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Abstract Ischaemia excites sensory neurones (generating
pain) and promotes calcitonin gene-related peptide release
from nerve endings. Acidosis is thought to play a key role
in mediating excitation via the activation of proton-
sensitive cation channels. In this study, we investigated
the effects of acidosis upon Ca2+ signalling in sensory
neurones from rat dorsal root ganglia. Both hypercapnic
(pHo 6.8) and metabolic–hypercapnic (pHo 6.2) acidosis
caused a biphasic increase in cytosolic calcium concentra-
tion ([Ca2+]i). This comprised a brief Ca2+ transient (half-
time approximately 30 s) caused by Ca2+ influx followed
by a sustained rise in [Ca2+]i due to Ca2+ release from
caffeine and cyclopiazonic acid-sensitive internal stores.
Acid-evoked Ca2+ influx was unaffected by voltage-gated
Ca2+-channel inhibition with nickel and acid sensing ion
channel (ASIC) inhibition with amiloride but was blocked
by inhibition of transient receptor potential vanilloid
receptors (TRPV1) with (E)-3-(4-t-butylphenyl)-N-(2,3-
dihydrobenzo[b][1,4] dioxin-6-yl)acrylamide (AMG 9810;
1 μM) and N-(4-tertiarybutylphenyl)-4-(3-cholorphyridin-

2-yl) tetrahydropryazine-1(2H)-carbox-amide (BCTC;
1 μM). Combining acidosis with anoxia and aglycaemia
increased the amplitude of both phases of Ca2+ elevation and
prolonged the Ca2+ transient. The Ca2+ transient evoked by
combined acidosis, aglycaemia and anoxia was also substan-
tially blocked by AMG 9810 and BCTC and, to a lesser
extent, by amiloride. In summary, the principle mechanisms
mediating increase in [Ca2+]i in response to acidosis are a
brief Ca2+ influx through TRPV1 followed by sustained Ca2+

release from internal stores. These effects are potentiated by
anoxia and aglycaemia, conditions also prevalent in ischae-
mia. The effects of anoxia and aglycaemia are suggested to
be largely due to the inhibition of Ca2+-clearance mecha-
nisms and possible increase in the role of ASICs.
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Introduction

Tissue ischaemia leads to rapidly declining oxygen levels
and diminished capacity for oxidative phosphorylation. The
consequential switch to anaerobic metabolism, to maintain
cellular ATP production, results in increased generation of
metabolic acid. This, in combination with the lack of
perfusion, culminates in a rapidly developing tissue
acidosis. For example, during myocardial ischaemia, pHo

falls to ≈6.8 within the first 8 min and ≈6.2 after 20 min
[20, 21, 59, 109]. Tissue acidoses together with elevation
of extracellular K+, ATP and bradykinin are all thought to
play a role in the excitation of sensory neurones within
ischaemic tissue and the generation of ischaemic pain
[5, 22, 24, 70, 76, 80, 85].

Electronic supplementary material The online version of this article
(doi:10.1007/s00424-009-0715-6) contains supplementary material,
which is available to authorized users.

M. Henrich :K. J. Buckler (*)
Department of Physiology, Anatomy and Genetics,
University of Oxford,
Sherrington Building, Parks Road,
Oxford OX1 3PT, UK
e-mail: keith.buckler@dpag.ox.ac.uk

Present Address:
M. Henrich
Department of Anaesthesia, Intensive Care Medicine,
Pain Therapy, Justus-Liebig-University Giessen,
Rudolf-Buchheim-Str. 7,
35392 Giessen, Germany

Pflugers Arch - Eur J Physiol (2009) 459:159–181
DOI 10.1007/s00424-009-0715-6

http://dx.doi.org/10.1007/s00424-009-0715-6


Acid is thought to excite sensory neurones by activating
pH-sensitive cation channels [12, 68]. Two main types of
proton-gated cation channel have been found in sensory
neurones: acid-sensing ion channels (ASICs) and the
transient receptor potential vanilloid 1 receptor (TRPV1).
ASICs are predominantly sodium selective and can be
blocked by amiloride [46–48, 99]. The ASIC family
contains four distinct genes, of which ASICs 1 and 3 are
both expressed in sensory neurones [46–48, 100]. ASICs
and, in particular, ASIC3 have been implicated in cardiac
sensory neurone activation by ischaemia [10, 78]. Although
thought to be primarily gated by protons, activation of
ASIC3 may be further enhanced by the presence of lactate
[41, 59]. TRPV1 is expressed predominantly in small
sensory neurones from the dorsal root ganglia (DRG)
[29, 33, 58, 60, 104, 111] and is a polymodal sensor.
TRPV1 may be activated by capsaicin, heat, protons and
proalgesic substances. This ability of TRPV1 to integrate
both physical and chemical stimuli suggests that it plays a
major role in pain transduction [16, 44, 82]. Unlike most
ASICs, TRPV1 is highly permeable to both Na+ and Ca2+

(PCa/PNa between 1 and 10) [8, 32, 96, 97].
In addition to acting as pain sensors, sensory neurones

also release neuropeptides during ischaemia (e.g. calcitonin
gene-related peptide (CGRP) or substance P) which may
act locally to modulate tissue function and/or blood flow
within the ischaemic zone [37, 50]. Whilst electrical
excitation of sensory nerves by acidosis/ischaemia most
probably results directly from membrane depolarisation
(due to activation of the above proton-gated cation
channels), secretory responses are likely to be mediated
via a rise in intracellular Ca2+. There are numerous factors
that could contribute to changes in [Ca2+]i during ischaemia
including voltage-gated Ca2+ entry secondary to electrical
excitation, direct Ca2+ influx through proton-gated chan-
nels, Ca2+ release from internal stores and modulation of
Ca2+ uptake, buffering or extrusion. In the present study,
we have therefore investigated the effects of acidosis on
intracellular Ca2+ regulation in small, capsaicin-sensitive,
sensory neurones (15–30 μm) from cervicothoracic DRG.
These neurones were exposed to four different acid stimuli
with pHo values 6.8, 6.2 (with and without lactate), and 5.0
simulating the initial phase of an ischaemic event, more
prolonged ischaemia and an extreme acidosis of the type
typically used to study acid-sensitive cation channel
function in vitro. Using a pharmacological approach, we
have characterised the Ca2+-entry pathways and stores that
contribute to elevation of [Ca2+]i during acidosis. In
addition, since anoxia and aglycaemia can also have
profound effects on Ca2+ metabolism [34], we combined
these stimuli with acidosis to more closely simulate
ischaemic conditions and to investigate their collective
effect on [Ca2+]i.

Materials and methods

Neurone dissociation

Adult Wistar rats of either sex aged between 6 and 8 weeks
(130–170 g) were sacrificed by an overdose of halothane
(4%). Cervicothoracic DRG (C4-Th6) were removed under
sterile conditions and were immediately transferred into
cooled (on ice) Ca2+- and Mg2+-free phosphate-buffered
saline (PBS), pH 7.4. After cleaning the ganglia from
surrounding tissue, the ganglia were incubated in an enzymic
dispersion media comprising 10 mg/ml collagenase type I
(208 U/mg, Worthington, CLS-1, MON4393), 1 mg/ml
trypsin (9.3 U/mg, Sigma, T-4665), in PBS and with 60 μM
CaCl2 and 33 μM MgCl2. The ganglia were incubated
at 37°C for 35 min. Following enzyme treatment, the
ganglia were washed once in PBS (Ca2+- and Mg2+-free)
and once in Dulbecco’s modified Eagle’s medium (DMEM;
containing 10% fetal bovine serum, 1.2 mM l glutamine),
before mechanical trituration in 1.5 ml of DMEM. The
dissociated cells were then washed twice by centrifugation
(at 1,000×g for 5 min) followed by resuspension in fresh
DMEM. Following the final wash, the cell pellet was
resuspended in 500 μl basal TNB-100 containing protein–
lipid complex (Biochrom, Berlin, Germany), penicillin
(100 IU/ml), streptomycin (100 μg/ml) and 10 μM/ml
nerve growth factor (TNB). Following a second trituration,
the neurones were seeded onto poly-L-lysine and laminin-
coated coverslips (6 mm in diameter) and incubated in
sterile culture dishes in a humidified chamber at 37°C and
5% CO2/95% air for 2 h. After this incubation period, a
further 3-ml TNB was added to each culture dish. The
neurones were then kept in the incubator for at least 30 min
before being used for experiments. These neurones were
typically used within 2 days of isolation.

Fluorescence measurements

Measurements of Fura-2 fluorescence were performed
using a microspectrofluorometer based on an epifluores-
cence microscope (Nikon Diaphot 200, Japan) fitted with
photomultiplier tubes (PMT; Thorn, EMI, UK) to detect
emitted fluorescence and a motor driven monochromator
(Cairn Instruments, Kent) with xenon lamp to provide the
excitation light source. Fura-2 was excited alternately at
340 and 380 nm (±8 nm) for 250 ms at each wavelength
with the cycle repeated at 1 Hz. Emitted fluorescence from
Fura-2 was passed through a bandpass filter centre
wavelength 510 nm (±20 nm). Bandpass filtered fluores-
cence was detected using a PMT air cooled to −20°C
(Thorn, EMI, UK). The output from the PMT was
integrated over each illumination period and recorded on a
microcomputer using a micro CED1401 and Spike 4
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software (Cambridge Electronic Design). For Fura-2,
the ratio of fluorescence at 340 nm relative to that at
380 nm (R) was also calculated and recorded using Spike 4
software.

Selection and superfusion of neurones

Neurones were placed in a recording chamber with a
volume of approximately 100 μl mounted on the stage of
the epifluorescence microscope (see below). This chamber
was perfused with solutions at a flow rate of approximately
2 ml min. Solutions were delivered from reservoirs kept in
a water bath to the recording chamber via medical grade
stainless steel tubing articulated by short sections of
Pharmed tubing (Norton performance plastics, UK). A
mechanically driven two-way tap which allowed a rapid
change between two different solutions was placed within a
few inches of the recording chamber. A heating coil was
placed around a short section of tubing between the tap and
the chamber to ensure solutions remained at 37°C. This
arrangement allows rapid solution exchange and tight
control over the gas content and temperature of solutions.

Neurones were observed and fluorescence recorded
through a X40 fluorescence grade objective (n.a. 1.30).
Sensory neurones were initially selected by soma size (15–
30 μm) and then tested for a response (a robust increase in
[Ca2+]i) to capsaicin. This capsaicin test was usually
conducted at the end of the experiment and proved positive
in >80% of the neurones selected by the above size criteria.
Only capsaicin-positive neurones are included in this study.

Loading of neurones with Fura-2-AM

To introduce Fura-2 into neurones, they were incubated in
either a 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid
(HEPES) buffered saline (for in vivo calibrations) or a bicar-
bonate buffered saline (for experiments) containing 5 μM
Fura-2-AM (Molecular Probes, Leiden, The Netherlands) at
room temperature for 25 min in a dark chamber. The HEPES
buffered saline used comprised (in millimolars): HEPES 20,
glucose 11, KCl 4.5, MgCl2 1, CaCl2 2.5, and NaCl 117, pH
7.4 at room temperature.

In vivo calibration of Fura-2

Fura-2-loaded neurones (see above) were incubated in a
high-K+ zero-Ca2+ HEPES buffered solution (consisting of
150 mM KCl, 5 mM NaCl, 1 mM ethylenediaminetetra-
acetic acid and 1 mM ethylene glycol tetraacetic acid
(EGTA)) containing 10 μM ionomycin (Sigma, Dorset,
UK) for 10–20 min. After this incubation, the neurones
were placed in a flow through incubation chamber
mounted on the microspectrofluorometer and perfused

with the same high-K+ zero-Ca2+ HEPES solution but
containing 1 μM ionomycin and at 37°C. After a further 5-
min incubation in this solution, Fura-2 fluorescence was
recorded from five identified sensory neurones. The ratio
of fluorescence obtained under these conditions was
deemed equivalent to the calibration constant Rmin [30].
The perfusate was then changed to a high-K+ high-Ca2+

HEPES saline containing 150 mM KCl, 5 mM NaCl,
10 mM CaCl2 and 1 μM ionomycin. The change in
fluorescence ratio was followed in one of the five
identified neurones until it reached a new stable value,
and then the fluorescence ratio in it and the other four
identified neurones were recorded and deemed to be
equivalent to the calibration constant Rmax. The ratio of
fluorescence at 380 nm in Ca2+-free buffer divided by that
obtained in high Ca2+ buffer (Sf2/Sb2) was also calculated
for each neurone. The mean values obtained for Rmin, Rmax

and (Sf2/Sb2) were then used to calibrate measurements of
the fluorescence ratio in subsequent experiments using the
equation [Ca2+]=(R−Rmin)/(Rmax−R)×Sf2/Sb2×Kd [30].

Solutions

The standard bicarbonate buffered Tyrode solutions
contained (in millimolars) NaCl 117, KCl 4.5, CaCl2 2.5,
MgCl2 1, HCO3

− 23 and glucose 11. Glucose-free Tyrode
solution was prepared by replacing glucose with 11 mM
sucrose. For Ca2+-free solution, the CaCl2 was omitted and
1 mM EGTAwas added. For Tyrode solution with elevated
KCl concentration (50 mM), the NaCl concentration was
reduced to 71.5 mM; all other constituents remained the
same. Equilibration of these solutions with 5% CO2 and
95% air achieved normocapnic conditions with pH 7.4 at
37°C. Moderate hypercapnic acidosis (pHo 6.8) was
achieved by increasing the CO2 content of the equilibrating
gas from 5% to 20%. To achieve a combined respiratory
and metabolic acidosis, Tyrode solution with reduced
NaHCO3 (10 mM, 130 mM NaCl) was equilibrated with
20% CO2, which resulted in a pHo 6.2. pH 5.0 solutions
were attained by lowering NaHCO3 to 2 mM (and
increasing NaCl to 138 mM) whilst equilibrating with
20% CO2. Solutions simulating a lactic acidosis contained
(in millimolars) Na-lactate 15, NaCl 126, KCl 4.5, CaCl2
2.5, MgCl2 1 and glucose 11. The pH of this solution was
adjusted to 6.2 at 37°C by equilibration with 20% CO2 and
addition of NaOH.

Anoxic solutions were generated by replacing the air in
the gas used to equilibrate the above solutions with nitrogen
(i.e. gas mixtures were x% CO2+100−x% N2) and with the
further addition of 0.5 mM Na2S2O4 [72] following 15–
30 min prior equilibration with the appropriate oxygen-free
gas mixture. The addition of Na2S2O4 did not cause any
detectable change in solution pH. All solutions were
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equilibrated with appropriate gas mixes at 37°C in a water
bath for at least 30 min before use.

Drugs

(E)-3-(4-t-butylphenyl)-N-(2,3-dihydrobenzo[b][1,4] dioxin-
6-yl)acrylamide (AMG 9810, 1 μM), N-(4-tertiary-
butylphenyl)-4-(3-cholorphyridin-2-yl) tetrahydropryazine-1
(2H)-carbox-amide (BCTC, 1 μM), capsazepine (CPZ;
10 μM), cyclopiazonic acid (CPA; 10 μM), carbonyl
cyanide-p-trifluoromethoxyphenylhydrazone (FCCP; 1 μM)
and amiloride (100 μM) containing solutions were prepared
from stock solutions in dimethyl sulfoxide. Capsaicin was
added from stock solutions in ethanol. NiCl2 (2.5 mM),
CdCl2 (100 μM), MnCl2 (1 mM) and GdCl3 (0.5–1 mM)
containing solutions were prepared from 0.5 to 1 M stock
solutions in H2O.

Statistics

Values were expressed as mean ± standard error of mean
(SEM). Statistical significance was tested using the paired
Student’s t test, or Wilcoxon signed-rank test for experi-
ments with non-Gaussian distribution. Statistical testing of
in vitro calibration data was performed using one-way
analysis of variance and post hoc analyses were carried out
using Bonferroni’s multiple comparison, calculated by
SPSS 12.0 software for windows. Level of significance
was set at p<0.05.

Results

Acidosis evoked rise in [Ca2+]i in sensory neurones

Tissue acidosis is believed to be a major activator of
sensory neurones transmitting ischaemic pain. Here, we
investigated changes in [Ca2+]i in response to acidosis. Four
different types of acidosis were tested: 20% CO2 in normal,
23 mM, HCO3

− (pHo 6.8) simulating a simple hypercapnic
acidosis; 20% CO2 in 10 mM HCO3

− and 20% CO2 in
15 mM Na-lactate (both pHo 6.2) simulating a mixed
hypercapnic and metabolic acidosis (with and without lactate
ions present); and 20% CO2 in 2 mM HCO3

− (pHo 5.0)
simulating a very severe hypercapnic/metabolic acidosis.

In the majority of sensory neurones (65%) exposure to
acidosis (either pHo6.8, 6.2 or 5.0) evoked a rise in [Ca2+]i.
This rise in [Ca2+]i typically had a biphasic kinetic with an
initial Ca2+ transient leading into a sustained elevation of
[Ca2+]i which remained throughout the exposure to acid
(Fig. 1a). In a few neurones, however, only an initial Ca2+

transient was obvious with [Ca2+]i returning back to
baseline whilst still under acidic conditions (e.g. Fig. 1c).

Another small subgroup of neurones lacked an obvious Ca2+

transient and instead responded with a rapid rise in [Ca2+]i
up to a plateau that was then sustained throughout exposure
to acidosis (Fig. 1b).

The peak amplitudes of acid-induced Ca2+ transients
were quantified as the maximal increase in [Ca2+]i attained
within the first minute of exposure to acidosis relative to
baseline (e.g. Fig. 1c). The sustained elevation was defined
as the averaged rise in [Ca2+]i from the final 30 s of acidosis
exposure relative to baseline (Fig. 1a). The Δ[Ca2+]i of the
transients (Δ trans) were thus defined as the difference
between the sustained elevation and the transient peak (e.g.
Fig. 1a). A Ca2+ transient was only considered to have
occurred where this Δ[Ca2+]i measurement was greater
than the mean + 2 times the standard deviation of the
sustained elevation in [Ca2+]i. The duration of the Ca2+

transient was characterised by measuring the time taken for
the [Ca2+]i to fall to half of the peak value (t1/2).

In neurones responding with an initial Ca2+ transient, the
mean Δtrans evoked by hypercapnic acidosis alone (pHo

6.8) was 112±24.5 nM (n=10) and that evoked by a
combined hypercapnic/metabolic acidosis (pHo 6.2) was
871±352 nM (n=7). These acid-evoked Ca2+ transients
were substantially attenuated in Cao

2+-free media to 7±
0 nM (n=10, **p<0.01) for a hypercapnic acidosis and
120±22 nM (n=7, *p<0.05) for a combined hypercapnic/
metabolic acidosis (see Fig. 1a, c, d). Thus, for both types
of acid stimuli, the transient elevation in [Ca2+]i in response
to acidosis was strongly dependent upon the presence of
extracellular Ca2+. In contrast, the sustained rise in [Ca2+]i
was unaffected by Ca2+-free solutions (see below). Acid-
evoked Ca2+ transients were often relatively brief with
t1/2=27.8±1.1 s at pHo 6.8 (n=27) and 28.1±1.3 s at pHo

6.2 (n=27).
Acidosis due to tissue ischaemia is often accompanied

by an increase in lactate from anaerobic respiration. Lactate
has been reported to augment acid-evoked inward currents
in sensory neurones [41]. We therefore compared a simple
mixed acidosis (20% CO2, pH 6.2) with an equivalent
acidosis in the presence of 15 mM lactate (also 20% CO2,
pH 6.2). Eighty percent of neurones showed similar Ca2+

transients to both stimuli, and in these neurones, there was
no significant difference between the amplitudes of these
Ca2+ transients (Na-lactate 106±11%, n=26, p=0.442, data
normalised to pHo 6.2 with 20% CO2; Fig. 1f). A few
neurones responded only to one or other of the two stimuli.

Correlation between capsaicin- and acidosis-evoked
Ca2+ transients

In this study, we have focussed upon sensory neurones
selected by morphology and sensitivity to capsaicin. The
capsaicin receptor (TRPV1) is also acid sensitive and
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would be expected to contribute to acid-evoked Ca2+ influx
described above. We therefore sought to compare the
amplitude of [Ca2+]i responses to capsaicin (100 nM) with
those evoked by acidosis. A significant positive correlation
was observed between the amplitude of the Ca2+ transient
evoked by capsaicin (100 nM) and that evoked by pHo 6.8
(r=0.49, p<0.05, n=22) and pHo 5.0 (r=0.69, p<0.05,

n=11; Fig. 2a, c), but not by pHo 6.2 (r=0.4, p=0.081,
n=20; Fig. 2b). It is, however, evident that this correlation
was not particularly strong. We also noted a striking
paradox in that a significant number of neurones (approxi-
mately 15–20%) responding to capsaicin did not respond to
acidosis with a transient Ca2+ influx. This failure to respond
to acidosis could not be attributed to low levels of
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Fig. 1 Extracellular acidosis evokes rise in [Ca2+]i in sensory
neurones. a–c Effects of a hypercapnic (20% CO2, pHo 6.8) and a
mixed acidosis (20% CO2, pHo 6.2) on [Ca2+]i in capsaicin-sensitive
neurones in the presence and absence of extracellular Ca2+. In the
presence of extracellular Ca2+, acidosis evoked an initial transient
followed by a sustained rise in [Ca2+]i in the majority of neurones (e.g.
a and c). The amplitude of this Ca2+-transient amplitude was defined
as the maximal increase in [Ca2+]i within the first minute of exposure
(see c). The amplitude of the sustained rise was defined as the mean
increase in [Ca2+]i during the final 30 s of the exposure period (see a).
The Δ[Ca2+]i of the transients were thus defined as the difference

between the sustained rise and the transient peak (Δtrans., see a).
d Comparison of the amplitude of initial Ca2+ transients evoked by
acidosis pHo 6.8 or 6.2 in the presence and absence of extracellular
Ca2+ (**p<0.01). e, f Comparison of Ca2+ responses evoked by mixed
acidosis (20% CO2, pHo6.2) in the presence and absence of lactate
(15 mM). f Comparison of the amplitude of the Ca2+ transient in
response to lactic acidosis normalised to the response to acidosis in the
absence of lactate. Time scale bars in a–c and e 200 s. Exposure
periods are indicated by horizontal bars. Bar charts present means +
SEM; numbers of experiments are given in parenthesis
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functional expression of the capsaicin receptor since we
found no significant difference between the amplitude of
the capsaicin-evoked Ca2+ transients in acid responders
(308±78 nM, n=39) vs. acid nonresponders (295±86 nM,
n=12, p=0.886; Fig. 2d). The importance of TRPV1 and
other Ca2+ influx pathways in mediating acid-evoked Ca2+

influx was therefore investigated further.

Influence of divalent and trivalent cations
on Ca2+-entry pathways

The former experiments indicated that external acidosis has
a dual action on [Ca2+]i. An initial Ca2+ transient was
evoked by activation of a Ca2+-entry pathway, whereas the
sustained elevation of [Ca2+]i was triggered independently
from external Ca2+.

In order to determine the Ca2+-entry pathways involved
in mediating the transient response to acidosis, we needed
to find ways of selectively inhibiting the different types of
Ca2+-permeable channels that may be involved. Divalent
and trivalent cations are often useful in this respect. Cd2+ is
widely used to block voltage-gated Ca2+ channels especially
in electrophysiological experiments. In these sensory
neurones, Cd2+ (100 μM) similarly inhibited voltage-gated
Ca2+ entry elicited by 50 mM KCl (by 89%±7%, n=5;
Fig. 3a). The application of capsaicin in the presence of
Cd2+ (100 μM), however, led to a rise in fluorescence ratio
that exceeded that observed in the absence of Cd2+ and
either did not recover or recovered only partially within the
observation period (Fig. 3b). Removal of external Ca2+

failed to inhibit the effect of capsaicin in the presence of
Cd2+ although it was inhibited by capsazepine (Fig. 3c).
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Fig. 2 Correlation between response to capsaicin and acidosis. a–c
Correlation between maximum amplitudes of Ca2+ transients evoked
by acidosis vs. capsaicin (100 nM). There was a weak positive
correlation between the Ca2+ response to capsaicin and that to pHo 6.8
and 5.0 (r=0.49, p<0.05, n=22 for pHo 6.8; r=0.69, p<0.05, n=11
for pHo5.0) but not pHo 6.2 (r=0.4, p=0.081, n=20). d The
maximum amplitudes of [Ca2+]i response to capsaicin (100 nM) in

neurones responding (responder) or not responding (nonresponder) to
external acidosis with a biphasic rise in [Ca2+]i. There was no
difference in the [Ca2+]i response to capsaicin in these two subgroups
(p=0.886). e The amplitudes of Ca2+ transients evoked by extracellular
acidosis significantly increase with falling pHo values (1 compared to
pHo 6.8; 2 compared to pHo 6.2; **p<0.01; ***p<0.001)
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These data suggest that Cd2+ is able to permeate TRPV1
channels. Once inside the cell, Cd2+ will inevitably bind to
Fura-2, as this has a much higher affinity for Cd2+ than for
Ca2+, which will cause similar changes in Fura-2 fluores-
cence to that observed with Ca2+ [36]. Thus, Cd2+ is
inappropriate for use as a blocker of voltage-gated Ca2+

entry under conditions in which TRPV1 channels might be
active (e.g. such as in responses to acidosis).

Ni2+ at relatively high (millimolars) concentrations can
also be used to block voltage-gated Ca2+ entry [62];
2.5 mM Ni2+ thus blocked high-K+ (voltage-gated) Ca2+

influx (Fig. 3d) in these neurones but it did not inhibit the
response to capsaicin; instead in the presence of Ni2+, we
measured a slightly enhanced rise in [Ca2+]i (130±10%,
n=5, compared to control; Fig. 3e). This enhanced response
to capsaicin in the presence of Ni2+ recovered back to
baseline after wash out of capsaicin (unlike that seen in the
presence of Cd2+). Mn2+ ions can also pass through many

Ca2+ permeable channels and, upon gaining access to the
cytosol, will quench Fura-2 fluorescence. Fura-2 fluores-
cence quenching by Mn2+ is therefore a useful technique
with which to monitor the activation of various Ca2+-entry
pathways. As shown in Fig. 4a, 2.5 mM Ni2+ prevents high
K+-induced Fura-2 quenching by Mn2+ but does not
prevent capsaicin induced Fura-2 quenching by Mn2+

(Fig. 4b). Ni2+ is therefore a good blocker of voltage-gated
Ca2+ entry but has little effect upon Ca2+ or Mn2+ entry
through TRPV1.

We next tested the effects of the trivalent cation Gd3+

upon the Ca2+ response evoked by capsaicin. Gd3+

(0.5 mM) substantially inhibited the [Ca2+]i response to
capsaicin (reduced to 6±4%, n=6, p<0.001 compared to
control). This inhibition appeared to be only partially
reversible (the third exposure to capsaicin following wash
of gadolinium was 23±7%, n=6, p<0.01, compared to
control; Fig. 3f). Gd3+ is therefore an effective inhibitor of
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TRPV1-mediated Ca2+ entry although it lacks specificity, i.e.
it also blocks voltage-gated Ca2+ channels [62]. Reversibility
may also be slow1.

In summary, Ni2+ blocks voltage-gated Ca2+ and Mn2+

entry, but not Ca2+ or Mn2+ influx through TRPV1.
Gadolinium (0.5 mM) blocks both voltage-gated Ca2+

channels and TRPV1, and Cd2+ blocks voltage-gated Ca2+

entry but actually permeates TRPV1 sufficiently well to
induce a major increase in Fura-2 fluorescence. These
features can therefore be used to discriminate between a
Ca2+-influx pathway utilising voltage-gated channels and
one using TRPV1.

Acidosis-activated Ca2+-entry pathways in DRG neurones

In order to determine the route of Ca2+ entry in response to
acidosis, we have studied the effects of a variety of
pharmacological agents upon the amplitude of the Ca2+

transient generated at pHo6.8, 6.2 and 5.0. In these
experiments, control acid stimuli were applied before and
after exposure to the pharmacological agent and the test

acid stimulus; data were then normalised to the amplitude
of the first control response (set as 100%).

Ni2+ failed to inhibit the Ca2+ transients evoked in
response to pHo 6.8, 6.2 or 5.0 (Fig. 5). Indeed, there was
some evidence that at pHo 6.2, Ni

2+ enhanced the response
to acidosis (276±42%, n=5, p<0.01) when compared to
the first control. We also noted a tendency for the second,
post-Ni2+, control response (recovery) to be amplified
relative to the first control (Fig. 5d) at pHo6.8 (127±
10%, n=6, p<0.05), 6.2 (230±87%, p<0.05, n=5) and 5.0
(248±62%, n=5, p<0.05). Acidosis (pH 6.2) also activated
Mn2+ influx and Fura-2 fluorescence quenching in the
presence of 2.5 mM Ni2+ (Fig. 4c).

Gadolinium (Gd3+; 0.5 mM) completely blocked Ca2+

transients evoked by pHo 6.8 in all neurones investigated
(n=5) and almost completely blocked the response to pHo

6.2 (only one neurone in five showed any response; Fig. 6).
Gadolinium also suppressed the second control (recovery)
response to pHo 6.8 but not that to pHo 6.2. Application of
capsaicin (100 nM) at the end of each experiment and after
a rest period of several minutes evoked robust Ca2+

transients confirming that any effects of Gd3+ upon TRPV1
channels were ultimately reversible (Fig. 6).

Application of acid stimuli in the presence of Cd2+ caused
a massive rise in Fura-2 fluorescence that almost reached
saturation (i.e. the maximal value for the fluorescence ratio
encountered during Fura-2 calibration). Following removal
of acidosis, the fluorescence ratio did not fully recover
during the observation period (Fig. 6c). This observation is

1 Note that whilst under control conditions we were usually able to
obtain consistent Ca2+ responses to repeated applications of capsaicin
(i.e. without obvious receptor desensitisation), we cannot exclude the
possibility that lack of full recovery of the capsaicin response
following application of Gd3+ could be due to enhanced desensitisa-
tion rather than persistent channel block per se. We also on occasion
noted failure of the capsaicin response postapplication of Ni2+ (e.g.
Fig. 3d).
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similar to findings seen during capsaicin application in the
presence of Cd2+.

Amiloride (100 μM), an inhibitor of ASICs, did not
significantly attenuate the Ca2+ transients evoked by any of
the three acid stimuli tested, nor did it affect the
postamiloride control response to acidosis (Fig. 7).

CPZ (10 μM), an antagonist of capsaicin-mediated
activation of TRPV1 [81], strongly inhibited the Ca2+

response to capsaicin (0.1–1 μM) as expected (p<0.01, n=
6; see Supplementary material 1). In contrast, the Ca2+

transients evoked by three different acid stimuli were not
attenuated by CPZ. Instead, there was a tendency for the
Ca2+ transients in response to acidosis to be amplified
slightly by the application of CPZ; this was significant at
pHo 6.2 (205±60%, n=6, p<0.05 when compared to first
control). Ca2+ transients evoked by the final, control,
exposure to pHo 6.2 or 5.0 were also significantly larger
than the first control Ca2+ transients (Fig. 8). Acid-evoked
(pHo 6.2) Ca2+ transients were greatly reduced by BCTC

(1 μM) to 22±5% (n=12, p<0.01). AMG 9810 also
substantially reduced initial Ca2+ transients to 15±3%
(n=18, p<0.001; Fig. 9b, d) when compared to first
control. Ca2+ transients evoked in response to lactic
acidosis (15 mM Na-lactate, pHo 6.2) were similarly
reduced by both BCTC (to 15±4%, n=17, p<0.001) and
by AMG 9810 (to 11±3%, n=8, p<0.01; Fig. 9c, d). For
both BCTC and AMG 9810, the Ca2+-transient response to
acidosis remained reduced compared to initial controls after
washout of the drug (Fig. 9d). A similar lack of rapid/full
reversibility was also noted in the ability of both BCTC and
AMG 9810 to antagonise responses to capsaicin (see
Supplementary material 1).

Acidosis triggers a sustained Ca2+-release
from internal stores

The sustained rise in [Ca2+]i evoked by hypercapnic
acidosis pHo 6.8 was 52±6 nM (n=17) and that evoked
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Fig. 5 Effects of Ni2+ on acid-evoked Ca2+ transients. Three different
levels of external acidosis were used (pHo 6.8, a; 6.2, b; 5.0, c). A
control exposure to acidosis was followed by an exposure to acidosis
in the presence of Ni2+ (2.5 mM) and finally by a second exposure to
acidosis omitting Ni2+. a Ca2+ transients evoked by pHo 6.8 were
unaffected by Ni2+. b Ca2+ transients evoked by pHo 6.2 were
enhanced in the presence of Ni2+ and the post-Ni2+ (control) response
to pHo 6.2 was also augmented when compared to the first control
response. c Ca2+ transients in response to pHo 5.0 were unaffected by

Ni2+ although the post-Ni2+ control response was again enhanced
compared to the first control. d Summary of the effects of Ni2+ on
Ca2+ transient response to acidosis. The data are presented as mean +
SEM. Number for each experiment (n=6). Data on the effects of Ca2+-
free solutions upon acid-evoked Ca2+ transients are included for
comparison. Statistical significance was assessed using Student’s
paired t test (*p<0.05; **p<0.01; ***p<0.001). Exposure periods in
a–c are indicated by horizontal bars. Time scale bars in all recordings,
200 s
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by a mixed acidosis pHo 6.2 was 73±13 nM (n=13). There
was no statistically significant difference between the
sustained rise in [Ca2+]i in response to these two stimuli
(p=0.263). The sustained rise in [Ca2+]i was not reduced by
Ca2+-free solutions (pHo 6.8, 42±5 nM (n=10, p=0.223)
and pHo 6.2, 38±7 nM (n=7, p=0.097)).

In further experiments, we investigated whether this
sustained Cao

2+-independent rise in [Ca2+]i was due to acid-
induced Ca2+ liberation from intracellular Ca2+ stores.
Since we observed no differences between the sustained
rises in [Ca2+]i evoked either by pHo 6.8 or pHo 6.2, the
following series of experiments were conducted using a
single acid stimulus (hypercapnic acidosis pHo 6.8).
Depletion of endoplasmic reticulum (ER) stores using
CPA (10 μM, a sarco-/endoplasmic reticulum Ca2+ ATPase
(SERCA) inhibitor) significantly reduced the sustained rise
in [Ca2+]i to 24±12 nM (n=4, p<0.05; Fig. 10a, d).
Application of caffeine (30 mM) to deplete ER stores also
reduced the sustained rise in [Ca2+]i to 11±2.4 nM (n=5,
p<0.01; Fig. 10b, d). Depletion of mitochondrial Ca2+

stores by FCCP (1 μM) did not influence the sustained rise

in [Ca2+]i evoked by pHo 6.8 (55±11 nM, n=6, p=0.235;
Fig. 10c, d).

Effects of anoxia on the [Ca2+]i response to acidosis

In vivo, the intense acidosis that accompanies ischaemia is
primarily a consequence of the anaerobic generation of
lactic acid due to a lack of oxygen delivery. Ischaemic
acidosis is consequently invariably accompanied by anoxia.
The following experiments were therefore conducted to
investigate the effects of oxygen deprivation on the
neuronal response to acidosis.

Exposure to anoxia plus hypercapnic acidosis (pHo 6.8)
evoked Ca2+ transients with a peak Δ[Ca2+]i of 353±
214 nM (n=8; Fig. 11b). These Ca2+ transients were sig-
nificantly larger (p<0.05, n=8) than those evoked by pHo

6.8 alone (112±60 nM). Anoxia plus a mixed acidosis (pHo

6.2) also evoked Ca2+ transients (498±25 nM, n=7) that
were significantly (p<0.05, n=7) greater than those evoked
by pHo 6.2 alone (310±31 nM; Fig. 11a). Since the
amplitude of the transient [Ca2+]i response to acidosis
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Fig. 6 Effects of Gd3+ and Cd2+ on acidosis-evoked Ca2+ transients. a
Gd3+ (0.5 mM) completely inhibited Ca2+ transients as a response to
pHo 6.8. Ca

2+ transients did not recover during a final exposure to pHo

6.8; however, the final application of capsaicin (100 nM), to
characterise the neurones, still evoked a rise in [Ca2+]i. b Ca2+

transients evoked by pHo6.2 were significantly reduced by Gd3+

(0.5 mM) below 10% compared to control transients. Following Gd3+

removal, the Ca2+ response to pHo 6.2 recovered fully. c In the

presence of 100 μM Cd2+, acidosis evoked a strong increase of Fura-2
fluorescence which only partially recovered. d Summary of the effects
of Gd3+ on Ca2+ transients evoked by acidosis (normalised to the first
control transient, arbitrarily set as 100%). Values are presented as
mean + SEM (n=6 for each condition). Statistical significance was
assessed using Student’s paired t test (**p<0.01; ***p<0.001).
Exposure periods are indicated by horizontal bars. Time scale bars
in all recordings, 200 s
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tended to vary widely between cells, these data were
normalised to the Ca2+ transient evoked under normoxic
conditions (set as 100%) and are presented in Fig. 11e. In
addition to increasing Ca2+-transient amplitude, anoxia also
appeared to slow the recovery (rate of decline) of the
[Ca2+]i transient. Under control conditions, recovery rates
(measured over the range 200–250 nM) were 3.7±0.5 nM/s
at pHo 6.8 and 4.3±0.8 nM/s at pHo 6.2. In anoxia, these
rates were slowed to 2.2±0.5 nM/s (p<0.05, n=8) at
pHo 6.8 and 1.7±0.6 nM/s (n=8, p<0.01) at pHo 6.2. Ca

2+

transients generated in response to anoxic–acidosis were
either completely prevented or were significantly reduced
in Ca2+-free medium (pHo 6.8, ∆[Ca2+]i=11±4 nM, n=6,
p<0.05; pHo 6.2, ∆[Ca2+]i=79±14 nM, n=5, p<0.05;
Fig. 11d, f).

For comparison, we also investigated the effects of
anoxia upon the Ca2+ transients evoked by capsaicin
(100 nM for 10 s). Capsaicin-evoked Ca2+ transients were
also amplified under anoxic conditions to 140±6% of
control (p<0.01, n=6; Fig. 11c, e). Moreover, the recovery
rates of these Ca2+ transients were significantly slowed
from 9±1.6 nM/s under normoxia to 3.4±0.8 nM/s during
anoxic conditions (n=6, p<0.01).

The sustained rise in [Ca2+]i induced by anoxia and
acidosis was also significantly greater than that evoked by
acidosis alone. At pHo 6.8 in anoxia, the sustained rise in
[Ca2+]i was 84±9 nM (n=13) vs. 52±6 nM (n=17) in pHo

6.8 alone (p<0.01). Similarly at pHo 6.2 in anoxia, the
sustained rise in [Ca2+]i was 104±25 nM (n=12) vs. 73±
13 nM (n=13) in pHo 6.2 alone (p<0.05).

Ca2+ responses to a combination of anoxia, acidosis
and aglycaemia

In addition to anoxia, under ischaemic conditions, there
may also be consumption of exogenous glucose. So, we
also investigated the effects of combining acidosis and
anoxia with aglycaemia. In the following experiments
combining extracellular acidosis (pHo 6.8 or 6.2) with
anoxia and aglycaemia (aaa 6.8 and aaa 6.2) resulted in a
rapid transient increase in [Ca2+]i followed by a sustained
rise in [Ca2+]i in the majority (65%) of neurones (see,
e.g. Fig. 12a, e). In a small subpopulation of neurones
(30%), however, the initial Ca2+ transient was absent or
very small and only a sustained rise in [Ca2+]i was seen
(e.g. Fig. 12b).
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Fig. 7 Sensitivity of acidosis-evoked Ca2+-influx to amiloride. a–c
The effects of amiloride (100 μM) on acid-evoked Ca2+ transients was
tested at three different pHo values (5.0, 6.2, 6.8). Note that the
intrinsic fluorescence of amiloride causes only a very small baseline
shift indicating negligible interference with Fura-2 fluorescence
measurements. d Summary of the effects of amiloride on acid-
evoked Ca2+ transients. Data are normalised to the initial control
responses (arbitrarily set as 100%). Note that although there is a

tendency for amiloride to reduce the effect of acidosis by 10–20%, this
failed to reach statistical significance. The effects of Ca2+-free
solutions on the acid-evoked Ca2+ transients are included for
comparison. Statistical significance was assessed using Student’s
paired t test (**p<0.01; ***p<0.001). Exposure periods are indicated
by horizontal bars. Each experimental group includes six independent
recordings. Time scale bars in all recordings, 200 s
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By comparison, the responses to anoxia alone or
aglycaemia alone consisted only of a monophasic sustained
increase in [Ca2+]i (see Fig. 12a, b, e, f). The sustained rise
in [Ca2+]i evoked by the combination of anoxia, acidosis
and aglycaemia was found to be larger than that evoked by
any of these stimuli in isolation (see Fig. 12g, h; although
the difference between pHo 6.8 and pHo 6.8 + anoxia and
aglycaemia just failed to reach statistical significance). This
suggests that the effects of these stimuli on sustained [Ca2+]i
are additive (see “Discussion” section).

As noted above, Ca2+ transients were only observed
under acid conditions and not with anoxia or aglycaemia
alone. The amplitude of these acid-evoked [Ca2+]i transients
were, however, augmented by both anoxia and the combi-
nation of anoxia and aglycaemia with the effects of anoxia
and aglycaemia being larger than the effects of anoxia alone
(see Fig. 13). We also noted that the recovery rates of
Ca2+ transients evoked by aaa pHo 6.8 (1.9±0.5 nM/s,
n=26) and aaa pHo 6.2 (2.5±0.4 nM/s, n=16) were again
significantly reduced when compared to pHo 6.8 and
pHo 6.2 alone (p<0.05), but were not different to the
recovery rates of Ca2+ transients evoked by anoxia pHo 6.2
or anoxia pHo 6.8.

Identification of Ca2+-influx pathways activated
by aaa pHo 6.8

As previously observed for acidosis alone, the initial Ca2+

transient in response to aaa was greatly inhibited in Ca2+-
free media whereas the sustained elevation in [Ca2+]i was
independent of external Ca2+ (see Fig. 14). Having
determined that the initial Ca2+ transients in response to
the combination of acidosis, anoxia and aglycaemia is
dependent upon Ca2+ influx, we next sought to identify the
ion channels responsible for this Ca2+ influx. Neurones
were exposed to aaa pHo 6.8 alone (control) and then to aaa
6.8 in the presence of amiloride, Ni2+, capsazepine, Gd3+

and then to aaa 6.8 again (second control). The amplitudes
of the resulting Ca2+ transients were normalised to the first
control response (arbitrarily set as 100%). Amiloride
(100 μM) reduced Ca2+ transients to 50±8% (n=6, p<
0.01) compared to control (Fig. 15a, e). Ni2+ (2.5 mM) had
no significant effect on Ca2+ transients (81±21%, n=5,
p=0.413; Fig. 15b, e). Capsazepine (10 μM) also had no
significant effect upon the Ca2+ transient (86±7% com-
pared to control, n=5, p=0.1; Fig. 15c, e). In the presence
of Gd3+ (1 mM), Ca2+ transients evoked by aaa pHo 6.8
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Fig. 8 a–c Effects of CPZ on acidosis-evoked Ca2+ transients.
Experiments were conducted using three different levels of acidosis
pH 6.8 (a), pH 6.2 (b) and pH 5.0 (c). Note that in contrast to its
effects on capsaicin-evoked Ca2+ transients, capsazepine failed to
inhibit acid-evoked Ca2+ transients. d Mean data from experiments in
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100%). Note that instead of inhibiting the response to acidosis, CPZ

amplified the response to pHo 6.2. The effects of removal of
extracellular Ca2+ on the acid-evoked Ca2+ response are included for
comparison. Exposure periods are indicated by horizontal bars.
Number of each experimental condition: n=6. Statistical significance
was assessed using Student’s paired t test (*p<0.05; **p<0.01;
***p<0.001). Time scale bars in all other recordings, 200 s
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were reduced to 45±9% (n=6, p<0.05; Fig. 15d, e). BCTC
(1 μM) and AMG 9810 also inhibited Ca2+ transients
evoked by aaa pHo 6.2 (Fig. 16a, b, d). Ca2+ transients were
reduced to 9±6% (n=6, p<0.001) by BCTC and to 11±8%
(n=6, p<0.001) by AMG 9810, respectively. Ca2+ tran-
sients evoked by lactic acidosis in the presence of anoxia
and aglycaemia (20% CO2 in 15 mM Na-lactate) were
similarly reduced by AMG 9810 to 11±5% (n=6, p<0.001;
Fig. 16c, d). The effects of BCTC and AMG 9810 were
again largely irreversible within the time frame of these
experiments (Fig. 16a–c). Thus, the Ca2+ transient evoked
by aaa was strongly inhibited by BCTC and AMG 9810
(although not completely abolished) was roughly halved
by amiloride and Gd3+ but was unaffected by Ni2+ or
capsazepine.

Discussion

In this study, we have investigated the effects of acidosis,
anoxia and aglycaemia on [Ca2+]i in sensory neurones.
Acidosis is considered to be one of the primary stimuli
responsible for sensory neurone excitation in ischaemia

[68]. It also plays a pivotal role in triggering neuronal
release of CGRP [25, 73, 113]. The secretion CGRP in
response to a number of stimuli, including acidosis, is
critically dependent upon Ca2+ signalling [23, 28, 56].

In the first part of this study, we investigated the effects
of acidosis alone on intracellular [Ca2+]i in small capsaicin-
sensitive neurones arising from dorsal root ganglia as these
are thought to be responsible for sensing ischaemic
conditions [17, 68, 88]. In the second part of the study,
we have compounded the effects of acidosis with anoxia
and aglycaemia since these conditions not only accompany
ischaemia but can have profound effects upon Ca2+

regulation in sensory neurones [34, 55, 69, 75].

Effects of acidosis alone on [Ca2+]i in sensory neurones

We have employed four different levels and types of
acidosis in this study: a relatively mild hypercapnic acidosis
(pH 6.8; 20% CO2 and normal bicarbonate) representative
of the early stages of ischaemia in the heart, a more severe
mixed acidosis (pH 6.2; 20% CO2 and reduced bicarbonate)
and an equivalent mixed acidosis including 15 mM Na-
lactate representative of the latter stages of ischaemia and a
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very severe acidosis (pHo5.0) representative of the stimuli
frequently used to activate acid sensitive cation channels in
vitro [10, 52, 110]. All four acid stimuli evoked a biphasic
elevation of [Ca2+]i in the majority of neurones investigated.
The initial phase was characterised by a Ca2+ transient
occurring within the first minute of exposure to acidosis.
This initial transient was chiefly dependent on external
Ca2+. The Ca2+ transient was then followed by a sustained
elevation of [Ca2+]i. This second sustained phase of
the [Ca2+]i response was not depended upon Ca2+ influx.
We will first address possible mechanisms for these Ca2+

signalling events.

Pharmacological identification of Ca2+ influx pathways

The most likely mechanisms for acid-evoked Ca2+ influx in
neurones are through (a) ASIC1a channels [101, 102, 110],
(b) TRPV1 (or capsaicin) receptors [17, 89] and (c) voltage-
gated Ca2+ channels secondary to acid-evoked membrane
depolarisation [15, 40, 87]. In order to discriminate between

these entry pathways, we needed to find suitable pharma-
cological tools.

ASIC channels are widely reported to be inhibited by
amiloride [106] although this is not entirely selective as
amiloride may also inhibit T-type voltage-gated Ca2+

channels [86, 95]. Recent evidence also indicates that under
moderate acidosis (pH 7.0), amiloride may activate ASIC3
leading to sustained inward currents [108].

Although there are several different types of voltage-
gated Ca2+ channels in sensory neurones [3, 4], there are a
number of divalent cations that can be used to inhibit all
high voltage-activated channels (cadmium) and both high
and low voltage-activated channels (nickel) [9, 13, 62, 64,
71, 74, 95]. Using high potassium solutions to depolarise,
we confirmed that 100 μM Cd2+ substantially blocked and
2.5 mM Ni2+ fully blocked voltage-gated Ca2+ entry. We
next tested the effects of these cations on capsaicin evoked
Ca2+ influx to see if they could be used to discriminate
between TRPV1 and voltage-gated Ca2+ entry. Capsaicin-
induced Ca2+ transients were not inhibited by either Ni2+ or
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Cd2+; indeed, the effects of capsaicin appeared to be
potentiated. In particular, exposure to capsaicin in the
presence of Cd2+ led to a substantial and mostly irreversible
increase in the Fura-2 fluorescence ratio. We suggest that
this is probably due to Cd2+ entry through TRPV1 and
subsequent binding of Cd2+ to Fura-2. Cd2+ binding to
Fura-2 has similar effects on its fluorescence to those of
Ca2+ binding but Fura-2 has a much greater affinity for
Cd2+ than for Ca2+ [36]. Ni2+ ions can also bind to Fura-2
but when they do so, they quench fluorescence. No
fluorescence quenching was observed during exposure to
capsaicin in the presence of Ni2+ suggesting that Ni2+ does
not pass through TRPV1 to any significant extent. Ni2+ was
also ineffective in inhibiting capsaicin-evoked Mn2+ entry
(TRPV1 channels are permeable to Mn2+ [66]), whereas it
fully blocked voltage-gated Mn2+ entry. Mn2+ quenching
of Fura-2 fluorescence in the presence of Ni2+ may
therefore also serve as an indicator of TRPV1 activation.
One possible problem with the use of Ni2+ is that it
appeared to slightly potentiate the effects of capsaicin.
Sensitisation of TRPV1 channels by other external cations,
Na+ and Mg2+, has been previously described [1]. Despite

this sensitisation, the effects of Ni2+ and Cd2+ should
permit discrimination between voltage-gated and TRPV1-
mediated Ca2+ influx.

The TRPV1 antagonist capsazepine was, as expected,
highly efficient in blocking the effects of capsaicin [31,
51, 53]. Whether it can also block acid-evoked activation of
TRPV1 is, however, uncertain (see below). We therefore
sought other blockers of Ca2+ entry through TRPV1.
Gadolinium (Gd3+) is a small lanthanide that blocks various
types of calcium channels at submillimolar concentrations
[7, 14, 49, 62]. Gd3+ has been reported to activate and
sensitise TRPV1 channels at low concentrations, but at
higher concentrations (>300 μM), it inhibits capsaicin-
evoked membrane currents [1, 92]. In the present study,
Gd3+ inhibited both voltage-activated Ca2+ entry and
capsaicin-evoked Ca2+ influx, but we could only inhibit
capsaicin-evoked Ca2+ transients with Gd3+ concentrations
of 500 μM and above. Two newer TRPV1 antagonists
BCTC and AMG 9810 with reported ability to block proton
activation of TRPV1 were also tested [27, 93]. These
produced a profound block of capsaicin-evoked Ca2+

transients that was largely irreversible.
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Acid-evoked Ca2+ influx pathways

Protons activate strong inward sodium currents in DRG
neurones which have both transient and sustained compo-
nents [10]. These currents are mediated mainly by ASIC3, a
proton-sensitive cation channel [29, 57, 67, 77]. ASICs are
thought to play a key role in transmitting ischaemic pain.
They are directly activated by extracellular acidosis which
relieves channel blockade by Ca2+ ions through the
protonation of the Ca2+-binding sides [41, 42, 78]. The ion
selectivity of these channels is not restricted to Na+; ASIC1a
is also permeable to Ca2+ [19, 99, 105, 110] and contributes
to the Ca2+ overload in neurones of ischaemic brain [107].

In the present study, amiloride was administered to evaluate
the contribution of ASICs to the acid-evoked Ca2+ transients
[10, 18, 99]. Surprisingly although there was a general
tendency for amiloride to reduce the acid-evoked Ca2+

transient at all pH values tested, this effect did not reach
statistical significance and robust Ca2+ transients invariably
remained. Thus, although we cannot completely exclude a
minor role for ASICs in mediating some of the acid-evoked
Ca2+ influx, they are clearly not the main cause.

We also tested the effects of Ni2+ and Cd2+ on the Ca2+

response to acidosis. Both of these agents failed to inhibit
the acid-evoked Ca2+ transient. Ni2+ also failed to inhibit
acid-evoked Mn2+ influx (see Fig. 4c). These data indicate

a
400

300

200

100

aglycaemia

aaa (pHo 6.8)

[C
a2+

] i 
/ n

M
150

100

50

pHo 6.8 aaa (pHo 6.8)c
[C

a2+
] i 

/ n
M

e

[C
a2+

] i 
/ n

M

anoxia

400

300

200

100

500 aaa (pHo 6.8)

h
∆[

C
a2+

] i 
/ n

M

aaa
pHo 6.2
(n = 8)

anoxia
(n = 8) 

pHo 6.2
(n = 6)

aglycaemia
(n = 6)

aaa
pHo 6.2
(n = 6)

aaa
pHo 6.2
(n = 6)

0

20

40

60

80

100

120

140 **
**

*

d
500

400

300

200

100

pHo 6.2

aaa (pHo 6.2)

[C
a2+

] i 
/ n

M

b

aglycaemia

120

100

80

60

140

aaa (pHo 6.2)

[C
a2+

] i 
/ n

M

aaa
pHo 6.8
(n = 12)

g

aaa
pHo 6.8
(n = 11)

aaa
pHo 6.8
(n = 12)

∆[
C

a2+
] i 

/ n
M

anoxia
(n = 12) 

pHo 6.8
(n = 11)

aglycaemia
(n = 12)

**

**

0

20

40

60

80

100

120

140

160

f
1200

1000

800

600

400

200

anoxia

aaa (pHo 6.2)

[C
a2+

] i 
/ n

M

//

Fig. 12 Effects of combining
anoxia, aglycaemia and acidosis
on [Ca2+]i. a–f Acidic stimuli
(pHo 6.8 or pHo 6.2) together
with anoxia and acidosis (aaa)
were applied simultaneously and
compared with aglycaemia
(a, b), an equivalent acidosis
(c, d) or anoxia (e, f) alone. In
this series of experiments, the
order of application of stimuli
was randomised to exclude any
systematic bias due to sensitisa-
tion or desensitisation. Time
scale bars are 200 s. g, h
Summary data showing com-
parison of effects of combined
anoxia, aglycaemia and acidosis
(g pHo 6.8, h pHo 6.2) with each
individual stimulus in isolation
on the sustained elevation of
[Ca2+]i. Data are means + SEM.
Statistical significance was
assessed by Student’s paired
t test (*p<0.05; **p<0.01); the
number of experiments are
given in parenthesis

174 Pflugers Arch - Eur J Physiol (2009) 459:159–181



that the Ca2+ transient is not primarily a consequence of
membrane depolarisation followed by voltage-gated Ca2+

entry and point instead to another acid-activated cation
channel. The fact that acid evoked a sustained rise in Fura-2
fluorescence ratio in the presence of Cd2+ suggests that this
channel is also permeable to Cd2+. Acid-evoked Ca2+

transients were, however, completely blocked by 500 μM
Gd3+ and blocked by 85–90% by BCTC and AMG 9810.

These characteristics, resistance/sensitisation by Ni2+, per-
meability to Mn2+ and Cd2+, block by high levels of Gd3+

and block by BCTC and AMG 9810 are identical to those
of TRPV1 as described above. We also noted a positive
correlation between the amplitudes of acidosis- and
capsaicin-evoked Ca2+ transients (see Fig. 2).

Although the above data point to TRPV1 as being
the main pathway for Ca2+ entry, it was notable that
capsazepine failed to inhibit the acid-evoked Ca2+ transients.
There are conflicting reports in the literature regarding the
capsazepine sensitivity of both proton-activated inward
currents in rat sensory neurones and the cloned rat TRPV1
channel. Tominaga and Tominaga originally reported that
10 μM capsazepine inhibited proton activated currents
through cloned rat TRPV1 channels by approximately
80% [89], but others have subsequently found no effect at
concentrations up to 30 μM [61, 65]. Similarly in rat
sensory neurones, there are some reports that the sustained
proton-activated currents are inhibited by capsazepine [52]
and others which show no effect of capsazepine on proton-
evoked currents or ion fluxes [11, 98]. Absence of effects of
capsazepine upon proton activation of TRPV1 is not
surprising since the capsaicin/capsazepine binding site and
proton binding site are at different locations (capsaicin binds
an intracellular domain [45] whereas protons bind to an
extracellular domain [43]). The lack of consistency with
respect to the effects of capsazepine on proton-activated
TRPV1 currents in rat is, however, puzzling. Nevertheless,
as there is clear precedent for lack of effect of capsazepine
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on proton activation of rat TRPV1 and given the strong
inhibitory effects of two other TRPV1 antagonists, the
failure of capsazepine to antagonise the proton-activated
Ca2+ influx cannot be considered to exclude a role for
TRPV1.

In summary, the primary route for acid-evoked Ca2+

influx is via TRPV1. We cannot entirely exclude some
contributory role for parallel voltage-gated Ca2+ entry
(secondary to membrane depolarisation) since possible
sensitisation of TRPV1 by Ni2+ may obscure any minor
contribution from voltage-gated Ca2+ channels. The lack of
any apparent major role for ASIC channels may seem
surprising, but it should be noted that many of these
channels inactivate very rapidly [10, 42, 78] so any Ca2+

influx will be short-lived and could easily be obscured by
the subsequent Ca2+ influx through TRPV1.

Ca2+ liberation from internal stores during external acidosis

During exposure to acidosis, there is also a rise in [Ca2+]i
that is independent from Cao

2+. The sustained nature of
this [Ca2+]i rise suggests a change in the equilibrium

between Ca2+ fluxes into and out of the cytosol (note that
a discrete Ca2+-release event alone, for example, displace-
ment of Ca2+ from internal buffers by H+, would be
expected to only result in a transient increase in [Ca2+]i as
the Ca2+ released is subsequently extruded). We have not
investigated the cause of this sustained rise in [Ca2+]i in any
detail, but we have observed that ER Ca2+-store depletion
using either caffeine or CPA reduces this acid induced rise
in [Ca2+]i. One possible explanation therefore is that
intracellular acidosis causes a sustained increase in Ca2+

leak from the ER.
Whilst a number of studies indicate that a direct effect of

intracellular acidosis is to inhibit the ryanodine receptor
[6, 84], there is another indirect pathway whereby Ca2+

release from internal stores may be triggered by the
activation of proton-sensing G protein-coupled receptors
[39, 54, 90]. These receptors have recently been described
in approximately 75% of small nociceptive DRG neurones
in which they are colocalised with ASICs [38]. In addition
to the possibility of enhanced Ca2+ release, acidosis may also
reduce Ca2+ reuptake into the ER by inhibiting SERCA.
Moreover, our observation that a small (acid evoked)
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Time scale bars are 200 s
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sustained increase in [Ca2+]i also occurs in the presence of
CPA (in Ca2+-free media) suggests that some inhibition of
plasma membrane Ca2+ extrusion is also likely. Determining
which of these pathways are indeed responsible for the
sustained Ca2+ release from internal stores seen acidic
conditions clearly requires further investigation.

Effects of combining acidic stimuli with anoxia
and aglycaemia

When acidosis was combined with anoxia, or with both
anoxia and aglycaemia, there was a systematic increase in
the amplitude of the Ca2+ transient (Fig. 13). The effects of
acidosis are therefore potentiated by loss of oxygen and
loss of glucose both of which are conditions present in
ischaemia. There are likely to be a number of factors con-
tributing to this effect. In analysing the cause of the Ca2+

transient in anoxia, aglycaemia and acidosis, we found that
this transient was exclusively dependent on extracellular
Ca2+ and was strongly inhibited by BCTC and AMG 9810,
but was not inhibited by voltage-gated Ca2+-channel
blockers (Ni2+). The major source of Ca2+ influx would
therefore again seem to be mainly via TRPV1. We did,

however, note that amiloride also reduced the Ca2+ transient
under these conditions. A role for ASICs would therefore
seem to be more prominent in response to anoxic–
aglycaemic–acidosis than to acidosis alone. One possible
explanation for this is that oxygen and glucose deprivation
has recently been reported to both increase the amplitude
and slow the inactivation of ASIC1a currents in mouse
hippocampal neurones [26]. Thus, the amount of Ca2+

influx through ASIC1a may be enhanced. Further factors
which we anticipate will also contribute to the enhancement
of the Ca2+ transient by anoxia and aglycaemia include
rather more general changes to Ca2+ metabolism including
inhibition of plasma membrane Ca2+ extrusion and inhibi-
tion of SR Ca2+ uptake [34]. Moderate inhibition of both
SERCA and plasma membrane Ca2+ ATPase (PMCA)
pumps occurs fairly rapidly in anoxia and corresponds to
decline in cytosolic ATP levels [34, 35]. These factors
probably account for the slower recovery of the Ca2+

transient observed in anoxic–aglycaemic–acidosis compared
to that seen in acidosis alone. Indeed, we also noted that
anoxia both enhanced the [Ca2+]i response to capsaicin and
prolonged [Ca2+]i recovery following capsaicin removal
(Fig. 11c). Given the prominent role for mitochondria in
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Ca2+ buffering in these cells [2, 63, 79, 83, 103], one might
also anticipate that reduced mitochondrial Ca2+ uptake
should contribute to the enhanced Ca2+ transient. In
previous studies, however, we have found that although
relatively brief anoxia does cause partial mitochondrial
depolarisation, this does not appear to affect the capacity
of mitochondria to take up Ca2+ [34, 35]. In summary, the
causes of the enhancement of the acid evoked Ca2+ transient
in anoxia and aglycaemia are likely to be complex,
involving the modulation of both Ca2+-influx and Ca2+-
efflux pathways and are in need of further investigation.

Even in the presence of anoxia and aglycaemia, it is
notable that the Ca2+-influx phase of the response to
acidosis is still relatively short-lived (t1/2=43 s; Fig. 11).
There are a number of possible explanations for this:
Firstly, intrinsic inactivation leads to rapid (seconds)
decline in ASIC activity [42, 78], secondly, elevated
intracellular calcium leads to inactivation of TRPV1, and
finally, declining ATP levels may contribute to loss of
TRPV1 activity [91, 94, 112]. What remains after the Ca2+

transient has subsided is a sustained elevation of [Ca2+]i
which is largely independent of Ca2+ influx. Aglycaemia
and anoxia alone can also induce a sustained increase in
[Ca2+]i. The response to the combination of all three
‘stimuli’ is greater than that observed in response to any
single stimulus given in isolation (see Fig. 12). Thus, the
effects of anoxia, aglycaemia and acidosis on intracellular
Ca2+ regulation appear to summate. The cause of the rise in
[Ca2+]i in response to anoxia has been described previously
and includes inhibition of both SERCA and PMCA as well
as enhanced leak of Ca2+ from internal (ER) Ca2+ stores
[34]. The cause of the sustained rise in response to acidosis
has not yet been investigated in full, but our preliminary
data indicate that it is likely to involve changes to ER
calcium handling and hint at a possible role for the recently
discovered G protein-coupled proton receptors.

Conclusions

In this study, we have only investigated events likely to
occur early in ischaemia; more prolonged ischaemic
conditions are predicted to further disturb Ca2+ homeostasis
as endogenous glycolytic fuel reserves are depleted, ATP
levels collapse and Ca2+-extrusion mechanisms fail com-
pletely [34, 35]. What is interesting to note, however, is that
even before this stage is reached, anoxia and aglycaemia
have a marked influence over cellular Ca2+ homeostasis
enhancing both the calcium influx and the sustained rise in
[Ca2+]i in response to acidosis. Even under anoxic and
aglycaemic conditions, however, the acid evoked Ca2+

influx, mediated predominantly via TRPV1, remains rela-
tively short-lived.

Important questions that remain to be addressed are how
might the Ca2+-signalling events described here be further
influenced by other mediators released in ischaemia (e.g.
bradykinin and adenosine), could these support, enhance or
prolong the Ca2+-influx phase or is Ca2+ influx only
relevant in the very early stages of ischaemia? If the latter,
what are the functional consequences of the sustained (Ca2+-
influx independent) rise in [Ca2+]i in these cells, can it
promote continued release of CGRP or is this only linked to
the Ca2+-influx phase? Finding answers to these questions is
important if we are to gain a better understanding of the role
played by acid-sensing cation channels, calcium stores and
calcium signalling in general in sensory neurone function
under ischaemic conditions.
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