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Abstract The recent technical development of atomic force
microscopy (AFM) has made nano-biology of the nucleus
an attractive and promising field. In this paper, we will
review our current understanding of nuclear architecture
and dynamics from the structural point of view. Especially,
special emphases will be given to: (1) How to approach the
nuclear architectures by means of new techniques using
AFM, (2) the importance of the physical property of DNA
in the construction of the higher-order structures, (3) the
significance and implication of the linker and core histones
and the nuclear matrix/scaffold proteins for the chromatin
dynamics, (4) the nuclear proteins that contribute to the
formation of the inner nuclear architecture. Spatio-temporal
analyses using AFM, in combination with biochemical and
cell biological approaches, will play important roles in the
nano-biology of the nucleus, as most of nuclear structures
and events occur in nanometer, piconewton and millisecond
order. The new applications of AFM, such as recognition
imaging, fast-scanning imaging, and a variety of modified
cantilevers, are expected to be powerful techniques to
reveal the nanostructure of the nucleus.
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Architecture and biological significance of the nucleus:
an overview

The nucleus is the biggest organelle in eukaryotic cells (10–
20 μm in a diameter in mammalian cells), and it packages
the entire genome. It has long been thought that the nucleus
is a container that holds nuclear events including gene
duplication, transcription, and damage repair. Recent
reports, however, have shown that the architecture of the
nucleus itself plays important roles in the regulation of
genome functions and structures. Namely, the nuclear
architecture is closely related to the nuclear functions [1, 2].

In eukaryotes, the genomic DNA is separated from the
cytoplasm by the nuclear envelope and forms chromatin
inside the nucleus [3–6]. Chromatin formation is achieved
through several DNA-folding steps. First, 146-bp DNA
segments wrap around a histone octamer (two each of H2A,
H2B, H3, and H4) in 1.65 turns to form a nucleosome [7].
The linker histones, which include H1, H5, and other
subtypes, are major components of the chromatin and play
a significant role in the higher-order packaging of the array
of nucleosomes called the “beads-on-a-string” fiber to form
the 30-nm fiber [8–11]. In addition to the linker histones,
non-histone proteins, such as high mobility group proteins,
condensins, and topoisomerases, are also involved in the
higher-order structure of the chromatin [12]. In particular,
the condensin complex and topoisomerase II (Topo II) are
thought to hold two DNA strands in remote regions to
create tension in the trapped DNA region [13, 14]. The
higher-order chromatin forms transcriptional active and
inactive regions named euchromatin and heterochromatin,
respectively [15].

A well-known function of the nuclear envelope is
protection of the genome from environmental damage, such
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as ultraviolet irradiation. Moreover, the nuclear envelope also
plays other important roles including nuclear transport and
regulation of chromatin functions. The nuclear envelope is
composed of double lipid bilayers [16] (an outer and an inner
nuclear membrane; ONM and INM, respectively), the
nuclear pore complex (NPC), and the nuclear lamina.
Heterochromatin attaches to both the INM and the nuclear
lamina (for a detailed description of the nuclear envelope,
see reviews [17–20]). It is thought that the ONM and the
endoplasmic reticulum (ER) are the same compartment, as
the ONM continues from the ER and ribosomes exist on the
ONM. On the other hand, the INM contains specific INM
proteins, such as the lamin B receptor (LBR) [21, 22],
lamina-associated polypeptides [23], emerin [24], MAN1
[25], and the SUN proteins [26, 27]. Recent proteomic
analysis has revealed that about 80 proteins exist in the INM
[28]. Some of the INM proteins interact with chromatin and/
or the nuclear lamina [26, 29] (see “Interaction between the
nuclear envelope and chromatin”).

The inside of the nucleus can be roughly divided into
two regions: chromosome territory and the interchromatin
compartment. The chromosome territory is the region that
is occupied by chromatin. Heterochromatin is located under
the nuclear envelope, around the nucleolus, and in the inner
region of the chromatin territory, whereas euchromatin with
transcriptional activities is situated at the boundary between
the chromatin territory and the interchromatin compartment
[30, 31]. The interchromatin compartment seems to exclude
chromatin and contains sub-compartments including the
nuclear matrix, nuclear speckle, Cajal body, promyelocytic
leukemia (PML) body, and nucleolus (see “Inner-nuclear
structures that interact with chromatin”). These sub-com-
partments function as the scaffolds for ribosome biogenesis
[32], RNA maturation, and other processes. In the inter-
chromatin region, proteins and RNA cooperate to promote
biological activities such as transcription and RNA splicing
under a constant cycle of assembly and disassembly.

The nucleus possesses a highly complex but well-organized
architecture, and the dynamic functions of the nucleus depend
on this architecture. Thus, it is important to elucidate the
molecular mechanisms of individual nuclear events in relation
to specific nuclear structures, hopefully at the nanometer,
millisecond, and piconewton levels. Due to the complexity of
such nuclear events, the elucidation of the mechanisms will
require a coordinated combination of techniques in nanotech-
nology, biochemistry, and cell and molecular biology.

New approaches to studies of nuclear architecture

The recent development of atomic force microscopy (AFM)
[33] has been a breakthrough in the study of nuclear
architecture [16, 34, 35]. The instrumentation and application

of AFM have been enormously fruitful due to the develop-
ment of sharp cantilevers for molecular imaging [36–38],
cantilever modification techniques for single-molecule force
measurement [39–43], and fast-scanning devices for real-
time imaging [44–48].

Nanometer scale imaging by AFM

AFM scans the sample surface with a very sharp probe and
reveals the surface topography [34, 49, 50]. Thus, AFM
routinely identifies the binding site of a DNA-binding protein
with a resolution of several tens of base pairs and determines
the degree of protein polymerization on a liner DNA of
several kilobase pairs [51]. AFM has also revealed the distinct
higher-order structures of DNA, including supercoiling [52],
stem-loop structures [53], and enhancer-promoted DNA loops
[54] as well as nucleosomes and chromatins [55].

The sequential removal of the cell membranes, cytoplasm,
and nucleoplasm from cultured cells on a cover slip (Fig. 1a
and b) leads to the exposure of interphase chromatin [56]. By
using this method and nanoscale imaging, the inner
chromatin structures inside the interphase nucleus have been
revealed (Fig. 1c and d) [57]. The depletion of cytoplasmic
and nucleoplasmic materials from HeLa cells exposes the
interphase chromosome that is composed of an ∼80-nm
diameter granular unit that forms an ∼80-nm-wide fiber
(Fig. 1e and f). In contrast, cytoskeletal fibers are always
thinner, with a width of 10–60 nm (Fig. 1g and h).

In human mitotic chromosomes, 70- to 80-nm granular
structures become evident under varying concentrations of
Mg2+ in electron microscopy (EM) [58] and after treatment
with RNase and pepsin in AFM [59]. In the mitotic
chromosome of Drosophila melanogaster, the fibrous
structures with ∼40 and 80 nm widths can be observed by
EM [60]. On the surface of condensed chromosomes
purified from sperm cells, ∼70-nm particles have also been
identified [61]. When the chromosome is dissected with the
AFM tip and its internal structures are visualized, ∼70-nm
particles that form a fibrous structure are revealed [61].
These lines of evidence suggest that the 30- to 40-nm thin
fiber and the 70- to 80-nm granular fiber are the
fundamental structural units of eukaryotic chromosomes;
these fibers are relatively stable in a wide range of
experimental conditions. Recent reports have demonstrated
that these hierarchical structures exist in both eukaryotes
and prokaryotes [35] and that nascent single-stranded
RNAs are part of the 30–80 nm fiber structures [62, 63].

Piconewton scale force measurement

Other useful biological applications of AFM are to measure
the physical properties of a sample surface and to measure
interactive forces between biological macromolecules and
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even between domains within a molecule ([64–68]; also see
“Inner-nuclear structures that interact with chromatin”).
When the cantilever pushes the sample surface or pulls up
one of two interacting molecules, it deflects upward or
downward depending on the force applied to it. The force is
proportional to the amount of the deflection as described in
the following equation: F=kΔx, where k and Δx stand for

the spring constant of the cantilever and the deflection,
respectively. Thus, by measuring the cantilever deflection,
interactions between biological molecules can be charac-
terized. The application of single-molecule force measure-
ment is described in “Nuclear envelope in interphase.”

The force measurement mode can be used to measure the
elasticity of living cells. When an AFM cantilever

Fig. 1 Micro-dissection of cell
nucleus. HeLa cells cultured on
a cover glass can be chemically
dissected by successive treat-
ment with 0.1% Triton X-100
and 250 mM (NH4)2SO4 and
10 U DNase I (a–c), followed
by 100 U DNase I (d). The
specimens were then fixed, sub-
jected to a critical-point drying
and observed by AFM. Partial
treatment with 10 U DNase I
exposed chromatin fibers in the
nucleus (c), whereas the follow-
ing harsh treatment with 100 U
DNase I removed all of these
fibers and revealed the nuclear
matrix (d). e Section analysis of
the chromatin fiber observed in
(c) shows granular units
(arrowheads). f The width of the
chromatin fiber was measured
and summarized after subtract-
ing the effect of the AFM tip
curvature. The average value
was 78.1 nm. g and h The
widths of the cytoskeletal fibers
observed in (a) were measured
and summarized after subtract-
ing the AFM tip curvature. Most
of the fiber widths were distrib-
uted between 10 and 70 nm with
four major peaks with the center
values of 11.6, 22.6, 39.1, and
66.4 nm
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approaches and pushes against the cell surface, a large
indentation in the cell and the cell surface is usually
observed after the probe first contacts the cell surface. This
indentation can be plotted against the force and fitted to the
Hertz model equation [69] to estimate the Young’s modulus
that describes the elasticity of the sample. The Young’s
moduli of the areas over the nucleus (1.8±1.5 kPa) are
smaller than those of the cell peripheries (5.1±2.9 kPa).
The actin network is responsible for the elasticity of the cell
[70]; i.e., the degradation of cellular actin by cytochalasin
D leads to a decrease in the measured Young’s modulus
[71, 72]. Immunostaining of actin filaments in HeLa cells
indicated that these filaments mainly exist in the peripheral
areas of the cell and that only a few filaments can be seen
over the nucleus [73]. Thus, the actin distribution might be
one reason why the areas over the nucleus appear to be
softer than the peripheral areas. The elasticity measure-
ments have shown that both the plasma membrane and the
nuclear envelope are soft enough to absorb a large
deformation formed by the AFM probe. Penetration of the
plasma membrane and the nuclear envelope are possible
when the probe indents the cell membrane far down close
to a hard glass surface. These types of experiments will
provide useful information for the development of single-
cell manipulation techniques.

Chemical modification of the AFM cantilever
and recognition imaging

The most important issue to be considered in single-
molecule force measurement is how to attach the molecule
of interest to the cantilever. Specific interactions between
glutathione and glutathione S-transferase (GST) or between
Ni–NTA (nickel–nitrilotriacetic acid) and (His)6 have been
used to attach GST-/(His)6-tagged proteins to the AFM
cantilever. Methods to covalently bind glutathione or
Ni–NTA to an AFM cantilever via a polyethylene glycol
(PEG) linker and to attach GST or (His)6-fused protein to
this cantilever have been developed [41, 42] (Fig. 2).

Glutathione contains a cysteine residue in the middle of
the tri-peptide (NH2-Gln-Cys-Gly-COOH). The thiol group
of the cysteine residue can react to a maleimide group on
the PEG-linked AFM cantilever. The rupture force between
glutathione and GST was measured to be ∼150 pN [42].
Similarly, Ni–NTA can also be attached to an AFM
cantilever via a PEG linker with a rupture force of 150–
194 pN against (His)6 [41, 74].

The recent development of recognition imaging under
the TREC™ mode has enabled researchers to simulta-
neously obtain a topographic image and a recognition
signal and, thus, to identify a specific molecule within the

Fig. 2 Chemical modifications to the AFM cantilever. Schematic
illustrations of the covalent coupling of glutathione [42] or antibody
[115] to an AFM cantilever. The cantilever made of silicon nitride was
amino-functionalized by amino-propyl-tetraethoxy-siliane. To avoid steric
hindrance from the cantilever surface and to confer enough flexibility, a
PEG linker was inserted between the glutathione and the cantilever
surface. A hetero-bifunctional PEG linker with N-hydroxysuccinimidyl

(NHS) at one end and the maleimide group at the other end was incubated
with the functionalized cantilever. Glutathione was then reacted with the
PEG-coupled cantilever to covalently attach to the end of PEG (a). To
attach antibody, 5-carboxy 1-pentanethiol was reacted with the PEG-
coupled cantilever. The carboxyl group was activated by EDC and NHS,
and then attached to an antibody (b)
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AFM image. Antibody can also be attached to an AFM
cantilever via a PEG linker, and the topographic image and
recognition image are obtained simultaneously. With this
technique, histone proteins in the reconstituted chromatin
have been successfully recognized [75, 76]. The application
of TREC™ imaging to the inner nuclear structures is
described in “Nuclear matrix.”

From nucleosome to chromatin

Physical properties critical for the nucleosomal formation

The first step of genome folding is nucleosome formation,
which involves the wrapping of DNA around the core
histone octamer. DNA has an elastic property, and
physicochemical studies have estimated the persistence
length of DNA as 140–180 bp [77–80]. This property of
DNA as a stiff polymer largely contributes to the basis of
nucleosome maintenance and dynamics. DNA stiffness
influences the efficiency of nucleosome formation [81].
The elastic property of DNA also affects the positioning of
the histone octamer. Reconstitution with the histone
octamer and a short DNA segment (437 bp) has shown a
preferential positioning of the core histone at the end of the
DNA segment [82] (Fig. 3a).

DNA supercoiling results from DNA winding around
DNA-binding proteins and/or from the topological con-
straint imposed on closed circular DNA. Supercoiling plays
important roles in genomic events, such as transcription,

replication, and recombination, as well as the maintenance
of the genome architecture [83–89].

The superhelical constraint of DNA is a critical
determinant of the formation of nucleosomal arrays. When
the superhelical constraint is completely removed by
topoisomerase I, nucleosomes cannot be formed [90]. The
histone-to-DNA-weight ratio during the reconstitution is a
critical determinant of the manner of compaction. A large
transition between the dense and dispersed states in the
reconstituted chromatin depends on the weight ratio. This
transition is energetically predicted as a function of the
nucleosome–nucleosome distance [91]. These analyses
suggest that the interaction between nucleosomes as well
as the physical properties of DNA (length and super-
helicity) play fundamental roles in chromatin dynamics
[16].

Histone H1 converts the “beads-on-a-string” fiber
to the 30-nm fiber

Structural and biochemical studies have demonstrated that
the linker histone plays a significant role in the higher-order
packaging of the “bead-on-a-string” fiber (Fig. 3b). The
removal of histone H1 results in the unfolding of the 30-nm
fiber to the “beads-on-a-string” fiber [11, 92]. Trypsin
digestion of histone H1 and the N terminus of histone H3
leads to a loss of the “zig-zag” arrangement of the
nucleosomes and deforms the 30-nm fiber [10]. When
purified histone H1 is added to the reconstituted nucleo-
somes formed on a 100-kbp supercoiled plasmid, the H1-

Fig. 3 From DNA to chromatin in vitro. a Nucleosomes slide along
DNA and tend to stack at the end of DNA [82]. b The nucleosome-
fiber reconstitution on 100-kbp plasmid in the absence of histone H1.
The nucleosome-fiber was reconstituted by a salt dialysis procedure
and observed by AFM [8]. c The reconstituted chromatin with linker
histone H1. Histone H1 was added to the reconstituted nucleosome-
fiber after the salt dialysis was completed, and then observed by AFM

[8]. d Topo II was mixed with 14-kbp plasmid DNA in the absence of
ATP and observed by AFM [13]. Topo II forms a homodimer with a
ring-like shape. e Condensin pentamers were mixed with DNA and
subjected to AFM observation [101]. Arrowheads indicate condensin–
DNA complexes. f AFM images of the H1 and Topo II-added
chromatin fiber. The H1-added chromatin fiber containing 80 ng DNA
was treated with 2 ng of Topo II [13]
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containing 30-nm chromatin fibers are formed (Fig. 3c) [8].
These fibers are assumed to be composed of solenoid-like
repetitive turns along the fiber axis; namely, they are formed
by a three-dimensional arrangement of a nucleosomal array.
Several higher-order folding models of the “beads-on-a-
string” nucleosomes have been proposed [8, 11, 93]. Because
histone H1 reduces the nucleosome–nucleosome distance
when it binds to linker DNA [55] and because nucleosomes
can freely slide along DNA strands [82], H1 coordinates the
assembly of nucleosomes along the DNA strand and
contributes to the formation of a well-organized solenoid
structure.

Beyond the 30-nm fiber in the nucleus

Topo II and the condensin complex localize to the nuclear
matrix fraction of interphase cells [94] and the scaffold
fraction of the mitotic chromosome [95]. Topo II forms a
ring-shaped homodimer [96, 97] and catalyzes the decate-
nation and relaxation of the DNA double strand (Fig. 3a)
[98]. In Schizosaccharomyces pombe, chromosomes cannot
be condensed without functional Topo II (Fig. 3d) [99]. The
condensin structure maintenance of chromatin (SMC)
assumes a head–tail structure, where the head region
assembles with non-SMC proteins (Fig. 3e) [100, 101].

When Topo II is added to 30-nm chromatin fibers that
have been reconstituted with histone H1, a large complex is
formed regardless of the presence of adenosine triphosphate
(ATP; Fig. 3f) [13]. This is not the case for the “beads-on-a-
string” fibers (i.e., H1-free chromatin fibers). A pull-down
assay using GST-H1 also supports this result [13], suggest-
ing that the chromatin compaction by Topo II is not due to a
direct interaction between Topo II and histone H1 but rather
an interaction between Topo II and H1-containing chroma-
tin regardless of the presence of ATP.

Histone H1 has two possible roles in compaction: (1) It
increases the contact area, strengthening the attraction
between fibers, and (2) it reduces the negative charge of
the nucleosomal complex, decreasing repulsion between
fibers. An H1-containing nucleosome has a smaller nega-
tive charge (−100 e) than an H1-free nucleosome (−150 e),
suggesting that the strength of Coulombic repulsion is
smaller when H1 is present. In bulk solution, the H1-
induced 30-nm fibers do not aggregate, which suggests that
the fibers have a charged colloidal nature [13]. On the other
hand, Topo II appears to induce a parallel alignment of
double-stranded DNA chains and to promote the formation
of thick filaments in the absence of ATP, indicating that
Topo II mediates assembly of DNA strands independently
of its enzymatic activity. It is assumed that this interaction
also occurs within the DNA–histone complex (i.e., nucle-
osome) in a histone H1-dependent manner. In the absence
of H1, each Topo II mediates a weak attraction between the

nucleosomes, whereas in the presence of H1, as the contact
areas between the fibers are increased, the attraction
between two clusters also increases due to the added
attraction via Topo II. Therefore, the attraction between
30-nm fibers would be much stronger than the attraction
between the pair of nucleosomes, even if Topo II can
enhance both attractions.

In the nucleus, chromatin fibers are held by scaffold/
matrix structures that occur every several tens or hundreds
of kilobases [102], and the matrix-associated region/
scaffold associate region (MAR/SAR) forms a complex
with many proteins including Topo II [103]. On the other
hand, Topo II by itself does not possess a specific affinity
for the MAR/SAR sequences and binds directly to any
DNA sequence with low affinity [13]. Therefore, in vivo,
mechanisms for loading Topo II on the MAR/SAR must
exist, and Topo II condenses 30-nm chromatin fibers in
concert with other scaffold proteins such as the condensin
complex and SAF-A/SP120/hnRNP U (hereafter called as
SP120) [104]. A comparison of in vitro and in vivo
chromatin structures is required for determining the
significance of the MAR/SAR in Topo II-dependent
chromatin condensation.

Inner-nuclear structures that interact with chromatin

In addition to the chromosomal compartment, the nucleus
contains nonchromosomal compartments such as nucleolus,
PML body, nuclear speckle [105], Cajal body [106], and
nuclear matrix. Recent studies identified protein compo-
nents localized in each compartment [107]. Especially, the
studies utilizing fluorescence microscopy revealed the
localization and dynamics of these proteins in the nucleus
[108, 109]. The application of various nano-techniques to
the structural and functional analyses of nuclear matrix,
nucleolus, and PML body has just become promising in the
last 5 years.

Nuclear matrix

In the early 1960s, a non-chromatin internuclear network of
ribonucleoproteins with 10-nm branched filaments was
identified as the nuclear matrix/scaffold by EM [56, 110,
111]. On the other hand, the nuclear matrix/scaffold was
defined biochemically as a remnant structure after a
eukaryotic cell is treated with detergent, high salt buffer,
and DNase I [112]. It is important to realize that there are
no such “insoluble” materials inside the cell nucleus and
that the nuclear matrix/scaffold visible under the micro-
scope is the solidified complex formed during chemical
treatments [113]. Nevertheless, the nuclear matrix can be
observed by AFM. When HeLa cells are gently treated with
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Triton X-100, ammonium sulfate, and DNase I, fibrous and
dotted structures inside the nucleus are observed (Fig. 5a).
Several nuclear proteins have been biochemically identified
as the component of the nuclear matrix/scaffold [104].
Among these proteins, the MAR/SAR-binding proteins
bind to the MAR/SAR of chromosomal DNA and hold
them inside the nucleus.

One of the major MAR-binding proteins, SP120, was
identified as one of the heteroribonucleoprotein complexes.
This protein has a MAR-binding domain in the N terminus
and an arginine–glycine-rich RNA-binding domain in the
C terminus [104, 114]. In the nucleus, SP120 interacts and
co-localizes with transcriptional factors such as the gluco-
corticoid receptor and p300 via the RNA-binding domain. In
addition, SP120 might interact with several partners (e.g.,
Topo IIβ) and lead them to different nuclear sub-domains to
assure their region-specific localization and function.

Pico-TREC™ can recognize a specific protein by using
an antibody-coupled cantilever while obtaining a topo-
graphic image with the same probe [75]. The anti-SP120
antibody can be attached to an AFM cantilever with the
consumption of less than 10-μg antibody [115], and the
localization of SP120 can be elucidated by using this
cantilever; individual SP120 molecules can be identified
within nuclear components (Fig. 4a–c). This technique will
be useful for further structural investigation of the inner-
nuclear organization.

PML body

The PML bodies are nuclear matrix-attached particle-like
structures that are larger than the nuclear speckles (0.2–
1 μm in diameter) and were originally found in PML cells.
In the AFM image (Fig. 4d–f), the PML bodies appear as
several speckles within the nuclear matrix. One mammalian
nucleus has 10–30 PML bodies. The core component of the
PML body is a protein called PML, which is a tumor
suppressor gene product. Three lysine residues in the PML
protein are modified by a ubiquitin-like protein, SUMO-1,
and this modification is needed for the formation of PML
bodies. The SUMOylation is also essential for PML protein
to form a complex with other proteins such as transcription
factors (Sp100, CBP), heterochromatin protein HP1, tumor
suppressor proteins (Rb, p53), SUMOylation enzymes, and
kinases [116–120]. Because of these components, PML
bodies are thought to be involved in biological events such
as DNA repair, apoptosis, and transcription. In fact, γ-ray
irradiation results in the recruitment of p53 to PML, and
cells that lack PML fail to induce p53-dependent gene
expression [118, 121]. PML bodies could also stabilize
transcription co-activator-transcription factor complexes
because of their ability to interact with several transcrip-
tional co-activators such as CBP and p300 [122].

Nucleolus

The nucleolus is the most prominent substructure of the
nucleus. It is a large assembly of rRNA genes (rDNA),
rRNAs, and more than 700 proteins containing RNA
transcription factors, processing enzymes, and ribosomal
protein subunits [123, 124]. The nucleolus is structurally
distinctive among the subcellular organelles because it has
no membrane. Nevertheless, there are three different sub-
domains in the interphase nucleolus, and each compartment
is involved in different steps of ribosomal biogenesis [125,
126]. The fibrillar center (FC) is the center of rRNA
transcription and contains the rRNA transcription machin-
ery such as RNA polymerase I and upstream binding factor.
The dense fibrillar component (DFC) contains the rRNA
early processing factors such as fibrillarin, and the granular
component (GC) contains the late processing factors and
ribosomal maturation enzymes such as nucleolin and B23
(nucleophosmin). This hierarchical organization of the
interphase nucleolus has been shown by EM and
fluorescence microscopy; these imaging techniques have
revealed that the FC consists of several foci (100–500 nm
in diameter) and is surrounded by the DFC [127]. The GC
is distributed throughout the whole nucleolus and forms
intricate structures with heterochromatin in the periphery
[128]. AFM and immunofluorescent microscopy revealed
that the nucleolus in HeLa cells is a rigid structure and that
it remains on the glass substrate after sequential treatment
by detergent, high salt buffer, and DNase I (Fig. 5a, b)
[57].

The nucleolus undergoes drastic structural changes
during mitosis. The hierarchical structures of the interphase
nucleolus collapse in the beginning of mitosis and then
gradually reassemble during telophase to early G1 phase. In
this mitotic step, nucleolar organizing proteins exhibit
distinctive dynamics (Fig. 5c). The FC proteins form foci
on chromosome throughout mitosis, and the spots corre-
spond to the nucleolar organizing regions (NORs) on the
acrocentric chromosomes as shown by immunostaining on
the mitotic chromosome spreads [129]. This mechanism
enabled the equal distribution of the proteins into two
daughter cells and the resumption of rRNA transcription at
telophase. Interestingly, not all NORs are actively tran-
scribed. The active NORs are associated with RNA
polymerase I, whereas the inactive NORs contain no
transcription machinery and are highly methylated [130].
However, structural differences between these active and
inactive chromosomes remain unclear. The recently devel-
oped AFM technique of chromosome manipulation and
imaging in liquid is expected to soon reveal the nanoscale
structure of NORs. The DFC and GC proteins disperse to
the cytoplasm in the beginning of mitosis and localize to
the surface of condensed chromosomes. During anaphase
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to early telophase, these proteins formed intermediate
structures called the pre-nucleolar bodies (PNBs) [131],
and then, they are sequentially transported to the NORs,
reflecting the roles of the proteins in rRNA processing and
the ribosomal maturation process [132–134]. Inhibition of
the cyclin-dependent kinase 1 (CDK1)–cyclin B activity
during mitosis does not interfere with the reassembly of
fibrillarin but does block the relocalization of one of the GC
proteins, Nop52. Therefore, CDK1–cyclin B is partially
responsible for the nucleolar reassembly, but the detailed

mechanisms of the regulation of the entire event remain
unknown [135].

Interaction between the nuclear envelope and chromatin

The nuclear envelope is a nanostructure that consists of the
ONM, INM, NPC, and nuclear lamina (Fig. 6a). The
structure of the nuclear envelope is critical for the control of
the chromatin territory. The proteins in the INM, such as

Fig. 4 Nuclear scaffold/matrix protein visualized by recognition
imaging with Pico TREC™ (a–c) and hybrid imaging by AFM and
fluorescence microscopy (d–f). The recognition signal and topograph-
ical signal were simultaneously recorded. Disrupted nuclei purified
from HeLa cells were covalently attached on the amino-modified glass
surface and imaged by TREC™-mode AFM with the anti-SP120
antibody-coupled cantilever. The topographical images (a) and
corresponding recognition images (b) are shown. Scale bars=
1,000 nm. The merged image is shown in (c) where the recognition
signals are in blue. The dotted SP120 molecules were recognized

within the nuclear components (c). d–f Enhanced green fluorescent
protein-fused PML was transiently expressed in HeLa cells on a cover
glass. The cells were successively treated with detergent, high-salt
solution and DNase I to expose nuclear matrix. The specimen was
then observed by inverted fluorescence microscopy equipped with an
AFM scanner on the stage. The AFM image (d) and the fluorescence
image (e) are merged (f). The location of PML bodies can be mapped
on the AFM image [purple dots in (f)]. Scale bars in (a–c) and (d–f)
are 1 and 2 μm, respectively
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LBR, are especially responsible for anchoring specific
chromatin domains near the INM [25]. The nuclear lamina
lies under the INM and guarantees the strength of the
nucleus (Fig. 6a and b). EM observations have shown that
the nuclear lamina is a mesh-like structure [136]. The major
components of this structure are A- and B-type lamins.
Both A- and B-type lamins form a dimer via their rod
domains [137, 138]. The dimers further polymerize via the
head–tail domains and form a para-crystal structure around
100 nm in length in vitro.

The structure of nuclear envelope is important, as the
loss of it causes the disease termed nuclear envelopathy or
laminopathy [138–140]. Then, the structural analysis of the
nuclear envelope at nanoscale is needed.

Nuclear envelope in interphase

For decades, the nuclear envelope was recognized as a
static structure in interphase. However, recent investiga-
tions with fluorescence recovery after photobleaching
(FRAP) have revealed that most nuclear envelope proteins

are mobile in the nuclear envelope except for the nuclear
lamina and some of the nucleoporins [141–146]. The NPC
functions as a gate to import and export substances into and
out of the nucleus [147, 148]. It is a huge protein complex
(Fig. 6b) with a molecular mass of 125 MDa, and it
penetrates both the ONM and the INM [149, 150]. The
NPC is composed of about 30 proteins named nucleoporins
and forms an eightfold symmetrical structure [151–155].
The NPCs are likely to be newly synthesized and inserted
into the nuclear envelope in the interphase cells. Interest-
ingly, a huge NPC-free island can be observed during the
early G1 phase in HeLa S3 cells, and this pore-free region
disappears at the late G1 phase [156]. These results suggest
that the NPCs are also under dynamic mobility control
within the nuclear envelope.

The INM protein mobility seems to be restricted by the
interaction between INM proteins and chromatin and/or
nuclear lamina. Emerin and MAN1 are more mobile in the
nuclear envelope in mouse embryonic fibroblasts lacking
A-type lamin than in wild-type cells [157]. In contrast, a
lack of A-type lamin does not affect the LBR mobility. The

Fig. 5 Nucleolar structure and dynamics. a An AFM image of the
nucleolus on the nuclear matrix. HeLa cells were sequentially treated
with detergent, high-salt buffer, and DNase I. Arrows indicate
nucleoli. b The subcellular localizations of the nucleolar proteins in
interphase. Left double staining of the FC protein (our unpublished
observation, green) and fibrillarin (DFC protein, red). Right localiza-

tion of the nucleolin (GC protein). c The subcellular localizations of
the nucleolar proteins during mitosis. Upper panels double staining of
FC-localizing antigen (green) and DNA (red). Lower panels double
staining of GFP-fibrillarin (green) and nucleolin (red). The PNBs are
observed at telophase (arrows) and gradually targeted to the NORs
(arrowheads). Scale bars=10 μm
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Fig. 6 The nuclear envelope dur-
ing interphase (a–d) and mitosis
(e). a Schematic illustration of the
nuclear envelope. b AFM images
of the nuclear envelope [164]. A
germinal vesicle was isolated
from a Xenopus oocyte. Its cyto-
plasmic (left) and nucleoplasmic
face (right) were mechanically
spread onto the mica and then
imaged by AFM. Enlarged
images are NPCs. Scale bars=
200 nm. c The rupture force
measurement between LBR and
chromatin. The GST-fused N-ter-
minal region of LBR (amino acid
region corresponding to 1–211)
was expressed in Escherichia coli
and purified by glutathione
Sepharose beads. The purified
GST-LBR was bound to an AFM
cantilever via glutathione. Recon-
stituted chromatin was prepared
from 26-kbp plasmid DNA and
purified human histone octamer
by the salt dialysis method and
then bound to mica. The rupture
force between LBR and reconsti-
tuted chromatin was measured,
and a histogram of the rupture
force is shown. d FRAP analysis
of LBR mobility. GFP-tagged
wild-type LBR (black) and a
deletion mutant of the chromatin-
binding region of LBR (Δ1–53,
red) were transiently expressed in
HeLa cells. The mobility of these
proteins in the nuclear envelope
was observed under LSM 510
META. e Nuclear membrane re-
assembly [165]. Xenopus egg
crude extract was incubated with
Xenopus sperm chromatin at
23°C. The chromatin-targeted
membrane was stained with
dihexyloxacarbocyanine iodide,
and the central (center) and
peripheral (surface) regions were
observed by confocal microscopy.
Arrowheads targeted nuclear
membrane. Scale bars=10 μm
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LBR seems to directly interact with chromatin [158].
Indeed, when the GST-fused N-terminal region of LBR
(amino acid region 1–211, which contains the chromatin-
binding domain) is attached to a glutathione-modified AFM
cantilever, it exhibits a rupture force of ∼50 pN against
reconstituted chromatin (Fig. 6c). In live cells, the mobility
of LBR in the nuclear envelope is much smaller than that of
an N-terminal deletion mutant (Δ1–53) (Fig. 6d), suggest-
ing that the interaction between the LBR and chromatin
may be a key factor for chromatin attachment to the nuclear
envelope.

Nuclear envelope at the mitotic phase

In many organisms, the nuclear envelope becomes invisible
at the beginning of mitosis and reappears at the end of cell
division (some organisms, such as most fungi, undergo
closed mitosis, in which the nuclear envelope stays visible).
At the onset of mitosis in animal cells, all of the nuclear
envelope components (the INM, ONM, NPC, and nuclear
lamina) are completely or partially broken down into small
fragments or vesicles and disperse throughout the entire
cell. After chromosome segregation in telophase, the
nuclear envelope reassembles around the chromatin.

The molecular mechanism of nuclear envelope reassem-
bly has been well studied in animal cells by using the
Xenopus egg cell-free system (for details, see reviews [18,
19, 159]). Observations from fluorescence and EM have
revealed that nuclear envelope reassembly occurs in three
distinct steps: membrane vesicle targeting, membrane fusion,
and growth (Fig. 6e) [160, 161]. At the end of mitosis, Ran, a
small G protein, accumulates around the chromosome
surface and forms a Ran-GTP gradient that causes the
targeting of the nuclear membrane vesicles toward the
chromosome surface. The INM proteins are also required
in this step. Interestingly, Xenopus egg extracts contain two
different vesicles, PV1 and PV2, which can be distinguished
by ultracentrifugation [162]. These different vesicles are
observed as ribosome-carrying ‘rough’ vesicles and ribo-
some-free ‘smooth’ vesicles [160]. The targeted membrane-
vesicles fuse with each other, develop into a network with
further vesicle fusion, and finally form a closed nuclear
double-membrane around the entire area of nuclear chroma-
tin. It seems that PV1 is a prerequisite for this step and that
PV2 may be required for proper NPC assembly [162].
Finally, nuclear proteins (e.g., lamin) are imported into the
growing nucleus through the newly synthesized NPCs, and
the nucleus matures into a sphere-like structure.

The NPCs reassemble in parallel with the membrane
fusion. However, as the depletion of the Nup 107–160
complex inhibits NPC formation but not nuclear membrane
reassembly [163], the nuclear membrane reassembly is
independent of the NPC formation. The structural aspects

of the underlying mechanisms will hopefully be solved in
the near future by using AFM.

Perspectives

The topographical imaging and visualization of biological
specimens achieved by AFM have been extremely powerful
tools for exploring basic concepts in fundamental biological
processes. In this review, we have shown that AFM can be
used to visualize the nanoscale structures of the inner nuclear
architecture and higher-order folding of chromatin fibers. This
approach has increased the understanding of how chromo-
somes are built up from DNA, histone, and other protein
components. The physical properties of DNA were found to
be critical for chromatin dynamics [16]. In contrast, the
single-force measurement and recognition imaging have not
yet been widely used. This is partly because a reliable
procedure for attaching the protein of interest to the
cantilever had not yet been established. We have developed
new, efficient, and reliable methods for the attachment of
antibodies and GST-fused proteins to the AFM cantilever
[115], and we have used these methods to demonstrate a
direct interaction between chromatin and INM proteins.

The field of nano-biology using scanning probe micros-
copy has been quickly progressing since the invention of
AFM [33]. Just as the recent progress in genome research
greatly benefited from the information obtained with
bioinformatics, nano-biology will proceed to the next level
by utilizing information from genome research and newly
invented technology including recognition imaging [75]
and fast-scanning AFM [47]. The elucidation of nuclear
dynamics at the nanometer and piconewton levels will be
accelerated. In the near future, it will also be possible to
isolate individual processes in nuclear dynamics by fast-
scanning AFM [44, 45]. Even beyond our specific
objectives, recognition imaging, force measurement with
specific probes, fast-scanning AFM, and other nanotech-
nologies are expected to be powerful tools in the various
fields of biology.
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