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Abstract A major problem in chronic heart failure is the inabil-
ity of hypertrophied cardiomyocytes to maintain the required
power output. A Hill-type oxygen diffusion model predicts that
oxygen supply is limiting in hypertrophied cardiomyocytes at
maximal rates of oxygen consumption and that this limitation
can be reduced by increasing the myoglobin (Mb) concentration.
We explored how cardiac hypertrophy, oxidative capacity, and
Mb expression in right ventricular cardiomyocytes are regulated
at the transcriptional and translational levels in an early stage of
experimental pulmonary hypertension, in order to identify targets
to improve the oxygen supply/demand ratio. Male Wistar rats
were injected with monocrotaline to induce pulmonary hyper-
tension (PH) and right ventricular heart failure. The messenger
RNA (mRNA) expression levels per nucleus of growth factors
insulin-like growth factor-1Ea (IGF-1Ea) and mechano growth
factor (MGF) were higher in PH than in healthy controls, con-
sistent with a doubling in cardiomyocyte cross-sectional area
(CSA). Succinate dehydrogenase (SDH) activity was unaltered,
indicating that oxidative capacity per cell increased. Although
the Mb protein concentration was unchanged, Mb mRNA con-
centration was reduced. However, total RNA per nucleus was
about threefold higher in PH rats versus controls, and Mb
mRNA content expressed per nucleus was similar in the two
groups. The increase in oxidative capacity without an increase
in oxygen supply via Mb-facilitated diffusion caused a doubling
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of the critical extracellular oxygen tension required to prevent
hypoxia (PO,;). We conclude that Mb mRNA expression is not
increased during pressure overload-induced right ventricular hy-
pertrophy and that the increase in myoglobin content per
myocyte is likely due to increased translation. We conclude that
increasing Mb mRNA expression may be beneficial in the treat-
ment of experimental PH.
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Introduction

Myoglobin is an oxygen buffer and transporter and substantially
contributes to mitochondrial oxygen supply, particularly at low
intracellular oxygen tension (<10 mmHg) [63]. The myoglobin
content is decreased in several models of chronic heart failure
(CHF), including dog, turkey, and chicken models, which corre-
lates with biochemical and physiological markers of myocardial
performance [33]. A decrease in myoglobin (Mb) concentration
has also been reported in rat models of pulmonary hypertension
(PH) with progressive heart failure (HF) [22, 40, 53] but not with
stable HF [31, 40]. Furthermore, a reduction of Mb was observed
in necropsies of the right-sided myocardium of pulmonary hy-
pertensive patients [40]. These studies suggest that Mb deficien-
cy may be a determinant of the progression of CHF due to
chronic pressure overload.

Apart from oxygen transport and buffering, Mb also
facilitates intracellular fatty acid transport and regulates
fatty acid metabolism [50]. This is emphasized by the ob-
servation that heart muscle in mice lacking Mb (myo ")
switches towards glycolytic metabolism [10]. Mb also
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regulates oxygen supply and consumption by generation
and/or scavenging of nitric oxide (NO) [64], which enables
vasodilation [11] or reduces mitochondrial oxygen con-
sumption via inhibition of complex I and/or complex IV
[4]. This can protect the heart from oxidative stress in hyp-
oxia [11]. In addition, Mb has-suicidal-peroxidase activity
[9] and serves as an iron store [5]. A substantial proportion
of CHF patients is iron deficient [52]. Also, mice lacking
Mb (myo /") showed differential gene expression patterns
upon induction of isoproterenol-induced heart failure, sug-
gesting a role for Mb in adaptation to overload [30].

Chronic pressure overload induces extensive myocar-
dial hypertrophy [6, 22, 40, 53], which reduces wall
stress, but also decreases mechanical efficiency in
hypertrophied rat papillary muscle [65], especially when
cardiomyocyte cross-sectional area (CSA) becomes larg-
er than approximately 400—-500 wum? [65]. Thus, the ox-
ygen demand of hypertrophied myocytes increases sev-
eral fold, and the extracellular oxygen tension required
to prevent hypoxic cores when mitochondria are maxi-
mally activated (PO, may become limiting [6, 40,
53, 54], also because capillary density is reduced [40,
51, 60]. Hence, a mismatch between oxygen demand
and supply arises and either cardiomyocyte hypoxia de-
velops [6, 49, 54] or metabolism must be inhibited [2],
which in either case results in reduced energy for con-
traction and cardiac output.

CSA and oxidative capacity of a muscle are normally under
tight control and show a strong inverse relationship that close-
ly fits the Hill-type diffusion model [59]. It is therefore likely
that the potential to increase CSA and VO, ,,,x simultaneously
is limited by oxygen diffusion. Thus, cardiomyocytes can
likely sustain greater cell size, increased oxidative capacity
and higher workload only when Mb concentration and/or
number of capillaries per myocyte increases [6, 53, 59]. The
latter does not occur within 4 weeks in our model of experi-
mental PH [6, 40, 51], but we have previously found that a
monocrotaline dose of 40 mg/kg was lethal in rats with a low
myoglobin concentration in right-sided cardiomyocytes
(=0.25 mM [6]) whereas compensated hypertrophy developed
when the concentration of myoglobin was high (=0.6 mM [31,
40]). The reason why myoglobin concentrations differed be-
tween these studies is not known, but could be related to food
composition or housing conditions [46]. Increasing the myo-
globin concentration in skeletal muscle by iron therapy in
iron-deficient PH patients has some beneficial effects [39].

The mechanisms underlying the regulation of Mb during
hypoxia and increased contractile activity are not yet fully
understood [21]. Contractile activity increases Ca”* levels
and thereby activates the calcineurin (CN)-nuclear factor of
activated T cells (NFAT)/myocyte enhancer factor 2 (MEF2)
pathway, which is known to stimulate Mb expression [20] as
well as pathological hypertrophy [29]. Also, a progressive

@ Springer

increase in Mb messenger RNA (mRNA) and protein has
been demonstrated in rats following thyroid hormone Tj treat-
ment, where Mb levels exceeded euthyroid levels [14]. Type 3
deiodinase (D3) is an inhibitor of Tj activity and is expressed
locally in the hypertrophied heart by a hypoxia-inducible fac-
tor (HIF)-1-dependent pathway [49]. The final outcome of
these signaling pathways with respect to the Mb concentration
in progressive experimental PH is a heterogeneous reduction
of the myoglobin concentration in right ventricular myocytes
[49].

There are several possibilities why the Mb concentration
lags behind the rate of cardiomyocyte hypertrophy. First, the
capacity of transcription could be the limiting factor in
hypertrophied cardiomyocytes, because the volume of cyto-
plasm per nucleus increases twofold in 2 weeks [6]. However,
Ruiter et al. [40] showed that myoglobin mRNA per nucleus
increased by a similar factor in stable PH 40 days after the
monocrotaline injection but not in progressive PH 35 days
after the monocrotaline injection (at a similar degree of hyper-
trophy), causing a reduced Mb mRNA concentration in pro-
gressive PH at the time of sacrifice. Furthermore, it may be
that the translation of Mb mRNA is slow or inefficient in
progressive PH. It is also possible that increasing ROS pro-
duction causes Mb degradation. These data suggest that Mb
mRNA expression is inadequate in progressive HF but also
indicate that it can be upregulated in overloaded heart muscle.
Hence, the aim of this study was to explore how the Mb
concentration and the oxidative capacity are regulated at an
early stage of progressive PH in concordance with cell size.

We hypothesized that Mb mRNA expression does increase
at an early stage of the development of progressive myocardial
hypertrophy. We focused on transcriptional (mRNAs: Mb,
peroxisome proliferator-activated receptor gamma coactivator
I-alpha [PGC-1«], succinate dehydrogenase [SDH], cyto-
chrome ¢ oxidase [COX], and vascular endothelial growth
factor [VEGF]) and translational control of protein synthesis
(ribosomal RNA [rRNA], insulin-like growth factor-1Ea
[IGF-1Ea], and mechano growth factor [MGF]) and protein
degradation (muscle RING-finger protein-1 [MuRF1], muscle
atrophy F-box [Mafbx], BCL2/adenovirus EIB 19 kDa
interacting protein 3 [BNIP3]) and glycolytic metabolism
(glyceraldehyde 3-phosphate dehydrogenase [GAPDH]).

Methods
Animals and preparations

The study was approved by the Animal Experimental
Committee of the Vrije Universiteit Amsterdam
(Amsterdam, The Netherlands) and conformed to the guide
of the Dutch Research Council for care and use of laboratory
animals. Male Wistar rats (n = 13) obtained from Harlan
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(Horst, The Netherlands) were injected subcutaneously with
60 mg/kg monocrotaline (MCT) at 170-190 g body mass to
induce progressive right ventricular HF. This protocol causes a
reduction of cardiac output of 25 to 30 % after 3.5 to 4 weeks
[16, 65]. Untreated rats (n = 10) were used as controls. All
animals received water and standard rat chow (Teklad 2016,
Envigo, UK) ad libitum. Three weeks after MCT treatment,
rats were anesthetized with halothane and the hearts were
rapidly excised and perfused with Tyrode solution (120 mM
NaCl, 5 mM KCl, 1.2 mM MgSO,, 2.0 mM Na,HPO,,
27 mM NaHCO;, 1 mM CaCl,, 10 mM glucose and 20 mM
2,3-butanedione monoxime, equilibrated with 95 %/5 % O,/
CO, at pH 7.6 and 10 °C) to prevent contraction and to re-
move blood. Biopsies of the right ventricular wall were em-
bedded in 15 % (w/v) gelatine in Tyrode, pH 7.5, and then
frozen in liquid nitrogen. Sections of 5 um thickness were cut
and either air dried for 15 min prior to the determination of
SDH activity (see below) or stored at —80 °C for later analysis
of the Mb concentration.

Succinate dehydrogenase histochemistry
and determination of cross-sectional area
of cardiomyocytes

SDH activity was measured in the incubation medium
(37.5 mM sodium phosphate buffer, pH 7.6, 75 mM sodium
succinate, 5 mM sodium azide, and 0.4 mM tetranitro blue
tetrazolium) as previously described [34]. Briefly, sections
were incubated in the dark for 7 min at 37 °C [6]. The spatially
averaged absorbance of individual cells in each section was
measured at 660 nm using a calibrated microdensitometer [22]
and is expressed as the rate of staining in absorbance units per
micrometer section thickness and per second incubation time
(AAggo pm ™' s7). SDH activity is proportional to VOsmax
under hyperoxic conditions in vitro [6, 56]. The measurement
included the determination of the CSA of the cell. Absorbance
was measured in 20 myocytes, so that a reliable estimate of the
mean value was obtained. NIH Image and Image J
(http://rsbweb.nih.gov/ij/) were used for analysis-taking the
pixel-to-aspect ratio into account.

Myoglobin concentration

For the determination of Mb concentration, sections were first
fixed in paraformaldehyde vapor and subsequently in 2.5 %
glutaraldehyde solution for 10 min [53]. Sections were then
incubated for 1 h in 59 ml of 50 mM TRIS/80 mM KCl buffer,
pH 8.0 which contained 25 mg ortho-tolidine dissolved in
2 ml 96 % ethanol at 50 °C and 1.43 ml of 70 % tertiary-
butyl-hydroperoxide (Fluka Chemie, Switzerland) [22, 53].
Absorbance was measured at 436 nm and converted to Mb
concentration using gelatin sections containing known equine
Mb (Sigma, The Netherlands) concentrations.

Calculation of PO,crit

An estimate of the minimal extracellular oxygen tension re-
quired to prevent hypoxic cell cores when mitochondria are
maximally active (PO,crit) of the cardiomyocytes can be cal-
culated as follows [17, 32]:

POsciit = (VOomax-R*~4Dyip-MbOR ) /4cm-Don (1)

where VO, is the rate of oxygen consumption (mM s 1), R is
the radius of'the cell, Dy, is the diffusion coefficient for Mb in
the sarcoplasm, v, is the solubility of oxygen in the muscle,
and Dq, is the diffusion coefficient for oxygen in muscle
tissue. Furthermore, MbO,r depends on PO,crit, the concen-
tration of oxygenated and deoxygenated Mb (Mb,,,), and the
half-saturation pressure of Mb (Ps) as follows:

MbOsgr = POsgsit*Mbyot/ (POocrit + Pso) (2)

Substitution of the latter into the first equation allowed the
calculation of PO,crit as a function of parameters that were
measured or estimated using calibrated histochemistry [53] or
obtained from literature (see below).

To estimate POt at VOamax, VOomax Was estimated from
measured SDH values based on previous observations that
showed SDH activity to be proportional to VOy,,. With a
staining rate of 1 - 10°* Adggo um ' s™' corresponding to a
VOsmax 0f 0.6 mM s~ [6, 56]. The concentration of Mb was
determined from the heart sections as described above. All
other values were obtained from literature: Dy, = 0.27 -
10" mm? s [3], gy - DO, =2 nM mm % s mmHgf1
[55], and Psy = 6.5 mmHg [8, 13, 45]. Note that this calcula-
tion provides an underestimate of PO, because zero-order
kinetics for mitochondrial oxygen consumption and equilibri-
um of the reaction of myoglobin with oxygen are assumed
(see [41] and [7], respectively, for discussion).

Quantitative polymerase chain reaction (qPCR)

Parts (mean mass 68.8 + 8.24 mg) of the right ventricular free
wall were weighed while frozen. Total RNA was extracted
using a RiboPure kit (Applied Biosystems, Carlsbad, CA)
according to the manufacturer’s instructions.

Real-time PCR was performed using a StepOne Real-Time
PCR system (Applied Biosystems) to determine mRNA ex-
pression levels. From each muscle, 500 ng total RNA was
reverse transcribed using an RNA-to-cDNA kit (Applied
Biosystems). For each gene target, 5 pl of the reverse tran-
scribed reaction product was amplified using Fast SYBR
Green Mastermix (Applied Biosystems). The primers used
are listed in Table 1.

Mean cycle thresholds were converted to relative expres-
sions by subtracting the 18S rRNA cycle threshold and deter-
mining 2 Act Expressions relative to 18S rRNA were
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Table 1 Overview of primers

used for RT-PCR Gene Forward (5'-3") Reverse (3'-5")
18S CGAACGTCTGCCCTATCAACTT ACCCGTGGTCACCATGGTA
Myoglobin CCGGTCAAGTACCTGGAGTTTA TCCCCGGAATATCTCTTCTTC
VEGF CTGCTGTGGACTTGAGTTGG AAGACCACACCGGAGTCTTT
IGF-1Ea AAGCCTACAAAGTCAGCTCG TCAAGTGTACTTCCTTCTGAGTC
MGF CAAGACTCAGAAGTCCCAGC AAGTGTACTTCCTTTCCTTCTC
MuRF1 TGCCCCCTTACAAAGCATCTT CAGCATGGAGATGCAATTGC
Mafbx TGAAGACCGGCTACTGTGGAA CGGATCTGCCGCTCTGA
BNIP3 GTCACTTCCCAGGCCTGTCGC TACCCAGGAGCCCTGCAGGTTCT
GAPDH TGGCCTCCAAGGAGTAAGAAAC GGCCTCTCTCTTGCTCTCAGTATC
PGC-1x ATGAGAAGCGGGAGTCTGAA GCGCTCTTCAATTGCTTTCT
SDH CAGAGAAGGGATCTGTGGCT TGTTGCCTCCGTTGATGTTC
COX1 TGCCAGTATTAGCAGCAGGT GAATTGGGTCTCCACCTCCA
COX4 AGTCCAATTGTACCGCATCC ACTCATTGGTGCCCTTGTTC

BNIP3 BCL2/adenovirus E1B 19 kDa interacting protein 3, COX cytochrome ¢ oxidase, GAPDH glyceraldehyde
3-phosphate dehydrogenase, /GF insulin-like growth factor, Mafbx muscle atrophy F-box, MGF mechano growth
factor, MuRF1 muscle RING-finger protein-1, PGC-1« peroxisome proliferator-activated receptor gamma coac-
tivator 1-alpha, SDH succinate dehydrogenase, VEGF vascular endothelial growth factor

multiplied by total RNA per milligram of heart tissue to obtain
mRNA concentrations. By multiplying the concentration by
the mean CSA of the cardiomyocytes, expression levels of the
genes per nucleus were determined. This normalization is
based on the observations that the number of myocyte nuclei
does not change during the development of hypertrophy [54]
and that myocyte length does not change [57]. In this case, the
volume of cytoplasm per nucleus is proportional to myocyte
CSA and thus normalization for CSA reflects changes in gene
expression per nucleus. It should be noted that the expression
per nucleus is therefore not an absolute value but rather a
relative measure.

Statistical analysis

Independent ¢ tests were used to compare measurements from
MCT-treated animals with those of the control animals.
Equality of variance was tested using Levene’s test and
corrected if significant. Normality was tested using the
Shapiro-Wilk test. For data with a non-normal distribution,
the Mann-Whitney U test was used. Values are given as
mean + standard error of the mean (SEM) unless stated other-
wise; p < 0.05 was considered statistically significant.

Results and discussion
Effects of MCT on cardiomyocyte phenotype
Figure 1 shows lung mass and RV myocyte CSA against

body mass, CSA against lung mass, and CSA, SDH ac-
tivity, and Mb concentration both for PH rats and
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controls. Lung mass and CSA were higher in MCT-
treated rats although body mass was lower (Fig. la—c)
illustrating the detrimental effects of the MCT injection
after 21 days.

Cardiomyocyte CSA of MCT rats thus increased 1.8-fold
compared to that of controls (p < 0.001; Fig. 1d—f), confirming
hypertrophy. Based on the hyperbolic inverse relationship be-
tween muscle fiber size and oxidative capacity [56, 59], we
expected to see a decrease in oxidative capacity during hyper-
trophy. However, SDH activity was similar in PH rats and
controls (p = 0.34; Fig. 1d, e, and g), indicating that oxidative
capacity per unit volume of cytoplasm was retained after MCT
injection. Since CSA was increased, the total oxidative capacity
per cardiomyocyte increased. As this is accompanied by higher
oxygen consumption per cardiomyocyte, these hypertrophied
cells would require increased Mb concentrations to prevent
hypoxia. However, Mb concentrations in PH and control sam-
ples were not statistically different (p = 0.11; Fig. 1h—j).

The increase in absolute oxidative capacity without a con-
comitant increase in Mb protein concentration led to a PO,
in PH (7.7 mmHg) that was over twofold greater than the
POyit (3.4 mmHg) in controls (p < 0.001; Fig. 1k). The in-
crease in PO, and the decrease in the capillary density [40,
51, 60] are likely to cause core hypoxia in cardiomyocytes at
the maximum heart rate [54].

The Mb concentrations in the present study are different
from those previously reported [6, 22, 53]. This variation in-
dicates that Mb regulation in MCT-induced PH is complicat-
ed. The Mb concentration was previously shown to be de-
creased in experimental PH [40] after 4 weeks, suggesting that
the decrease occurs during the fourth week, when the
cardiomyocytes no longer increase in size [6].
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Fig. 1 Effects of monocrotaline-induced pulmonary hypertension on
phenotypic characteristics of the rats and cardiomyocytes in rat right
ventricle. Lung mass (a) and myocyte CSA (b) are plotted against body
mass, and myocyte CSA is plotted against lung mass (c). Representative
examples of control and PH right ventricular cardiomyocytes stained for
succinate dehydrogenase (SDH) activity (d, e) and myoglobin (h, i) are

Effects of MCT on total RNA content in the right ventricle

The volume of cytoplasm each nucleus had to maintain (i.e.,
the myonuclear domain) increased with CSA. Thus, to main-
tain SDH activity and Mb concentration, either the rate of
transcription/translation or both should have been enhanced
and/or the half-life of Mb should have increased. Because 80—
85 % of all RNA within muscle cells consists of rRNA [28],
we first assessed total RNA content per milligram heart tissue,
as a measure of translational capacity.

Total RNA was proportional to wet weight (Fig. 2a;
p < 0.001). However, the relationship differed between
PH rats and controls, indicating that rats with PH had
32 % higher total RNA levels per milligram muscle tissue
(p = 0.001). Total RNA per nucleus was 2.7 times higher

shown. MCT-induced heart failure caused hypertrophy of
cardiomyocytes, as illustrated by an increase in cellular cross-sectional
area (CSA) (f). Nevertheless, SDH activity (g) and myoglobin protein
concentration (h—j) both remained constant. Therefore, PO, was
increased in PH (k). ***p < 0.001. White bars/circles: control group,
black bars/circles: PH. Scale bar indicates 100 pm

in PH rats compared to controls (p < 0.001; Fig. 2b).
Expression levels of 18S rRNA relative to total RNA were
similar (p = 0.96; Fig. 2¢). On the basis of these results,
we conclude that rRNA content was proportional to the
increase in total RNA, reflecting a higher overall transla-
tional capacity in PH cardiomyocytes. Hence, it is unlike-
ly that a limitation in the translational capacity impaired
the increase in Mb protein expression.

The increase in total RNA and the absolute increase of 18S
rRNA expression levels in PH rats also indicate that mRNA
expression levels normalized to 18S rRNA lead to an under-
estimation of the mRNA expression levels in PH rats com-
pared to controls. Therefore, we normalized subsequent
mRNA expression levels both as cardiac tissue mRNA con-
centration and as amount per nucleus.
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Fig. 2 Effects of monocrotaline-induced pulmonary hypertension on
total RNA content and 18S rRNA in rat right ventricle. The amount of
total RNA was proportional to the weight of the right ventricle, although
the relationship is different for PH rats versus controls (a). The mean
amount of total RNA per nucleus was more than twofold greater for the
PH group compared to controls (b). Nevertheless, the expression of 18S
rRNA relative to total RNA was similar in both groups (¢). ***p < 0.001,
**p < 0.01. White bars/circles: control, black bars/circles: PH

Effects of MCT on transcription of regulators of protein
synthesis and degradation

We studied mRNA expression levels of several factors related
to protein synthesis and degradation as shown in Fig. 3.

In order to explain the lack of increase in Mb concentrations,
we considered IGF-1Ea and its splice variant MGF, which are
known to activate both the rate of transcription and translation
[15] and repress several mediators of degradation [43]. In re-
sponse to exercise or overload, IGF-1 acts as an autocrine/
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Fig. 3 Effects of monocrotaline-induced pulmonary hypertension in rat
on expression of regulators of protein synthesis and degradation in the
right ventricle. Expression levels of insulin-like growth factor (IGF)-1Ea
and mechano growth factor (MGF) mRNA are presented relative to 18S
(a), as concentration per milligram heart tissue (b) or per nucleus (c).
Expression levels of muscle RING-finger protein-1 (MuRF1), muscle
atrophy F-box (Mafbx), and BCL2/adenovirus E1B 19 kDa interacting
protein 3 (BNIP3) were analyzed as markers of degradation and shown
relative to 18S (d), as concentration (e) and per nucleus (f). Note that the
right axis in d applies only to BNIP3 expression levels. ***p < 0.001,
*#p < 0.01, *p < 0.05. White bars: control, black bars: PH

paracrine factor to induce hypertrophy in left ventricular myo-
cardium of rats [42] and humans [47]. It has been shown that
physiologic and pathologic cardiac hypertrophy are mediated
by different pathways whereby IGF-1 is essential for physio-
logic hypertrophy and acts via the phosphatidylinositol 3-
kinase (PI3K)-Akt-mammalian target of rapamycin (mTOR)
pathway whereas pathologic hypertrophy is mediated by the
Ca’*-CN-NFAT pathway (see [61] for review).

Relative to 18S rRNA expression levels and expressed as
concentration (i.e., per milligram tissue), IGF-1Ea expression
levels did not differ significantly between the two groups
(p = 041, p = 0.07; Fig. 3a, b). However, expression levels
of mRNA per nucleus increased 3.5-fold in PH rats compared
to controls (p < 0.01; Fig. 3c). MGF expression levels
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were also increased, irrespective of whether they were
expressed relative to 18S (p < 0.001), concentration
(p < 0.01), or per nucleus (p < 0.001; Fig. 3a—c). In addition
to the activation of mRNA transcription and translation, MGF
has been shown to preserve cardiac function by inhibiting
apoptotic pathways in the myocardium and preventing patho-
logic cardiac hypertrophy [27].

As expression of IGF-1Ea and MGF mRNA per nucleus
were both increased, it is conceivable that the rates of tran-
scription and translation were increased. To investigate this
further, we assessed several markers of protein degradation.
MuRF1 and Mafbx are known to regulate contractile protein
degradation, thereby preventing massive hypertrophy in skel-
etal and cardiac muscle cells [25, 62]. Furthermore, BNIP3
induces mitochondrial dysfunction and autophagy [36] and
apoptosis under hypoxic conditions [38]. Since SDH protein
expression was unexpectedly increased, we also studied
BNIP3 mRNA expression levels.

The expression levels of MuRF1, Mafbx, and BNIP3 were
lower or unaltered in PH rats versus controls when expressed
relative to 18S rRNA (p < 0.01, p < 0.001, and p = 0.99,
respectively; Fig. 3d), whereas an increase was shown in the
expression per nucleus for MuRF1 and BNIP3 (both p < 0.05)
by 1.5- and 2.6-fold, respectively (Fig. 3f). This appeared to
be sufficient to keep the concentration constant, whereas the
concentration of Mafbx was rather decreased (p < 0.01) due to
the constant expression per nucleus (Fig. 3e). Together, these
results show a clear elevation in the mRNA concentration of
growth factors involved in protein synthesis. By contrast, the
concentration of E3 ligases was lower or remained constant.
The increase in translational machinery and signaling was
apparently sufficient to maintain but not to increase the Mb
concentration.

Effects of MCT on transcriptional expression of metabolic
enzymes

GAPDH catalyzes the conversion of glyceraldehyde 3-
phosphate to D-glycerate 1,3-bisphosphate and is a marker of
glycolytic metabolism. Expression levels of GAPDH did not
differ between the two groups when expressed relative to 18S
rRNA or as mRNA concentration (Fig. 4a, b). When consid-
ered per nucleus, GAPDH mRNA expression levels were 2.5-
fold higher in PH rats compared to control (p < 0.05; Fig. 4c).
Because the mRNA concentration does not decrease and the
rRNA increases, this result suggests an increase of the glyco-
lytic capacity in MCT-induced PH. A shift towards glycolytic
metabolism was also observed in myo ’~ mice suggesting
compensation for the lack of Mb [10]. However, Mb concen-
trations in the present study remained constant and thus do not
explain the supposed increase in glycolytic capacity.
Alternatively, a shift towards glycolytic metabolism that was
associated with a transition towards a decompensated state in
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Fig. 4 Effects of monocrotaline-induced pulmonary hypertension on
expression of metabolic markers in rat right ventricle. Expression levels
of glyceraldehyde 3-phosphate dehydrogenase (GAPDH), peroxisome
proliferator-activated receptor gamma coactivator 1-alpha (PGC-1c),
succinate dehydrogenase (SDH), cytochrome ¢ oxidase (COX) 4, and
COX1 are shown relative to 18S (a), as concentration (b) and per
nucleus (¢). Note that the right axis in a and b only applies to COXI.
COXI1 expression levels per nucleus are not presented because this
subunit is encoded by the mitochondrial DNA. ***p < 0.001,
**p < 0.01, *p < 0.05. White bars: control, black bars: PH

PH [51] may have accounted for the increased glycolytic ca-
pacity as shown here. Regardless of the underlying mecha-
nism, this shift may reflect one way to lower oxygen utiliza-
tion of the cardiac myocytes.

We investigated whether SDH mRNA expression levels
were increased. Expressed relative to 18S rRNA, we observed
a decrease in PH rats compared to controls (p < 0.05; Fig. 4a)
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while mRNA concentration remained constant (Fig. 4b). By
contrast, the expression per nucleus was almost twice as high
in PH rats versus controls (p < 0.01; Fig. 4c). Because cardio-
myocyte CSA and SDH activity both increased almost two-
fold in PH rats versus controls, it can be concluded that SDH
mRNA expression was sufficient and in line with the increase
in SDH activity per myocyte.

SDH and COX activities have been shown to be propor-
tional during the development of MCT-induced PH [31]. To
confirm that SDH activity reflected the oxidative capacity, we
also measured mRNA expression levels of both COX1 and
COX4, subunits of cytochrome ¢ oxidase. Although expres-
sion levels of both were decreased relative to 18S (p < 0.05;
Fig. 4a), the mRNA concentrations remained constant
(Fig. 4b). The expression of COX4 mRNA per nucleus was
increased almost twofold, in line with the SDH activity
(Fig. 4c). Expression per nucleus is not shown for COX1
because this subunit is encoded by the mitochondrial DNA
[12]. However, the observed increase in COX4 expression per
nucleus, together with the constant COX1 mRNA concentra-
tion despite the increase in cell size, indicates that expression
levels of both subunits were proportional to SDH activity and
were not limiting the increased oxidative capacity. Therefore,
SDH activity seems an appropriate estimate of VO,,.x used to
estimate PO,crit.

We also investigated how SDH activity was maintained
despite substantial hypertrophy. PGC-1« is known to be the
master regulator of mitochondrial biosynthesis [23, 35].
Following hypoxia, its expression is increased or PGC-1« is
activated because of an increase in ROS production, p38
mitogen-activated protein kinase (MAPK) and AMP-
activated protein kinase (AMPK) levels [18, 48]. However,
although we show that expression levels relative to that of
18S rRNA were lower (p < 0.01; Fig. 4a), the expression per
nucleus was over twofold higher in PH rats versus controls
(Fig. 4c), and there was no difference in PGC-1x mRNA
concentrations between the two groups (Fig. 4c).

We conclude that the upregulation of PGC-1«x per nucleus
is probably the reason why the oxidative capacity was main-
tained. We observed that cardiomyocyte hypertrophy with
maintained SDH activity requires an increase in interstitial
PO,ir- This implies that in order to make use of all mitochon-
drial enzyme activity, oxygen supply to the cardiomyocytes
needs to be increased.

Effects of MCT on transcriptional regulation of proteins
involved in oxygen supply or the regulation thereof

To explain the lack of increase in Mb concentration, we
assessed both Mb and VEGF mRNA expression levels, as
these are indicative of changes in oxygen supply. In addition
to its role in angiogenesis [24], it is suggested that VEGF can
directly stimulate Mb mRNA transcription via a currently
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unknown mechanism [58]. An increase of VEGF expression
could be either the result of enhanced expression or activation
of PGC-1« [1] or resulting from stabilization of HIF-1¢ [48].
It is known that HIF-1x promotes VEGF-induced angiogen-
esis under hypoxic conditions [44]. Although we did not mea-
sure HIF-1q, it is reported to accumulate consistently in PH
[6, 37, 49, 51, 54]. No differences in VEGF mRNA expres-
sion levels relative to 18S rRNA were observed (Fig. 5a), and
although the expression levels per nucleus were increased in
PH rats compared to controls (p < 0.001; Fig. 5¢), there was no
difference between the groups in the VEGF mRNA concen-
tration (Fig. 5b). These findings are consistent with previous
reports that VEGF protein expression remains constant both in
stable and progressive HF in rats after 3 weeks of right ven-
tricular overload [40].

Although a decrease was seen in the expression relative to
18S RNA (p < 0.001) and mRNA concentration (p < 0.01;
Fig. 5a, b), the expression of Mb mRNA per nucleus remained
constant in PH rats (Fig. 5¢). In order to retain a stable Mb
protein concentration with the increased cell size, we had ex-
pected to find a higher expression of Mb mRNA per nucleus.
Our data suggest that the Mb protein concentration was main-
tained due to an increase in the rate of translation, rather than
by an increased rate of transcription. It should be noted that we
did not correct for an increase in interstitial space from 11 % in
controls to 17 % in PH rats [40]. However, such a correction
would only slightly increase the calculated concentration of
Mb mRNA per milligram right ventricle tissue by 12-21 %,
but expression levels per nucleus would remain unaltered.
This extends results of Ruiter et al. [40] who showed that
myoglobin mRNA was also not upregulated at later stages of
progressive PH, whereas it was upregulated in compensated
PH. Furthermore, after 2 weeks of isoproterenol-induced car-
diac hypertrophy, Mb mRNA expression was shown to be
constant [30]. However, this was expressed relative to a cer-
tain amount of RNA. Since we have shown here that total
RNA increased in MCT-induced cardiac hypertrophy, this
may also be the case for isoproterenol-induced cardiac hyper-
trophy and would increase Mb mRNA concentrations in dis-
eased mice. Further research is needed to reveal whether Mb
mRNA is only upregulated at even earlier onset of heart fail-
ure or whether Mb mRNA expression levels are differentially
altered in the different models. Thus, our hypothesis is
rejected and the question remains why Mb mRNA expression
was not upregulated at an early stage of progressive PH. One
explanation for this surprising result is that oxidative metabo-
lism was inhibited in progressive PH [2], thereby preventing
the hypoxia stimulus required for myoglobin expression,
while myocytes are able to adapt to hypoxia by increasing
myoglobin expression in compensated PH.

Previous studies have demonstrated regulation of Mb via
Ca**-CN-NFAT/MEF2 pathways [29] indicating that contrac-
tile activity may contribute to the regulation of Mb expression.
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Fig. 5 Effects of monocrotaline-induced pulmonary hypertension on
mRNA expression levels of myoglobin and vascular endothelial growth
factor in rat right ventricle. Expression levels of myoglobin (Mb) and
vascular endothelial growth factor (VEGF) are presented for both the
PH group and controls relative to 18S (a), as concentration (b) or per
nucleus (¢). ***p < 0.001, **p < 0.01, *p < 0.05. White bars: control,
black bars: PH

Furthermore, it has been demonstrated that hypoxia in combi-
nation with contractile activity enhances Mb expression in
C,C;, myotubes, mouse skeletal [20] and heart [26] muscle,
and zebrafish high oxidative muscles [19]. However, this was
not the case in our MCT-induced overload of the
cardiomyocytes of the right ventricle, despite the fact that in-
creased power output and reduced oxygen tension (judging
from increased HIF-1o expression [6, 37, 49, 51, 54]) were
likely present. However, Mb expression was increased follow-
ing lipid supplementation in hypoxic C,C, cells and rat soleus

muscle, independent of CN signaling, suggesting that other
pathways for Mb expression do exist [46]. Furthermore, as
mentioned before, iron supplementation [39] and treatment
with thyroid hormone [14, 22] both successfully increased
Mb expression in PH patients and rat, respectively, and thus
may serve as required additional stimuli.

In conclusion, this study shows that Mb mRNA expression
was not sufficient to increase Mb protein concentrations even
at an early stage of progressive PH. Upregulating Mb mRNA
expression, e.g., by supplementation of iron [39] and fatty acid
[46] and/or stimulation of the thyroid hormone receptor [14],
is therefore a promising therapeutic strategy. Further research
should reveal the optimal combination of hypoxia, load, and
dietary status to increase Mb mRNA and protein levels in
chronic heart failure.
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