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Abstract Cardiac atrophy as a consequence of mechanical
unloading develops following exposure to microgravity or
prolonged bed rest. It also plays a central role in the reverse
remodelling induced by left ventricular unloading in patients
with heart failure. Surprisingly, the intracellular Ca2+ tran-
sients which are pivotal to electromechanical coupling and
to cardiac plasticity were repeatedly found to remain unaffect-
ed in early cardiac atrophy. To elucidate the mechanisms
underlying the preservation of the Ca2+ transients, we inves-
tigated Ca2+ cycling in cardiomyocytes from mechanically
unloaded (heterotopic abdominal heart transplantation) and

control (orthotopic) hearts in syngeneic Lewis rats. Following
2 weeks of unloading, sarcoplasmic reticulum (SR) Ca2+

content was reduced by ~55 %. Atrophic cardiac myocytes
also showed a much lower frequency of spontaneous diastolic
Ca2+ sparks and a diminished systolic Ca2+ release, even
though the expression of ryanodine receptors was increased
by ~30 %. In contrast, current clamp recordings revealed
prolonged action potentials in endocardial as well as epicar-
dial myocytes which were associated with a two to fourfold
higher sarcolemmal Ca2+ influx under action potential clamp.
In addition, Cav1.2 subunits which form the pore of L-type
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Ca2+ channels (LTCC) were upregulated in atrophic myocardi-
um. These data suggest that in early cardiac atrophy induced by
mechanical unloading, an augmented sarcolemmal Ca2+ influx
through LTCC fully compensates for a reduced systolic SR
Ca2+ release to preserve the Ca2+ transient. This interplay in-
volves an electrophysiological remodelling as well as changes
in the expression of cardiac ion channels.

Keywords Cardiac atrophy . Ca2+ cycling . Rat .

Heterotopic heart transplantation . Cardiac unloading

Introduction

Cardiac atrophy can be observed during prolonged bed rest,
space flight or cachexia [19]. It also plays a central role in the
reverse remodelling induced by left ventricular unloading in
patients with heart failure [19]. In contrast to hypertrophic
remodelling, cardiac atrophy is generally not well under-
stood. Intracellular Ca2+ handling plays an essential role in
regulating cardiac function and is pivotal to adaptations in
hypertrophic cardiac remodelling [18, 19]. An early cellular
response to a hypertrophic stimulus is the prolongation of
ventricular action potentials (AP) which greatly facilitates
Ca2+ influx via L-type Ca2+ channels (LTCC) [10, 48, 53]. In
addition, phosphorylation of phospholamban (PLB) is in-
creased, thus relieving the sarcoplasmic reticulum (SR)
Ca2+ ATPase (SERCA) from its inhibition [7, 28]. As a
consequence, Ca2+ content of the SR and systolic Ca2+

release from the SR are enhanced [3, 5, 16, 31, 53]. Collec-
tively, these alterations cause larger systolic Ca2+ transients
which are thought to allow adaptation to the increased car-
diac workload in early hypertrophy [9, 11, 17, 43, 47]. We
have previously reported a reduced phosphorylation of sev-
eral phosphoproteins, including PLB, in cardiac atrophy
[41]. Unphosphorylated PLB exerts a stronger inhibitory
effect on SERCA which should lead to a reduced SR Ca2+

load. Hence, one may expect that Ca2+ release during systole
is diminished and amplitudes of systolic Ca2+ transients are
dampened in atrophic hearts. The shape of the systolic Ca2+

transient, however, was found to be unaltered in early atro-
phic remodelling [22, 46].

The mechanisms underlying the maintenance of the Ca2+

transient in early cardiac atrophy are unresolved. Short-term
cardiac unloading causes a marked prolongation of ventric-
ular APs and a higher density of the L-type Ca2+ current [40].
Accordingly, a reduced systolic Ca2+ release from the SR may
be compensated by a concurrent upregulation of the Ca2+ inflow
from the extracellular space in atrophic cardiac myocytes. To
test this hypothesis, we determined the effect of cardiac atrophy
induced by mechanical unloading on key components of myo-
cardial Ca2+ cycling.

Methods

Animal model

Cardiac atrophy was induced in syngeneic male Lewis rats
(270±5 g, n=34, Charles River, Sulzfeld, Germany) by
heterotopic abdominal heart transplantation as previously
described [12, 14, 21, 22, 29, 40, 41, 45, 46]. The donor
heart was harvested under deep anaesthesia (thiopental-so-
dium, 100 mg/kg body weight) and was transplanted into the
abdominal cavity of the recipient rat under isoflurane anaes-
thesia (2–2.5 %). Perioperative pain management was
performed using buprenorphine (0.1 mg/kg body weight)
and metamizole-sodium (300 mg/kg body weight). The aor-
tic and pulmonary vessels of the donor heart were
anastomized infrarenally to the abdominal aorta and the
inferior vena cava of the recipient animal, respectively. In
this configuration, coronary perfusion is conserved and left
ventricular filling is substantially reduced. Spontaneous con-
traction returned within minutes after reperfusion and was
checked regularly. The transplanted (atrophic) and the
orthotopic (control) hearts of the recipient animal were re-
moved in deep anaesthesia (thiopental-sodium, 100 mg/kg
body weight) 2 weeks after transplantation. An unloading
period of 2 weeks was chosen to induce a stable cardiac
atrophy in accordance with previous studies [12, 14, 40,
41] while avoiding the detrimental effects of prolonged
unloading on cardiac excitation–contraction coupling and
contractility [21, 22, 29, 45]. For all experiments, the
orthotopic hearts served as corresponding controls. Animal
experiments were conducted in accordance with institutional
guidelines and were approved by local authorities (Ministry
of Science and Health, Hamburg, Germany, permit number
02/04). Furthermore, they complied with the European Con-
vention for the Protection of Vertebrate Animals Used for
Experimental and Other Scientific Purposes (Council of
Europe No. 123).

Isolation of cardiomyocytes

For single-cell experiments, cardiac myocytes were enzy-
matically isolated from the control or the atrophic heart of
one animal. Since the time span between sacrificing the
animal and the beginning of the perfusion using the
Langendorff apparatus must be kept at a minimum to ensure
isolation of cardiac myocytes of high quality, we randomly
assigned either the orthotopic or the transplanted heart to the
cell isolation procedure. The other heart was discarded.
Cardiac myocytes were isolated from the endocardial and
epicardial layer of the center part of the left ventricular free
wall [15, 40, 51, 52]. For experiments depicted in Fig. 3b,
myocytes were isolated from control male Lewis rats (270 g,
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n=3). Following isolation, cells were stored in a Ca2+-free
modified Tyrode's solution. Only single rod-shaped cells
with clear cross-striation and no spontaneous contractions
were used for the experiments within 6 h following the
isolation. All experiments were performed at a temperature
of 21–24 °C.

Ca2+ epifluorescence measurements

Ca2+ epifluorescence was recorded as previously described
[34]. Cells were incubated in an extracellular solution (con-
taining [mmol/l]: NaCl 135, KCl 4.7, KH2PO4 0.6, Na2HPO4

0.6,MgSO4 1.2, Hepes 10, glucose 20, CaCl2 1.25) with Fura-
2-AM (4 μmol/l). Cells were transferred into a chamber (Cell
MicroControls, Norfolk, VA, USA) mounted on an inverted
microscope (Nikon Eclipse TS100). Ca2+ transients of intact
myocytes were recorded during field stimulation (0.5 Hz,
4 ms duration; MyoPacer, IonOptix Corporation, Milton,
MA, USA). Cells were alternatively excited at 340 and
380 nm (hyper-switch dual excitation, IonOptix Corporation).
The F340/F380 ratio was used as an index of cytosolic Ca2+

concentration. In some experiments, thapsigargin was washed
in and after an incubation time of 5 min, Ca2+ transients were
assessed using Fluo-3-AM (10 μmol/l, F/F0 from excitation at
480±15 nm and emission at 535±20 nm). Ca2+ transients
were analysed using Ionwizard (v. 5.0, IonOptix Corporation).

Cellular electrophysiology

The ruptured-patch whole-cell configuration was used with an
EPC-9 amplifier controlled by the Pulse software (Heka
Elektronik, Lambrecht, Germany) [40, 51]. Membrane capaci-
tance and series resistance were calculated using automated
procedures of the EPC-9. Whole-cell currents and membrane
potentials were low pass-filtered at 1 kHz, sampled at 5 kHz
and analysed using the Pulse-fit software (v. 8.80, Heka
Elektronik) and custom-made procedures in IgorPro (v. 6.2,
Wavemetrics, Lake Oswego, OR, USA). Patch pipettes were
pulled from borosilicate glass (GC150-15, Harvard Apparatus,
Holliston, MA, USA). Pipette resistance averaged 2.2±0.1MΩ
(n=49) in the SR release experiments, 2.7±0.1 MΩ (n=75) in
the INCX experiments and 3.4±0.1MΩ (n=50) in the AP clamp
experiments. The series resistance was between 3.0 and 8.9MΩ
and was compensated by 85 %. Sarcoplasmic reticulum (SR)
release experiments were performed using a CsCl-based pipette
solution (mmol/l): CsCl 128, MgCl2 5 TEA-Cl 20, EGTA 0.1,
Hepes 10, Mg2-ATP 2, titrated to pH=7.20 with CsOH. Extra-
cellular solution (modified Tyrode's solution) contained
(mmol/l): NaCl 138, KCl 4, MgCl2 1, NaH2PO4 0.33, CaCl2
2, glucose 10, Hepes 10, titrated to pH=7.30 with NaOH. For
inhibition of K+ currents, 4 mmol/l 4-aminopyridine and
0.1 mmol/l BaCl2 were added to the bath solution [49, 54]. At

the beginning of the experiment, cells were repeatedly stepped
from a holding potential of −90 to 0 mV (500 ms) at a
frequency of 0.5 Hz over 60 s to obtain steady-state filling
of the SR. For measurement of INCX, the pipette solution
contained (mmol/l): CsCl 85, glucose 5.5, EGTA 14, MgCl2
3, CaCl2 3.92, Hepes 10, NaCl 15, ATP 2, titrated to pH=7.20
using CsOH (total Cs, 130 mmol/l). Cells were patched in a
K+-free Tyrode solution. To activate INCX, extracellular solu-
tionwas switched to a Li+-based solution containing (mmol/l):
LiCl 140, MgCl2 1, NaH2PO4 0.33, CaCl2 2, glucose 10,
Hepes 10, titrated to pH=7.30 using LiOH. INCX was quanti-
fied as the difference between the holding current and the
maximal outward current when the current amplitude reached
a steady state. For AP clamp experiments, a K-glutamate
pipette solution containing (mmol/l) K-glutamate 120, KCl
10, MgCl2 2, EGTA 10, Hepes 10, Na2-ATP 2, and titrated to
pH=7.20 with KOHwas used in combination with a modified
Tyrode's solution. Ca2+ influx was estimated using 30 μmol/l
Cd2+. At this rather low concentration, Cd2+ inhibits ICa,L but
only marginally affects other currents such as Ito and INCX [1,
20]. Moreover, more specific inhibitors of ICa,L, such as
dihydropyridines or D600, are potent inhibitors of Ito andwould
thus interfere with the estimation of QCa. Overall, the AP-
induced Cd2+-sensitive current yields a reasonable estimate
for the AP-induced Ca2+ influx [35, 51, 53]. All currents
and Ca2+ charges were normalised to cell capacitance.

Ca2+ sparks

Ca2+ sparks were assessed by standard confocal microscopy
using a Zeiss Axiovert 200 M microscope and the Zeiss
LSM5 image system (Carl Zeiss AG, Oberkochen, Germa-
ny) [55]. The bath solution consisted of a modified Tyrode's
solution containing 2 mmol/l CaCl2. Cells were loaded with
10 μg/ml Fluo-4-AM (Invitrogen, Darmstadt, Germany).
Following an initial phase of field-stimulated pacing (60 s,
0.5 Hz, 4 ms duration), spontaneous Ca2+ release was
recorded over 30 s using a line scan, with the scanning line
placed parallel to the longitudinal axis of the cell at a central
focal plane. Spark frequency was quantified using the
sparkmaster plugin in ImageJ (Rasband W, NIH, Bethesda,
MD, USA) [33].

Western blot analysis

For determination of protein expression, the transplanted as
well as the orthotopic hearts were excised in deep anaesthesia
(see earlier discussion). Left ventricular tissue was immediately
shock-frozen and stored at −80 °C for later analysis. Western
blotting was performed as described previously [41] with pri-
mary antibodies against ryanodine receptor (RyR, 1:10,000,
Sigma-Aldrich), S2843-phosphorylated RyR (1:5,000, Badrilla),
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Cav1.2 (1:200, Santa Cruz), calsequestrin (CSQ, 1:2,500,
Dianova) and GAPDH (1:20,000, Biotrend).

Statistical analysis

All data are given as mean±SEM. When only two groups
were compared, statistical significance was calculated by
Student's t-test or a Mann–Whitney test as appropriate. Mul-
tiple comparisons were performed using a one-way ANOVA
followed by Newman–Keuls post hoc test or a repeated-
measures two-way ANOVA using PRISM (v. 5.0, GraphPad
Software Inc., San Diego, CA, USA). Statistical significance
was defined as P<0.05.

Results

Systolic Ca2+ transients

Systolic Ca2+ transients were investigated in Fura-2-AM-
loaded isolated cardiac myocytes under field stimulation. In
myocytes isolated from control hearts, no layer-specific dif-
ferences between endocardial and epicardial cardiac
myocytes regarding shape and duration of intracellular
Ca2+ transients were observed (data not shown). Therefore,
Ca2+ transients were analysed in cell suspensions pooled from
endocardial and epicardial myocytes to increase statistical
power. Ca2+ transients did not differ between atrophic and
control myocytes (Fig. 1a). In particular, the amplitude of the
Ca2+ transients (Fig. 1b), the diastolic Ca2+ concentration
(Fig. 1c), as well as the time course of the Ca2+ transients
(Fig. 1d, e) were not significantly different. These findings
confirm that the intracellular Ca2+ transients remain unchanged
in early cardiac atrophy [22, 46].

SR Ca2+ content

We have previously reported a reduced phosphorylation of
PLB in atrophic cardiac myocytes [41] which predicts a
lower SERCA activity and consequently a reduced SR
Ca2+ load in atrophic hearts. To test this prediction, we
quantified the amount of the steady-state SR Ca2+ content
in isolated cardiac myocytes using the patch clamp tech-
nique. To assess the degree of cellular atrophy and to allow
for normalisation to the reduced cell size, cell capacitance
was determined at the beginning of each experiment. Con-
sistent with previous reports, cell capacitance was signifi-
cantly lower in atrophic than in control cardiac myocytes
(123±3 pF, n=96 vs. 161±5 pF, n=98, p<0.0001) [40]. At a
holding potential of VPip=−90 mV, Ca2+ release from the SR
was induced by rapid superperfusion of the investigated
cardiac myocyte with 10 mmol/l caffeine [30, 38, 49, 50,

54]. In the presence of caffeine, Ca2+ is released from the SR,
cannot be stored in the SR again and is therefore completely
removed from the cytoplasm by the Na+–Ca2+ exchanger
[8, 27]. This results in the activation of a transient inward
current (Iti) following caffeine application (Fig. 2a). In
myocytes isolated from atrophic hearts, the amplitude of this
current (peak Iti) was significantly lower than in control
myocytes (~−10 % in endocardial and~−50 % in epicardial
myocytes; Fig. 2b). More importantly, the integral of Iti
(Qcaff), which reflects the total amount of Ca2+ released from
the SR [49], was significantly smaller (~−55 %) in the
atrophic cardiac myocytes (Fig. 2c). These observations
indicate that the amount of Ca2+ stored in the SR is markedly
reduced in early atrophy.
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The density of the Na+–Ca2+ exchanger current (INCX) was
quantified in further patch clamp experiments as previously
described [26]. Using a K+-free Tyrode solution, myocytes
were held at VPip=−40 mV. Switching the extracellular solu-
tion to a Li+-based bath solution activated INCX in its reverse
mode, resulting in an outward current (Fig. 2d). INCX was
quantified as the difference between the holding current and
the maximal outward current. Using this approach, no signif-
icant difference was detected in the functional expression of

INCX (Fig. 2e), implicating that the Na+–Ca2+ exchanger is not
altered in early cardiac atrophy.

Diastolic Ca2+ release

An increased occurrence of spontaneous SRCa2+ release could
also contribute to the marked decrease in the amount of Ca2+

stored in the SR.We therefore quantified the frequency of Ca2+

sparks in isolated ventricular cardiac myocytes. Atrophic car-
diac myocytes showed a significantly lower frequency of
spontaneous diastolic Ca2+ sparks (~−45 %; Fig. 3a). Also,
the fraction of cells showing a very low Ca2+ spark activity
(<0.5 sparks/100 μm/s) was twofold higher in the atrophic
group (46 vs. 23 %; Fig. 3a). These results argue against a
major contribution of an increased SR Ca2+ leak to the reduced
SR Ca2+ content in the atrophic myocardium at this stage.

The occurrence of spontaneous Ca2+ release depends on
the SR Ca2+ load [42]. Thus, the reduced spark frequency in
atrophic hearts may be a consequence of the reduced SR Ca2+

load. To address this issue, we assessed the effect of a partial
depletion of the SR on the Ca2+ spark frequency in control
myocytes using thapsigargin as previously described [44]. To
match the lower SR Ca2+ load of atrophic cardiac myocytes,
control cardiac myocytes were treated with 100 nmol/l of the
SERCA blocker thapsigargin. This resulted in a reduction of
the caffeine-induced Ca2+ release from the SR by 54±12 %
(n=10), which closely resembles the depletion in atrophic
cardiac myocytes. Quantification of spontaneous Ca2+ release
in control and thapsigargin-treated cardiac myocytes revealed
that the partial depletion of the SR caused a ~65% lower mean
Ca2+ spark frequency and a 2.5-fold higher fraction of cells
with a very low spark activity (Fig. 3b). Thus, a quantitatively
nearly identical reduction of the SR Ca2+ load was associated
with a moderately smaller reduction of the spark frequency in
atrophic (~−45 %) than in control (~−65 %) cardiac
myocytes. Since this difference may be the consequence of
an increased functional expression of RyRs, we determined
their abundance and the phosphorylation (Fig. 3c–e). Indeed
RyR expression was significantly increased (~130 % of con-
trol; Fig. 3d) in the atrophic myocardium, whereas its phos-
phorylation at S2814 was unaltered (Fig. 3e).

Systolic SR Ca2+ release

Unaffected Ca2+ transients in spite of a decreased SR Ca2+

content could be a consequence of an unaltered absolute
amount of Ca2+ released from the SR during systole. To test
this, the contribution of SR Ca2+ release to the total cytosolic
Ca2+ transient was quantified. Ca2+ transients were assessed
during continuous field stimulation in the absence and subse-
quently in the presence of thapsigargin (1 μmol/l; Fig. 4a). In
the presence of 1 μmol/l thapsigargin, reuptake of cytosolic
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Ca2+ into the SR is fully inhibited, and the increase in cyto-
solic Ca2+ concentration during the following APs mainly
derives from AP-induced Ca2+ influx [23]. If the total amount

of Ca2+ released from the SR was similar in both groups, the
Ca2+ transient should be depressed by a comparable degree in
both groups. In control myocytes, thapsigargin significantly
reduced the amplitude of Ca2+ transients by ~55%. In atrophic
myocytes, however, the amplitude was reduced by only
~35 % (Fig. 4b). Application of thapsigargin increased dia-
stolic Ca2+ levels (Fig. 4c) and the time course of the Ca2+

transients (Fig. 4d, e) similarly in myocytes of both groups.
While the experimental condition of completely absent Ca2+

release from the SR is likely to interfere with Ca2+-dependent
LTCC inactivation and therefore possibly alters their contri-
bution to the Ca2+ transient, these results suggest a reduced
amount of Ca2+ released from the SR in the atrophic cardiac
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myocytes during systole. Thus, the Ca2+ transient in atrophic
cardiac myocytes must be maintained by a compensatory
mechanism other than an increased fractional release from
the SR.

Systolic Ca2+ influx

A possible explanation for unchanged Ca2+ transients in the
presence of a reduced SR Ca2+ load is an increased Ca2+

influx during the AP. Supporting this hypothesis, we have
previously reported an increased AP duration in atrophic
cardiac myocytes [40]. Ca2+ influx into the cell via the LTCC
is regulated by several factors, including the AP waveform,
the availability of LTCC and the negative feedback loop
induced by the Ca2+-dependent LTCC inactivation. This com-
plex regulation makes prediction of the absolute amount of
systolic Ca2+ influx during the AP difficult. We therefore
assessed the AP-induced Ca2+ influx using the AP clamp
technique. This allows the quantification of the Ca2+ influx
in individual cardiac myocytes using their own AP waveform
[51, 53]. The steady-state AP waveform of the cardiac
myocyte under investigation was recorded in the current
clamp mode at the beginning of each patch clamp experiment
(Fig. 5a, upper panels). Consistent with our previous findings
[40], cardiac atrophy was associated with significantly
prolonged APs in endocardial myocytes (~150 % of control)
and epicardial myocytes (~250 % of control; Fig. 5b). After
switching to the voltage clamp mode, the membrane potential
of each individual myocyte was clamped to its own previously
recorded AP. The AP-induced current was recorded in the
absence and presence of the Ca2+ channel blocker Cd2+

(30 μmol/l). Subtraction analysis of the resulting currents
yielded the Cd2+-sensitive current, which gives an estimate
for the AP-induced Ca2+ current through LTCC (ICa; Fig. 5a,

lower panels). To calculate total Ca2+ influx during the AP, ICa
was integrated (QCa).QCa was approximately two- to fourfold
higher in atrophic endocardial and epicardial myocytes than in
control myocytes from the corresponding layer (Fig. 5c). In
addition, Western blot analysis revealed an upregulation of
Cav1.2 subunits in the atrophic myocardium (Fig. 5d, e).
These results indicate that in atrophic cardiac myocytes Ca2+

influx through LTCC is augmented both by an increased
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electrical driving force caused by prolonged APs and by an
increased membrane abundance of Ca2+ channel protein.

Discussion

Two major interdependent mechanisms contribute to the
systolic elevation of cytosolic Ca2+ in ventricular cardiac
myocytes (Fig. 6a). Systolic Ca2+ cycling is initiated by the
sarcolemmal Ca2+ influx through LTCC during the AP. Be-
sides directly raising the intracellular Ca2+ concentration,
this triggers further Ca2+ release from the SR (Ca2+-induced
Ca2+ release). The amount of Ca2+ released from the SR
depends on the size of the trigger signal, on the SR Ca2+

load and on the Ca2+ release threshold [6, 13, 24, 50]. In
cardiac myocytes, the majority of the total Ca2+ increase is
normally met by Ca2+ release from the SR [4, 13]. Here we
show that cardiac atrophy induces a pronounced alteration of
the balance of Ca2+ cycling between the two major Ca2+

sources. While SR Ca2+ content and the amount of Ca2+

released during the Ca2+-induced Ca2+ release are greatly
reduced in atrophic hearts, this reduced contribution of the
SR is fully compensated by an increased Ca2+ influx through
LTCC. As a result, systolic Ca2+ transients remain normal in
atrophic myocardium.

In myocytes of atrophic hearts, the amount of Ca2+ stored
in the SR was ~55 % lower than in myocytes isolated from
control hearts. This may result from an increased SRCa2+ leak
and/or a decreased Ca2+ uptake. Diastolic spark frequency
was decreased by ~45 % in atrophic cardiac myocytes, which
argues against a relevant contribution of an increased diastolic
Ca2+ leak to the SR depletion. SR Ca2+ content itself, howev-
er, influences the spark frequency, complicating the interpre-
tation. A quantitatively similar reduction of SR Ca2+ load
induced by a pharmacological SERCA inhibition in control
cardiac myocytes induced a modestly larger SR Ca2+ spark
reduction (~−65 %). This finding suggests that the reduced
frequency of spontaneous Ca2+ release in atrophic cardiac
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Ca2+ influx and SR Ca2+ release) inhibit LTCC, thus limiting further
Ca2+ influx. The cytosolic Ca2+ concentration is reduced by the reup-
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exchanger. b In atrophic hearts, SERCA activity is reduced secondary

to a diminished phosphorylation of PLB, resulting in reduced Ca2+

uptake into the SR, SR Ca2+ content and SR Ca2+ release during systole.
Accordingly, the inhibition of LTCC by Ca2+ released from the SR is
reduced. This, in combination with prolonged APs and an increased
density of LTCC on the cell surface allows for a larger net Ca2+ influx
during the AP. Relative changes compared to the control myocytes are
indicated by colours (dark blue increase, light blue decrease). LTCC L-
type Ca2+ channel, NCX Na+–Ca2+ exchanger, SR sarcoplasmic reticu-
lum, PLB phospholamban, SERCA SR Ca2+ ATPase
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myocytes may be mainly a consequence of the reduced SR
Ca2+ load which is partly offset by an increased ryanodine
receptor density. Ca2+ uptake into the SR is governed by
SERCA activity, which depends on the cytosolic Ca2+ con-
centration and modulation by several regulator proteins, in-
cluding PLB and sarcolipin [25]. Under steady-state condi-
tions, even a mild reduction in SERCA activity can lead over
time to a markedly reduced SR Ca2+ load. Consistently, we
have previously reported a decrease in phosphorylation of
PLB in atrophic myocardium which is expected to contribute
to a reduction in SERCA activity [41]. Given that the decay of
the intracellular Ca2+ transient is unaltered in atrophic myo-
cardium (Fig. 1) [22, 46], it seems likely that SERCA activity
is reduced to a degree that the resulting slowing of the Ca2+

uptake into the SR is fully compensated for by Ca2+ transport
via the Na+–Ca2+ exchanger. Taken together, the data current-
ly available indicate that the reduction in SR Ca2+ load is
predominantly a consequence of a moderately decreased
SERCA activity, possibly mediated by reduced PLB phos-
phorylation and potentially in combination with a reduced set
point of SR Ca2+ content [24] or an increased nonspark
diastolic Ca2+ release [39]. It cannot be excluded that during
an earlier phase of atrophic remodelling, an increased SR leak
contributes to the development of the reduced SR Ca2+ load.

Consistent with previous reports, no significant differ-
ences were detected regarding diastolic Ca2+, systolic Ca2+

amplitude or the onset and decay of the Ca2+ transients [22,
46]. In principle, the Ca2+ transient in atrophic hearts could
be conserved by an unaltered amount of Ca2+ released from
the SR in spite of its depletion (i.e. higher fractional Ca2+

release). Using the SERCA blocker thapsigargin we could
demonstrate that in atrophic myocytes the quantity of Ca2+

released from the SR was significantly lower than in control
cardiac myocytes. Therefore, to maintain a normal Ca2+

transient, an increased Ca2+ influx through LTCC has to
compensate for the depressed SR Ca2+ release. Ca2+ influx
is mainly governed by the shape of the AP and the availabil-
ity of Ca2+ channels. We have previously reported that a
diminished density of the transient outward K+ current (Ito)
in combination with an increased density of the L-type Ca2+

current results in a net prolongation of APs in atrophic hearts
[40]. We now demonstrate that this electrophysiological
remodelling is associated with a two- to fourfold increase
in Ca2+ influx during the AP, providing a mechanism for the
maintenance of the systolic Ca2+ transient.

Sarcolemmal Ca2+ influx increases the intracellular Ca2+

concentration, hence activating ryanodine receptors and initi-
ating the Ca2+-induced Ca2+ release (Fig. 6a). At the same
time, however, the increasing Ca2+ concentration in the
subsarcolemmal space will limit further Ca2+ influx by
inactivating LTCC [4]. This negative feedback mechanism
regulates the relation between Ca2+ influx and Ca2+ release
from the SR and assures a finely tuned Ca2+ transient [13]. In

cardiac atrophy, two remodelling processes (increased Ca2+

influx and decreased SRCa2+ release) seem to exactly balance
each other, resulting in unchanged Ca2+ transients (Fig. 6b). A
primary decrease of SR Ca2+ load and SR Ca2+ release would
lead to a slower increase of subsarcolemmal Ca2+ concentra-
tions during systole, thus causing less inhibition of LTCC.
This would facilitate escalating Ca2+ influxes until the initial
Ca2+ transient is balanced again. If the initial response to
cardiac atrophy was an augmentation of Ca2+ influx through
LTCC, the resulting increase in cytosolic Ca2+ concentrations
may induce a reduction of the SR Ca2+ load and SR Ca2+

release, e.g. via a diminished phosphorylation of PLB, even-
tually resulting in a new steady state. This functional coupling
between Ca2+ influx and Ca2+ release from the SR seems to be
supported by changes in the expression of ion channels which
are relevant for regulating Ca2+ influx with an upregulation
of LTCC (Fig. 5) and a downregulation of K+ channel
subunits underlying Ito [40]. The expression of all of these
channels is modulated via the CaMKII-DREAM and/or
calcineurin pathways by the Ca2+ concentration [32, 37].
Collectively, these observations suggest that during atro-
phic remodelling, localized changes of the intracellular
Ca2+ concentration preserve the systolic Ca2+ transient both
via a functional feedback as well as via a modulation of ion
channel expression.

Cardiac hypertrophy induced by an increased afterload
and cardiac atrophy have been proposed to induce a common
pattern of cellular remodelling [2, 12, 36]. Consistent with
this concept, we have previously shown that cardiac atrophy
is associated with similar prolongations in cardiac action
potentials as cardiac hypertrophy [3, 15, 31, 40, 52]. This
may potentially create an arrhythmogenic substrate, e.g. by
inducing early after depolarizations. Here, we demonstrate
that the same changes in Ca2+ and K+ channel expression
underlying the AP prolongation are functionally also associ-
ated with an increased AP-induced Ca2+ influx in atrophic
hearts. Accordingly, the concept of a common response
pattern seems also to hold true for these aspects of cell
physiology. In contrast, however, cardiac atrophy is associ-
ated with reduced PLB phosphorylation, a reduced SR Ca2+

content and a reduced SR Ca2+ release. Each of these aspects
could be expected to be increased in cardiac hypertrophy [5,
9, 31, 47]. The remodelling of these SR-associated properties
in cardiac atrophy therefore appears to be opposite to that in
cardiac hypertrophy. The remodelling of the resulting sys-
tolic Ca2+ transients cannot be assigned to either concept.
While cardiac hypertrophy is typically associated with an
increased amplitude of systolic Ca2+ transients [9, 47], atro-
phic hearts have identical Ca2+ transients as control hearts.
Thus, the load-dependent remodelling of systolic Ca2+ tran-
sients may follow a “rectification”: while they are increased
in response to an increased cardiac workload, they are con-
served during states of decreased cardiac workload.
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