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Abstract Ca2+-activated Cl− channels (CaCCs) are a class of
Cl− channels activated by intracellular Ca2+ that are known to
mediate numerous physiological functions. In 2008, the mo-
lecular identity of CaCCs was found to be anoctamin 1
(ANO1/TMEM16A). Its roles have been studied in electro-
physiological, histological, and genetic aspects. ANO1 is
known to mediate Cl− secretion in secretory epithelia such
as airways, salivary glands, intestines, renal tubules, and sweat
glands. ANO1 is a heat sensor activated by noxious heat in
somatosensory neurons and mediates acute pain sensation as
well as chronic pain. ANO1 is also observed in vascular as
well as airway smooth muscles, controlling vascular tone as
well as airway hypersensitivity. ANO1 is upregulated in nu-
merous types of cancers and thus thought to be involved in
tumorigenesis. ANO1 is also found in proliferating cells. In
addition to ANO1, involvement of its paralogs in pathophys-
iological conditions was also reported. ANO2 is involved in
olfaction, whereas ANO6 works as a scramblase whose mu-
tation causes a rare bleeding disorder, the Scott syndrome.
ANO5 is associated with muscle and bone diseases.
Recently, an X-ray crystal structure of a fungal TMEM16
was reported, which explains a precise molecular gating

mechanism as well as ion conduction or phospholipid trans-
port across the plasma membrane.
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Introduction

Cl− channels activated by Ca2+ are collectively called Ca2+-
activated Cl− channels (CaCCs). CaCCs are found in a variety
of species ranging from invertebrates to mammals. In addi-
tion, activity of CaCCs was observed in almost all tissues. The
wide distribution of CaCCs in various tissues indicates its
diversity in physiological functions. However, a detailed de-
scription of their functional roles was not obtained before a
molecular identity of CaCCs was discovered. The biophysical
properties of CaCCs were well described in a Xenopus oocyte,
where CaCCs are important for blocking polyspermy [57].
One of the best known functions of CaCCs in mammals is
the Cl− secretion in secretory epithelia [39, 56]. In line with
this, activities and properties of CaCCs were described
in many secretory epithelia such as airway, salivary
gland, pancreatic ductal cells, and intestines [39, 56].
CaCC action is not limited to Cl− secretion in epithelia.
CaCC activity was found in many excitable tissues such
as smooth muscles, cardiac muscles, olfactory sensory
neurons, and somatosensory neurons, too [6, 27, 53,
54, 60, 75, 76, 120]. CaCCs are activated by intracel-
lular Ca2+ exhibiting an outwardly rectifying current-
voltage relationship at relatively low Ca2+ [57, 58].
Ca2+-activated currents are voltage dependent and show
a greater current amplitude in a depolarization state than
at hyperpolarization.
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A candidate gene, TMEM16A, for CaCCs was cloned by
three groups with different cloning strategies [18, 94, 116].
TMEM16Awas renamed as anoctamin 1 (ANO1) because it
was predicted to have eight transmembrane (TM) domains
[116]. ANO1 has nine additional paralogs ranging from
ANO2 (TMEM16B) to ANO10 (TMEM16K). ANO1 follows
the biophysical and pharmacological properties of CaCCs.
ANO1 is blocked by nonselective Cl− channel blockers as
well as relatively specific blockers to CaCCs [116]. ANO1
and ANO2 are activated by intracellular Ca2+ at the physio-
logical range [45, 86].Whether other paralogs are activated by
physiological concentration of Ca2+ is not clear [32]. Thus,
only ANO1 and ANO2 are considered as CaCCs.

Among those 10 proteins, ANO1 has been most extensive-
ly studied so far. It is involved in many physiological func-
tions such as fluid secretion in many secretory epithelia,
smooth muscle contraction, nociception, and most surprising-
ly, tumorigenesis and cell proliferation. ANO2 has been found
in olfactory bulb; thus, a role in mediating olfaction was sug-
gested [87, 99]. However, a genetic ablation of ANO2 in ol-
factory sensory neurons fails to show a phenotype for olfac-
tion [11]. ANO2 is also expressed in the hippocampus and
modulates a synaptic transmission in the brain [45]. ANO3
is expressed highly in dorsal root ganglion (DRG) neurons
controlling nociception. ANO5 is mainly found in muscles
and bones [72]. A missense mutation of Ano5 is associated
with gnathodiaphyseal dysplasia, an autosomal dominant
inherited bone disorder [108], and muscular dystrophy or my-
opathy [12]. However, ANO5 is not expressed in the plasma
membrane and is not active as a channel [108]. ANO6 is a
scramblase that transports phospholipids bidirectionally be-
tween the two leaflets [102, 103, 117, 119]. The scramblase
activity of ANO6 is Ca2+ dependent. ANO4, ANO8, and
ANO9 also show scramblase activity [102]. A mutation of
Ano6 that truncates the ANO6 protein is associated with a rare
bleeding disorder, the Scott syndrome [103]. Functions of
other anoctamin family genes have not been well described
until now. These functions of ANO family genes are discussed
in details with focus on tumorigenesis and cell proliferation.

Mechanisms of activation

Since ANO1 was cloned, the mode of Ca2+ action or the Ca2+

binding site of ANO1 was proposed by many scientists [106,
114, 118]. Amutagenesis study revealed that mutations of Glu
residues markedly shifted the dose-response curve of Ca2+ in
activating ANO1 [106, 118]. These Glu residues were later
found to consist of the Ca2+ caging residues [14]. Recently, the
X-ray crystal structure was discovered [14]. Brunner and col-
leagues found a TMEM16 gene in fungus, Nectria
haematococca (nhTMEM16), which functions as a phospho-
lipid scramblase activated by Ca2+, but not as a channel. After

crystallization, the protein structure of nhTMEM16 at ∼3.5 Å
resolution was obtained. The functional nhTMEM16 is a di-
mer consisting of two identical subunits. Each subunit has 10
TM helices instead of 8. When ANO1 was cloned, anoctamin
1 was named after its eight-TM domain topology because all
programs in the public domain predicted an eight-TM domain
topology for TMEM16A [116]. In the lateral side of each
subunit, there is a narrow crevice that spans the entire mem-
brane. This cavity is called the subunit cavity [14]. The surface
of the subunit cavity is hydrophilic even though it is buried in
the plasma membrane. The Ca2+ binding site is located in the
subunit cavity at a distance of one third of the membrane from
the intracellular surface. In the subunit cavity of nhTMEM16,
five acidic residues and an asparagine residue in the helices 6–
8 that are conserved in all isoforms of human anoctamin fam-
ily form a Ca2+ cage that harbors probably two Ca2+ atoms.
Previously in mutagenesis studies, some of the acidic residues
were predicted its engagement for Ca2+ binding [106, 118].
This subunit cavity appears to be a pore for ion conduction or
phospholipid transport and a Ca2+ binding site. Then, how
ANO1 is gated by Ca2+? One simple model is that upon
Ca2+ binding, an allosteric change induces an opening of the
pore leading to conduction. Then, how do anoctamin genes
work as a channel and a scramblase? One good model is
ANO6 because it is a scramblase and forms a channel [117].
How does ANO6 work as phospholipid scramblase and a
channel activated by Ca2+? Recently, Yu and colleagues an-
swered this question [119]. Using a phosphatidyl serine-
sensitive fluorescent probe, they could measure Ca2+-activat-
ed currents and scramblase activity at the same time. Currents
are activated slowly 8 min after forming whole cells by high
intracellular Ca2+ (>20 μM) in cells expressing ANO6. These
Ca2+-induced currents are coincidental with the scramblase
activity. In addition, ANO6 currents show poor selectivity
on cations and anions, as if they are leaky currents conducting
through large pores [119]. More importantly, constructing var-
ious chimeras of ANO6 with ANO1 that does not have
scramblase activity, a domain in ANO6 essential for its
scramblase activity was searched. A small peptide region
spanning only 15 amino acids between TM4 and TM5 of
ANO6 is critical for the scramblase activity. When this
scramblase domain of ANO6 was replaced with the innate
region of ANO1, the ANO1-ANO6-ANO1 chimera gained
the scramblase activity [119]. In addition, this chimera ex-
hibits two different currents activated by Ca2+, one is a fast-
conducting current blocked by MONNA, an ANO1-specific
blocker [78], and the other one is a slowly-conducting current
that is not blocked by MONNA. Thus, this brilliant study
leads to the conclusion that ions flow through the pathway
where the phospholipids pass through in ANO6 (Fig. 1).
However, because the activation kinetics and ion selectivity
of ANO1 and ANO6 currents are quite different and Ca2+-
induced currents of the ANO1-ANO6-ANO1 chimera have
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different sensitivity levels to MONNA, Cl−-conducting pores
may be different from those conduits transporting phospho-
lipids. Therefore, ANO1may have ion-conducting pores other
than the phospholipid transport pathway. However, the latter
idea may not be easily accepted because of a report from Jan’s
group. Peters and colleagues scanned the basic residues in the
10 TM helices of ANO1 and found that four basic residues
that clustered around the opening of the subunit cavity of
nhTMEM16 are important for determining ion selectivity of
ANO1 [85]. These results strongly indicate that the subunit
cavity forms an ion-conducting pore. Because the subunit
cavity contains the scramblase domain of ANO6 [119], thus,
ions conducting through ANO1 may use the same pathway as
phospholipids are transported (Fig. 1). To determine whether
an ion-conducting pore in ANO1 uses the same pathway that
phospholipids use in ANO6, further studies are needed
to be done.

Anoctamins in nociception

Somatosensory neurons are implicated in touch, propriocep-
tion, and pain. DRG neurons extend their axons to the periph-
eral terminals where nociceptive cues such as heat, cold, me-
chanical, and chemical stimuli are transduced to electrical sig-
nals. CaCCs in DRG neurons are known to be activated by
physiological intracellular Ca2+, which depolarizes the senso-
ry neurons [6, 95, 98]. ANO1 is expressed mainly in a small

diameter of DRG neurons, which are also positive for TRPV1,
a nociceptive marker [25]. Surprisingly, ANO1 is known to be
activated by noxious heat over ∼44 °C [24, 25], which is
slightly over the threshold temperature for pain in human
[20, 107]. The activation by heat appears to be direct because
ANO1 is activated by heat in the absence of intracellular Ca2+

[25]. In addition, the application of heat to DRG neurons
isolated from TRPV1-deficient mice depolarizes the neurons,
suggesting ANO1’s role for the depolarization. A physiolog-
ical phenotype was determined with mice deficient of ANO1
in DRG neurons. Heat-activated chloride currents are reduced
in DRG neurons from ANO1 conditional knockout mice.
More importantly, mice lacking ANO1 in DRG neurons are
significantly insensitive to noxious heat, suggesting that
ANO1 mediates acute thermal pain [25]. In addition to the
heat-evoked acute pain, ANO1 appears to be involved in in-
flammatory and neuropathic pain. ANO1 conditional knock-
out mice show a reduction in inflammatory hyperalgesia as
well as mechanical allodynia in a neuropathic pain model
[61]. Recently, Tominaga and his group reported that
TRPV1 and ANO1 interact with each other physically and
functionally. Blocking the ANO1 activity significantly re-
duces the capsaicin-induced pain-related behaviors [104].
Thus, the TRPV1 and ANO1 interaction provides pain-
enhancing effects on nociceptors.

A study done by Gamper and his group revealed that bra-
dykinin, an algogen released when tissues are damaged, opens
ANO1 via the B2 receptor and phospholipase C pathway in
nociceptors [64]. Opening of ANO1 causes depolarization of
membrane and significantly stimulates action potential firing
in DRG neurons [64]. In this study, ANO1 is known to be
localized in very close proximity to B2 receptor, IP3, and en-
doplasmic reticulum in DRG neurons.

ANO3 (TMEM16C) appears to contribute to nociception.
ANO3 is associated with a sodium-activated potassium
(Slack) channel [44]. ANO3 is expressed in isolectin B4-
positive DRG neurons. Somehow, genetic ablation of ANO3
reduces the expression of Slack channel as well as its currents.
In addition, ANO3 overexpression promotes an increase in
Slack channel activity. In nociceptors, Slack is responsible
for reducing AP firing depending on intracellular sodium con-
centrations [91]. Thus, because ANO3 enhances Slack activ-
ity, ANO3 activity would dampen the excitability of
nociceptors. Indeed, ANO3-ablated rats reveal nociceptive
hypersensitivity [44].

ANO1 in smooth muscles

Many research groups have studied CaCC activity in smooth
muscle cells from ear, coronary, aortic, and mesenteric arteries
and portal vein [3, 31, 55, 59, 82]. Because of the significant
role of CaCCs in vascular contractility and proliferation,
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Ca2+ Ca2+
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Fig. 1 A schematic diagram illustrating the scramblase and ion-
conducting mechanism of anoctamin family. When the subunit cavity
opens after Ca2+ binding, phospholipids and ions are transported through
the subunit cavity
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molecular candidates for CaCCs have been awaited to prove
their in vivo vascular functions [23, 113]. Indeed, ANO1 ex-
pression and activity were confirmed in smooth muscle cells
from various arteries and veins [28, 29, 67, 105]. An ANO1
blocker induces vasorelaxation in murine and human arteries
[29]. An active functional role of ANO1 in vascular smooth
muscles further came from the study of myogenic response in
cerebral arteries. A myogenic response represents a pressure-
induced constriction of arteries, which is an innate reflex
mechanism that controls local blood flow. Bulley and col-
leagues found that ANO1 is actively involved in the myogenic
response in the cerebral artery [16]. Knockdown of ANO1
suppresses pressure-induced vasoconstriction of the cerebral
artery or pressure-induced depolarization of vascular smooth
muscle cells [16]. In addition, the ANO1 expression level and
its activity are significantly upregulated in various hyperten-
sion models [38, 101].

ANO1 is not present in smooth muscle cells in gastrointes-
tinal tracts. However, ANO1 is expressed in the interstitial
cells of Cajal, the pacemaker cells of the stomach and intes-
tines [43, 47]. More importantly, smooth muscle contraction
in the stomach of ANO1-deficient mouse was markedly atten-
uated [43, 47].

ANO1 is also expressed in smooth muscle cells and epi-
thelial cells in the airway [46]. In addition, ANO1 expression
and activity are increased in airway smooth muscle cells from
asthmatic mouse models and human asthmatic patients.
Inhibition of ANO1 activity also reduces airway smooth mus-
cle contraction challenged by cholinergic agonists [46]. Thus,
these results suggest that ANO1 mediates hypersensitivity in
asthmatic airway.

ANO1 for epithelial Cl− secretion

Epithelium is a tissue that covers surfaces, cavities, or glands
of the body. Secretory epithelial cells are necessary for fluid or
electrolyte secretion in various biological processes [83, 110].
Especially, Cl− flow in those cells plays a crucial role in de-
termining the way of fluid or electrolyte secretion [7]. As Cl−

is important for transepithelial secretion, CaCC activity was
observed in numerous transepithelial tissues, including airway
epithelium, salivary glands, pancreatic ductal cells, and intes-
tinal epithelium [39]. In many transport epithelia, CaCCs are
considered as an alternative pathway of Cl− secretion for
CFTR. Thus, the role of CaCC in epithelial secretion was
vigorously studied. Therefore, ANO1 became a primary target
for the study of Cl− secretion in these tissues.

In airway, transport of Cl− ions across the airway epitheli-
um is required for the protecting mechanism against microbial
infection because the Cl− secretion accompanied with water
secretion induces hydration of the airway epithelium. ANO1
is expressed in mouse and human airway epithelial cells [43,

46, 96]. In a previous study, it was known that T helper 2
(Th2) cytokines such as IL-4 and IL-13 upregulate Ca2+-de-
pendent Cl− secretion in the human bronchial epithelium [40].
Based on this information, Caputo and colleagues were able to
clone Ano1 from bronchial epithelial cells using the differen-
tial hybridization after treating the epithelial cells with IL-4
[18]. Thus, an ANO1’s role for Cl− secretion in the bronchial
epithelium was expected. Indeed, knockdown of ANO1 by
small interfering RNA (siRNA) treatment significantly
inhibited the Ca2+-dependent Cl− secretion in the IL-4-
treated epithelial cells [18]. Furthermore, ANO1 expression
was strongly upregulated in airway epithelial cells after stim-
ulation of IL-4 and IL-13, a condition that mimics asthmatic or
allergic inflammation [46, 96]. The increased expression of
ANO1 was also found in airway epithelial cells of Th2
cytokines-high human asthma patients [46]. In normal condi-
tion, ANO1 was found to be minimally expressed in goblet
cells which were co-expressed with mucin 5 AC, a marker for
goblet cell. However, the expression of ANO1 was strongly
enhanced in mucin 5AC-positive goblet cells of ovalbumin-
challenged mice or asthmatic patients [46]. In addition, pyo-
cyanin, a major virulence factor of Pseudomonas aeruginosa,
or bacterial supernatants isolated from P. aeruginosa upregu-
lated ANO1 expression in mucin 5AC-positive goblet cells
and Ca2+-dependent Cl− secretion in bronchial epithelial cells
[17]. Thus, ANO1 appears to be important for Cl− secretion in
the bronchial epithelium in pathologic conditions.

ANO1 is also observed in the intestinal epitheliumwhich is
responsible for absorptive and secretory functions in intes-
tines. ANO1 is expressed in epithelial cells of the small intes-
tine and colon [80, 93]. In addition, carbachol-induced Cl−

secretion in the distal colon was lacking in ANO1 knockout
mice [80]. Schreiber and colleagues constructed conditional
knockout mice that lack an ANO1 gene in the intestinal epi-
thelium and found that the conditional knockout in the colon
suppressed Ca2+-dependent secretion of Cl− in the colon [93].
In contrast, ANO1 blockers minimally inhibited the Ca2+-de-
pendent Cl− secretion in colonic cell lines [74]. Interestingly,
the acute exposure of epidermal growth factor potentiated
Ca2+-dependent Cl− secretion as well as elevated ANO1 ex-
pression in colonic epithelial cells [73]. A rotavirus toxin,
NSP4, known for inducing diarrhea in infants also causes
Ca2+-dependent transepithelial secretion. When a synthetic
NSP4 peptide was treated on ANO1-transfected HEK293
cells, it induced the Ca2+-dependent Cl− secretion by activat-
ing ANO1 [81]. Thus, it is clear that ANO1 plays a role in Cl−

secretion in intestines.
Activation of the CaCCs in the salivary gland triggers the

saliva secretion [70]. In line with this, ANO1 immunoreactiv-
ity was found in the apical membrane of the mouse salivary
gland [88, 116]. In addition, knockdown of ANO1 by siRNA
treatment reduces salivary secretion induced by pilocarpine
[116]. Two groups found a strong phenotype in ANO1-
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ablated mice. Systemic knockout of ANO1 abolished a Ca2+-
activated Cl− current in submandibular acinar cells as well as
fluid secretion in the submandibular gland [88]. Moreover, a
targeted deletion of ANO1 at the salivary gland completely
eliminated Ca2+-dependent Cl− current and salivary secretion
[19]. Thus, it is clear that ANO1 is critical for the Cl− efflux
and salivation in the salivary gland.

ANO1 appears to be essential for pancreaticβ cell function
[26].Most of the pancreatic islet cells express ANO1. Because
fluctuation of membrane potential along with action potential
firings is important for insulin secretion, the effect of ANO1
blockade on glucose-induced membrane depolarization was
determined by Crutzen and colleagues [26]. Surprisingly,
glucose-induced insulin secretion as well as glucose-induced
membrane potential oscillation are abolished by an ANO1-
specific blocker, T-AO1, in pancreatic islets or β cells [26].
Thus, this study clearly suggests that ANO1 is critical for the
glucose-induced membrane fluctuation in β cell that is neces-
sary for insulin secretion. In line with this, ANO1
haploinsufficiency impairs insulin secretion in mice [115].

ANO1 is also expressed in Madin-Darby canine kidney
(MDCK) epithelial cell line which is widely used for studying
the growth of kidney cysts, which suggests a role in renal
function [15]. Knockdown of ANO1 using siRNA inhibits
UTP-induced Cl− secretion in MDCK cells. Similarly, the
knockdown of ANO1 or ANO1 inhibitor suppresses cyst
growth in the model of kidney cyst growth [15]. Besides the
cyst growth, ANO1 mediates acid secretion and protein reab-
sorption in the proximal tubules of the kidney. Faria and col-
leagues confirmed a strong expression in the proximal tubule
epithelium in the mouse and human kidney [37]. Mice lacking
ANO1 in tubular epithelial cells elicit proteinuria and a reduc-
tion in proton secretion [37]. Thus, ANO1 plays a role in Cl−

secretion in the renal proximal tubule, which is required for H+

secretion to reabsorb HCO3
− in the renal tubules.

Several studies also suggest the secretory function of
ANO1 in the biliary and sweat gland epithelia. In the mouse
and human biliary epithelium, bile flow increases Cl− currents
[33]. Silencing of ANO1 by siRNA treatment significantly
attenuated the flow-stimulated Cl− currents in human biliary
epithelial cells [33]. In addition, in human NCL-SG3 sweat
gland cells, ANO1 was responsible for Ca2+-dependent Cl−

secretion [35]. ANO1 transcripts were also identified in native
human sweat gland tissues [35].

ANO1 function in tumorigenesis and proliferation

The growing evidence of the role of ANO1 in cancer has been
suggested before its molecular identity was discovered.
FLJ10261 gene (now known as Ano1) was identified in the
CCND1-EMS1 locus on human chromosome 11q13 which is
frequently amplified in various types of tumors [52].

Structural analysis predicted that FLJ10261 protein possessed
eight TM domains possibly functioning as an ion transporter
[52]. Since the FLJ10261 gene was found to be uniformly
expressed with a high level of gastrointestinal stromal tumors
(GISTs) thereby being named DOG1 (discovered on GIST1)
[111], ANO1/DOG1 has been emerging as a potential diag-
nostic marker for GIST [36, 48, 62, 71, 77].

AlthoughANO1 is found to be widely expressed in various
tissues including the secretory epithelium [49], Ano1 has been
found to be upregulated in numerous carcinomas including
head and neck squamous cell carcinoma (HNSCC) [5, 30,
34], lung cancer [50], breast cancer [13, 112], colorectal can-
cer [100], pancreatic ductal adenocarcinoma [92], gastrointes-
tinal stromal tumor [111], esophageal squamous cell carcino-
ma [51, 97], chondroblastoma [2], salivary gland tumor (des-
ignated as ORAOV2, oral cancer overexpressed 2) [22], oral
cancer (designated as TAOS1, tumor-amplified and
overexpressed sequence 1) [42, 63], uterine leiomyosarcoma
[90], glioma [65], and prostate cancer [66]. The ANO1 ex-
pression in various tumors is summarized in Table 1.

Ano1 gene amplification in tumors showed a significant
correlation with poor survival rate in cancer patients [13, 34,
89], positive correlation with tumor grade [66], the increase in
cell migration [5], and tumor growth or metastasis [97]. Thus,
ANO1 is highly associated with tumor and its progression.
Then, what is the role of ANO1 in tumorigenesis? Many in-
vestigations have highlighted signaling pathways of ANO1-
mediated tumor progression, which requires multiple cellular
events including cell proliferation, migration/invasion, tumor
growth, and metastasis in vivo. Duvvuri and colleagues found
the mitogen-activated protein kinase (MAPK) activation dur-
ing ANO1-mediated tumor progression [34]. ANO1 overex-
pression induces tumor growth in vivo and cell proliferation
by activating extracellular signal-regulated kinase (ERK)1/2
via the ras-raf-MEK-ERK pathway and cyclin D1, but not
activating AKT [34]. Knockdown of ERK or specific inhibi-
tors of MEK/ERK blocks the ANO1-mediated cell prolifera-
tion. In addition, ANO1 knockdown abrogated cell prolifera-
tion in vitro and tumor growth of HNSCC tumor xenografts,
which parallels with the cell cycle arrest at G1/S phase
transition [34].

ANO1 has been also suggested as a regulator of epidermal
growth factor receptor (EGFR) signaling. EGFR, a receptor
tyrosine kinase, undergoes dimerization upon ligand binding
and then phosphorylation of tyrosine residues, which leads to
the initiation of the MAPK or PI3K-AKT pathway. EGFR has
been implicated to be ubiquitously overexpressed in HNSCC
[4]. The phosphorylation of EGFR exhibits poor prognosis
such as metastatic lymph node and early relapse in HNSCC
patients [41]. Knockdown of ANO1 diminishes cell viability
and induces apoptosis, indicating pro-survival and anti-
apoptotic function of ANO1 [13]. ANO1 knockdown strongly
suppresses EGFR phosphorylation due to a reduction in
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autocrine EGFR ligand secretion. ANO1 inhibition subse-
quently leads to the reduction in phosphorylation of
ERK1/2, AKT and v-src in breast cancer cells, HNSCCs,
and esophageal squamous carcinoma cell lines [13]. ANO1
inhibition also blocks calcium/calmodulin-dependent protein
kinase II (CaMKII) phosphorylation. Thus, these results imply
that ANO1 regulates cell viability via EGFR-AKT/SRC/
MAPK pathway and calcium-dependent CaMKII signaling.
Furthermore, ANO1 was identified to interact and form a
functional complex with EGFR in HNSCC to regulate cell
proliferation. Thus, while ANO1 expression stabilized
EGFR, EGFR signaling upregulated ANO1 protein level,
which establishes positive cooperation between ANO1 and
EGFR [9].

Additionally, ANO1 was reported to associate physically
with ezrin-radixin-moesin (ERM) [84]. ERM proteins cross-
link between plasma membrane and actin filaments involving
many cellular events including cytoskeletal organization, cell
division, and cell migration/invasion [109]. In normal state,
ERM proteins are suppressed by an intramolecular head-to-
tail association. In abnormal state, ERM becomes activated
via phosphorylation by many ligands including EGF and
platelet-derived growth factor (PDGF) [8]. Sphingosine-1-
phosphate was suggested to mediate EGF-induced ERM
phosphorylation leading to cancer cell invasion [1, 79].
Interestingly, an ANO1 current was reduced by moesin
knockdown [84], indicating ANO1 regulation by ERM stoi-
chiometry. Thus, an ANO1-ERM interaction might provide a
clue to the role of ANO1 in EGF-driven tumor cell migration
and invasion.

How can ANO1 be highly amplified in tumors?
Transcriptional regulation occurring in the ANO1 promoter
region could provide a clue to the aberrant ANO1 expression
in cancer. Indeed, the promoter region contains putative bind-
ing sites for an androgen response element (ARE), which
allow testosterone-induced ANO1 upregulation in prostate
cells [21]. Signal transducer and activator of transcription 6
(STAT6) binding site is also found in the human ANO1 pro-
moter region, leading to IL-4-induced ANO1 upregulation
[69]. In addition, ANO1 expression may be tightly regulated
by epigenetic factors. For example, human papilloma virus
(HPV)-negative tumors express a higher level of ANO1 than
HPV-positive ones [30]. A methylation level within the
ANO1 promoter region was lower in HPV-negative tumors
than that in HPV-positive tumors. In addition, histone
deacetylase (HDAC) inhibitors downregulated ANO1 expres-
sion and its activity in prostate or breast cancer cell lines,
resulting in suppression of cancer cell viability [68].

The role of ANO1 in promoting cell proliferation seems to
be not confined in the tumor microenvironment. In normal
head and neck tissues, ANO1 knockout mice showed de-
creased cyclin D1 expression as compared to the wild type,
suggesting that ANO1 influences the basal level of cell

proliferation [34]. Recently, Cha and colleagues demonstrated
that ANO1 is essential for benign prostatic hyperplasia (BPH)
[21]. Ano1 was highly amplified in testosterone-
treated prostate epithelia [21]. The presence of androgen re-
sponse element in the ANO1 promoter region supports the
transcriptional control of ANO1 by testosterone [21]. More
importantly, inhibition of ANO1 resulted in the suppression
of cell proliferation and prostate enlargement. Thus, ANO1
activity appears to control the testosterone-induced cell
proliferation [21].

It remains unclear whether ANO1-mediated tumor pro-
gression or cell proliferation is merely due to the increased
mRNA level of ANO1 or due to the augmented channel ac-
tivity. Surprisingly, inhibition of ANO1 with blockers or mu-
tation of ANO1 in putative pore region suppresses growth
promotion [13, 21, 34]. Thus, it is remarkable that the func-
tional channel activity of ANO1 is required for cell viability,
promotion of tumor growth, and cell proliferation. On the
contrary, whereas several compounds that are known to inhibit
ANO1 activity fail to inhibit ANO1-dependent cell prolifera-
tion, CaCCinh-A01, which promotes ANO1 degradation, ef-
ficiently inhibits cell proliferation [10]. This result implies that
the protein level of ANO1 is more requisite for ANO1-
induced cell proliferation rather than ANO1 channel function.
Because the previous investigations on ANO1 in cancer have
a limit to measure channel activity, therefore, we cannot dif-
ferentiate between overall increase in channel expression and
increased channel activity in tumors. Future experiments are
needed to be done on examining channel activity in tumors
compared to normal cells. The other possible cause is a change
in intracellular Cl− concentration [Cl−] in cancer cells. As
ANO1 is a channel embedded within the plasma membrane
conducting Cl−, opening of ANO1 results in change in
intracellular [Cl−] or membrane potentials. This change
in intracellular [Cl−] or membrane potentials may sub-
sequently activate oncogenic signaling cascades such as
MAPK or AKT. However, which signaling pathway is
induced by the activation of ANO1 in cancer cells re-
mains still unknown. Further work will be needed to
clarify this signaling cascade.
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