p <
0.001, Fig. 4a) as well as twitch tension (72 ± 16 vs. 146 ±

Fig. 2 Blood methemoglobin (MetHb) levels in rats with each perturba-
tion on day 12 [fold change compared to saline groups]. MetHb fraction
of total hemoglobin was significantly increased by C.p. (26-fold average
increase, p < 0.001) and significantly reduced in all GTS-21 groups (p =
0.033). Post hoc analysis revealed a 40% decrease in C.p.-injected ani-
mals by therapy (from 32-fold with placebo to 19-fold with GTS-21,
filled triangles, p = 0.049). Immobilization did not influence MetHb
levels significantly. Sham = Sham-immobilization, Immob =
immobilization/superimposed disuse, C.p. = systemic inflammation with
Corynebacterium parvum, Saline = sham-inflammation with saline, GTS
=GTS-21 = DMBX-A = 3-[(3E)-3-[(2,4-dimethoxyphenyl)methylidene]-
5,6-dihydro-4H-pyridin-2-yl]pyridine, bid = bis in die =twice a day.

Fig. 3 Body weight changes between days 0 and 12. The change of body
weight comparing days 12 vs. 0 was significantly decreased by C.p. (−
16 ± 20 g, p < 0.001). Therapy with 10 mg/kg GTS-21 b.i.d. significantly
attenuated body weight loss in the C.p. groups (inflammation × therapy:
p = 0.005). Post hoc analysis revealed in C.p. showed a significant im-
provement by GTS-21 therapy compared to placebo (filled triangles, − 9
± 20 g vs. − 23 ± 17 g, respectively, p = 0.011). Immobilization effected
body weight change in all respective groups (p < 0.001). GTS-21 had a
significant effect in post hoc analysis of therapy compared to placebo in
C.p. with disuse superimposed (filled circles from − 29 ± 16 g to − 14 ±
10 g, respectively, p = 0.009). Sham = sham-immobilization, Immob =
immobilization/superimposed disuse, C.p. = systemic inflammation with
Corynebacterium parvum, Saline = sham-inflammation with saline, GTS
= G T S - 2 1 = D M B X - A = 3 - [ ( 3 E ) - 3 - [ ( 2 , 4 -
dimethoxyphenyl)methylidene]-5,6-dihydro-4H-pyridin-2-yl]pyridine,
bid = bis in die = twice a day
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7 N, p < 0.0001) and tetanic tension (163 ± 11 vs. 469 ± 41, p
< 0.0001). Tibialis muscle mass was also significantly de-
creased by inflammation (p < 0.001), but even more with their
combination (inflammation × immobilization: p < 0.001).
Therapy with GTS-21 b.i.d. significantly ameliorated the ef-
fects in all respective groups (p = 0.003). Post-hoc analysis in
animals with sham-immobilization (p = 0.044), immobiliza-
tion (p = 0.019), as well as in C.p.-injected animals (p <
0.001) revealed a significant effect of GTS-21 therapy vs.
placebo. GTS-21 was able to increase tibialis mass in C.p.
groups without (from 0.26 ± 0.03 g to 0.32 ± 0.04 g, p =
0.028) and with disuse superimposed (from 0.18 ± 0.04 g to
0.22 ± 0.03 g, p = 0.004).

Although all three main factors tested (therapy, inflamma-
tion, mobility) were significant in single twitch, post hoc anal-
ysis showed no significant therapy effect (data not shown).
Maximum tetanic tensions were significantly decreased by
inflammation (p < 0.001) or immobilization (p < 0.001), and
even more by their combination (inflammation × immobiliza-
tion: p < 0.001). Post hoc analysis in animals with immobili-
zation revealed a significant effect of GTS-21 therapy vs. pla-
cebo (p = 0.006). Furthermore, GTS-21 significantly amelio-
rated the negative effects on peak tetanic contraction in all
respective groups (p = 0.035) and in the inflammation with

immobilization group (1.35 ± 0.51 N vs. 1.81 ± 0.42 N, p =
0.029, Fig. 4b).

H&E staining of muscle tissue demonstrated a significant
effect for all factors (inflammation p < 0.001, mobility p <
0.001, and therapy p = 0.010) including the interaction of in-
flammation and mobility (p = 0.001) on fiber size (Fig. 5a).
The muscle fiber type area was influenced significantly by all
three factors as well: slow myosin fiber area as well as fast
myosin fiber area were significantly decreased by inflamma-
tion (p = 0.012, p < 0.001); mobility (p = 0.003, p < 0.001);
and therapy (p = 0.004, n.s. for main factor, but mobility ×
therapy (p = 0.003) and inflammation × therapy (p = 0.029)),
respectively. Post hoc analysis in slow muscle fiber area
showed a significant increase by GTS-21 vs. placebo in
groups with saline (1184 ± 50 μm2 vs. 1013 ± 61 μm2, p =
0.031) and inflammation (1037 ± 46 μm2 vs. 879 ± 56 μm2,
p = 0.041, Fig. 5b). In fast fiber area, post-hoc analysis in of
GTS-21 therapy vs. placebo revealed a significant increase of
fiber size in immobilized animals (1159 ± 235 μm2 vs. 993 ±
294 μm2, p = 0.003) and in C.p. animals with disuse
superimposed (1064 ± 58 μm2 vs. 718 ± 89 μm2, p = 0.005,
Fig. 5c).

α7nAChR expression was low in rats without C.p.
independent of immobilization in placebo-treated

Fig. 4 Muscle changes (mass and force) with disuse, or inflammation
alone and their combination without and with GTS-21. a Tibialis
muscle mass. Gray background area indicates the lower and upper limit
of tolerance (i.e., mean ± 1.96 × SD of the naïve leg of saline animals).
Tibialis muscle mass was significantly decreased by inflammation. (p <
0.001) or immobilization (p < 0.001), but even more with their
combination (inflammation × immobilization: p < 0.001). Therapy with
GTS-21 b.i.d. significantly ameliorated the effects in all respective groups
(p = 0.003). Post hoc analysis in animals with sham-immobilization
(empty diamonds, p = 0.044) and immobilization (filled diamonds, p =
0.019) as well as in C.p.-injected animals revealed a significant effect of
GTS-21 therapy vs. placebo (filled triangles, p < 0.001). GTS-21 was able
to increase tibialis mass in C.p. groups without (empty circles, from 0.26
± 0.03 g to 0.32 ± 0.04 g, p = 0.028) and with disuse superimposed (filled
circles, from 0.18 ± 0.04 g to 0.22 ± 0.03 g, p = 0.004). b Maximum te-
tanic tension. Colored area in broad blue indicates the lower and upper

limit of tolerance (i.e., mean ± 1.96 × SD of the naïve leg of saline ani-
mals). Tetanic maximum tensions were significantly decreased by inflam-
mation (p < 0.001) or immobilization (p < 0.001), but even more with
their combination (inflammation × immobilization: p < 0.001). Therapy
with GTS-21 significantly ameliorated the effects in all respective groups
(p = 0.035). Post hoc analysis in animals with immobilization revealed a
significant effect of GTS-21 therapy vs. placebo (filled diamonds, p =
0.006). Post hoc analysis in C.p.-injected animals with disuse
superimposed revealed a significant effect of GTS-21 therapy vs. placebo
(filled circles, 1.35 ± 0.51 N vs. 1.81 ± 0.42 N, p = 0.029). Sham = sham-
immobilization, Immob = immobilization/superimposed disuse, C.p. =
systemic inflammation with Corynebacterium parvum, Saline = sham-
inflammation with saline, GTS = GTS-21 = DMBX-A = 3-[(3E)-3-[(2,4-
dimethoxyphenyl)methylidene]-5,6-dihydro-4H-pyridin-2-yl]pyridine,
bid = bis in die = twice a day

1652 Pflugers Arch - Eur J Physiol (2018) 470:1647–1657



animals (0.19 ± 0.19 arbitrary units). In rats with C.p.,
the α7nAChR expression was significantly increased 11-
fold (p < 0.001). GTS-21 significantly ameliorated

α7nAChR expression in the C.p. groups by more than
60% (1.6 ± 1.2 vs. 0.6 ± 0.3 arbitrary units, p = 0.028,
Fig. 6).

Fig. 5 Immunohistochemistry of tibialis with disuse or inflammation
alone and their combination without and with GTS-21. Values
presented as mean ± SE. a H&E staining. H&E area of muscle fiber
was significantly decreased by inflammation. (p < 0.001) or
immobilization (p < 0.001), but even more with their combination
(inflammation × immobilization: p = 0.001). Therapy with GTS-21
b.i.d. significantly ameliorated the effects on muscle fiber size in all re-
spective groups (p = 0.010). Post hoc analysis of GTS-21 therapy vs.
placebo revealed a significant effect in C.p.-injected animals revealed a
significant effect (filled triangles, 1036 ± 46 μm2 vs. 826 ± 61 μm2, p =
0.011) as well as in immobilized animals (filled diamonds, 991 ±
205 μm2 vs. 781 ± 220 μm2, p = 0.002). GTS-21 was able to increase
H&E area in C.p.-injected animals with disuse superimposed vs. placebo
(filled circles, 955 ± 56μm2 vs. 630 ± 87μm2, p = 0.007). b Slowmyosin
fiber area. Slow myosin fiber area was significantly decreased by inflam-
mation (p = 0.012) or mobility (p = 0.003). Therapy with GTS-21 b.i.d.
significantly ameliorated the effects of pinning and C.p. in all respective
groups (p = 0.004). Post hoc analysis in immobilized animals showed a

significant increase in slow myosin fiber size with GTS-21 therapy com-
pared to placebo (filled diamonds, p = 0.003). Post hoc analysis in inflam-
mation groups showed a significant increase in slow myosin fiber size
with GTS-21 therapy compared to placebo in animals with saline (empty
triangles, 1184 ± 5 0 μm2 vs. 1013 ± 61 μm2, p = 0.031) or C.p.-injected
(filled triangles, 1037 ± 46 μm2 vs. 879 ± 56 μm2, p = 0.041). GTS-21
was able to increase slow myosin fiber size in saline animals with disuse
(×, 1176 ± 70 μm2 vs. 879 ± 75 μm2, p = 0.013). c Fast myosin fiber area.
Fast myosin fiber area was significantly decreased by inflammation. (p <
0.001) or mobility (p < 0.001). Main factor therapy was not significant;
however, interaction terms of mobility × therapy (p = 0.003) and inflam-
mation × therapy (p = 0.029) were significant. Post hoc analysis of GTS-
21 therapy vs. placebo revealed a significant effect in immobilized ani-
mals (filled diamonds, 1159 ± 235 μm2 vs. 993 ± 294 μm2, p = 0.003).
Post hoc analysis in C.p.-injected animals with disuse superimposed re-
vealed that GTS-21 increased fast myosin fiber area vs. placebo (filled
circles, 1064 ± 58 μm2 vs. 718 ± 89 μm2, p = 0.005)
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Discussion

Indicative of the presence of systemic inflammation, this
study demonstrates that all C.p.-injected groups had signif-
icant elevations of MetHb levels because of increased ex-
pression of inducible nitric oxides [19, 47]. GTS-21 de-
creased MetHb levels compared to their respective controls.
This study further demonstrates that immobilization alone
reduced body weight; however, inflammation alone had a
significantly greater effect. The superimposition of immo-
bilization and inflammation further aggravated the body
weight loss. In contrast, treating rats having inflammation
and immobilization with GTS-21 maintained their body
weight relative to day 0. A notable finding is that GTS-21
consistently attenuated tibialis muscle mass loss seen with
sham-inflammation alone, immobilization alone, with in-
flammation alone, and when inflammation was combined
with immobilization (Fig. 4a). The most salient finding is
that GTS-21 also mitigated the loss of maximal tetanic ten-
sion generating capacity (functional capacity) in the animals
with immobilization and in animals with inflammation and
superimposed immobilization. Although single twitch ten-
sions did not show differences in post hoc analysis for ther-
apy, the tibialis muscle mass changes with GTS-21 was
associated with statistically significant improvement in
maximal tetanic tension particularly when inflammation
was present with immobilization. Parenthetically, one might
add tetanic tension and not single twitch measurements re-
flect the ability to perform repetitive work.

In previous studies during disuse atrophy [32, 41] and dur-
ing denervation and sepsis [60], the upregulation of
α7nAChRs has been documented. The present study docu-
ments that systemic inflammation leading to MWalso results
in marked upregulation of α7nAChRs in muscle (Fig. 6).
When we previously characterized the used double-hit model,
the changes observed included increases in MetHb levels, and
acute phase reactant protein responses, and decrease of red
blood cell and platelet counts [9, 57]. Two recent studies dem-
onstrate that after injury to muscle, the α7nAChRs are upreg-
ulated (with a peak around the 7th–9th day after the impact). It
was reasoned that α7nAChRs are involved in muscle regen-
eration by modulating inflammatory reaction and fibroblast
activity [7, 59]. Experimental evidence confirming this hy-
pothesis, however, was not provided.

The utility of GTS-21 to decrease systemic inflammatory
responses has been tested in a phase II clinical trial [34], where
GTS-21 could safely be used in healthy non-smoking volun-
teers. Although higher plasma concentration of GTS-21 sig-
nificantly correlated with lower blood cytokine levels, there
was no significant difference between GTS-21 vs. placebo.
The ineffectiveness of GTS-21 to control cytokines was prob-
ably related to the oral dosing regimen, since the low bioavail-
ability of orally administered GTS-21 resulted in relatively
low blood concentrations (mean, 13 ng/ml at time of LPS
administration). GTS-21 has previously been administered
orally to healthy, schizophrenic, Alzheimer’s disease, and
attention-deficit hyperactivity disorder subjects in clinical
tests [11, 29, 33, 50]. These human clinical studies are indeed

Fig. 6 α7nAChR expression in the tibialis muscle (arbitrary units). a
Gray background area indicates the lower and upper limit of tolerance
(i.e., mean ± 1.96 × SD of the naïve leg of saline animals). Disuse alone
with no inflammation did not change α7nAChR expression in muscle.
α7nAChR expression was significantly increased 11-fold by C.p. (p <
0.001). Therapy with 10 mg/kg GTS-21 b.i.d. significantly ameliorated
the effects in all respective groups (p < 0.001). Post hoc analysis for
inflammation revealed a significant effect of therapy in saline groups
(empty triangles, 0.2 ± 0.2 in placebo vs. 0.02 ± 0.02 in GTS-21 [arbitrary
units], p < 0.001) and C.p. groups (filled triangles, 1.6 ± 1.2 vs. 0.6 ± 0.3,
respectively [arbitrary units], p = 0.028). GTS-21 was able to decrease

α7nAChR in saline groups without disuse (+, p < 0.001) and with disuse
(×, p = 0.008) and C.p. groups with disuse superimposed (filled circles,
p = 0.007). b Representative blots of α7nAChR expression in the tibialis
muscle. Blots reveal that, similar to denervation, C.p. with and without
disuse upregulates α7nAChR expression in muscle. Sham = sham-im-
mobilization, Immob = immobilization/superimposed disuse, C.p. = sys-
temic inflammation with Corynebacterium parvum, saline = sham-
inflammation with saline, GTS = GTS-21 = DMBX-A = 3-[(3E)-3-
[(2,4-dimethoxyphenyl)methylidene]-5,6-dihydro-4H-pyridin-2-
yl]pyridine, bid = bis in die = twice a day
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important in that no serious side effects have been document-
ed, paving the way for more studies with GTS-21 using alter-
native routes of administration. In our study, a dose of 10 mg/
kg b.i.d. demonstrated especially beneficial effects evidenced
by the attenuation of inflammation alone-induced and inflam-
mation with disuse-induced biochemical, physiological, and
functional changes. These findings suggest that the
α7nAChRs could be used to advantage to mitigate the inflam-
matory responses and its consequences on body weight, mus-
cle mass, and force if initiated at the beginning of a perturba-
tion and continued during prolonged systemic inflammation.

Our dose of 10 mg/kg GTS-21 did not completely reverse
the body weight and muscle changes. Treatment for longer
period than 12 days may have most likely reversed muscle
mass faster than untreated controls. The pharmacokinetics,
however, of GTS-21 in critically illness of rodents is un-
known. Some drugs have a faster clearance in critical illness
[5, 17, 18]. Thus, alternative therapeutic modalities such as
smaller, more frequent doses and/or for longer periods may
result in complete reversal of changes.

GTS-21 downregulated α7nAChR expression in tibialis
muscle in all groups, especially in inflammation animals by
more than 60% compared to controls. This downregulation
probably suggests decreased inflammation in muscle, consis-
tent with a previous in vitro finding in macrophages [30] and
this study that inflammation upregulates α7nAChR expres-
sion. The downregulation was concomitantly associated with
mitigation of the inflammation-induced biochemical and body
mass and muscle changes including force. This begs the ques-
tion whether the site of action of GTS-21 is via actions on
α7nAChRs on circulating cells or on muscle itself. Future
studies with depletion of cells are warranted as which of the
α7nAChRs (muscle vs. macrophages) play a more predomi-
nant role. These studies could include the use of muscle spe-
cific α7nAChR knockout mice (currently not available) or by
a depletion of macrophages in vivo [24].

Our study has some limitations. First, we did not measure
cytokines levels as inflammation markers, but only methemo-
globin as previously [9, 57]. Second, our study is descriptive
and does not provide mechanistic data to establish a direct link
of GTS-21 induced α7nAChR reduction on improvements in
muscle mass and function. Third, in order to have a clinically
relevant model, e.g., a longer duration of immobilization and
inflammation, as well as clinically relevant endpoints, we per-
formed an in vivo study. This results in a higher variability
because of the individual responses of the different animals.

In summary, most previous studies focused on altering
disease-induced muscle changes to reverse MW of critical ill-
ness. This current study is different in that it attempts control
systemic and possibly local inflammation in muscle to reverse
or mitigate the disease-associated changes. Using a novel mo-
lecular target, namely the α7nAChRs, we confirmed our hy-
pothesis that modulation of inflammatory responses via

α7nAChRs by use of GTS-21 can indeed attenuate body mass,
muscle mass, and/or tension loss when inflammation is present
alone and with immobilization. The current study also adds to
the evidence that the α7nAChR is a novel target that might be
the subject of future studies concerned with inflammation and
organ dysfunction [30, 35]. These findings are indeed encour-
aging in view of the recent clinical trials on α7nAChR modu-
lators in humans to control lipopolysaccharide-induced inflam-
matory responses [36] and safe use of α7nAChR agonists to
treat neuro-inflammation and schizophrenia [6]. Our findings
could have direct applications to the bedside after validations of
some of the questions that have been raised by us.
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