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Abstract Vascular actions of steroid hormones have gained
increasing importance. Indeed, some steroid hormones
favorably influence vascular structure and function, whereas
others are detrimental. This review will focus on the
endothelial effects of steroid hormones. In the first part, we
summarize data from in vivo studies elucidating the regulation
of endothelial function by steroid hormones. Accumulating
data argue for an improvement of endothelium-derived
relaxation and impaired vascular contraction by estradiol,
whereas testosterone, progesterone, and aldosterone have
contrary effects. In the second part, we present data from
novel atomic force microscopy studies performed in living
endothelial cells under the influence of steroid hormones.
These studies provide insight into structural and functional
alterations of endothelial cells characterized by changes in
volume, apical surface, and stiffness. We summarize the
available evidence that changes in shape of endothelial cells
translate into changes of endothelial cell stiffness. Under the
influence of estradiol, endothelial cells become spherical with
consecutive improvement of elasticity, whereas aldosterone
flattens endothelial cell-shape leading to increased stiffness.
Both, endothelial cell shape and stiffness are major determi-
nants of endothelial nitric oxide production. These studies
emphasize the great potential of atomic force microscopy to
investigate the function of living endothelial cells.

Keywords Aldosterone . Glucocorticoids . Sex hormones .

Atomic force microscopy . Endothelium . Imaging .

Nitric oxide

Research over the last two decades has been clearly
demonstrating that the vascular endothelium is a target for
steroid hormones, e.g., sex hormones, glucocorticoids, and
mineralocorticoids [25, 35]. Indeed, specific receptors for
these steroid hormones have been identified in endothelial
cells. Numerous clinical studies demonstrate that the various
steroid hormones affect vascular function in different ways.

Sex hormones

Vascular endothelial cells and vascular smooth muscle cells
express receptors for estradiol, progesterone, and testoster-
one [54, 55, 66]. The sex hormones bind to specific
cytosolic receptors. The resulting complexes are transported
into the nucleus and initiate gene transcription (so-called
genomic effects). Moreover, sex hormones cause a number
of rapid non-genomic effects on vascular endothelial and
smooth muscle cells.

Several studies report gender differences in vascular
function. Vascular contraction was found to be greater in
male and ovarectomized female rats than in castrated male
and female rats, suggesting an effect of testosterone in
favor of vascular contraction and an effect of estradiol in
favor of preventing vascular contraction [24]. Specifically,
estradiol has been shown to cause endothelium-mediated
vasorelaxation, whereas testosterone and progesterone
interfere with estradiol-mediated endothelium-dependent
vasodilation [25].

There is a body of evidence suggesting that sex hormones
interfere with the synthesis and bioavailability of endothelium-
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derived nitric oxide (NO) [10, 58]. Animal studies show that
the release of NO from the endothelium is greater in female
than in male rats [19, 62]. Indeed, estradiol induces
endothelial nitric oxide synthase (eNOS) expression, mediat-
ed via the estradiol receptor alpha. Moreover, estradiol
interacts with estradiol receptors in the cell membrane and
causes rapid non-genomic signaling pathways that regulate
eNOS activity, partly by eNOS translocation to the cell
membrane. In addition to stimulating NO synthesis, estradiol
has antioxidant effects and inhibits superoxide formation and,
thereby, increases NO bioavailability [41]. On the other hand,
progesterone and testosterone may have some stimulatory
effect on NO production, but progesterone has been shown to
counteract the stimulatory effects on NO release [41, 66].

Sex hormones differentially affect cyclooxygenase ex-
pression in endothelial cells, where particularly estradiol
causes an increase in cyclooxygenase type 1 expression an
prostaglandin I2 production [41].

Moreover, sex hormones interact with endothelium-
derived contracting factors. Estradiol attenuates endothelin
1 (ET-1) and endothelin beta receptor messenger RNA
(mRNA) expression and inhibits ET-1 production in
endothelial cells. Furthermore, progesterone inhibits endo-
thelial ET-1 production, whereas testosterone stimulates
ET-1 release from the endothelium [11, 66].

Glucocorticoids

There is substantial evidence that glucocorticoids down-
regulate eNOS mRNA and protein expression in cultured
endothelial cells and also in the isolated vessels [59].
Moreover, glucocorticoids suppress the production of
endothelium-derived vasodilators. Glucocorticoid excess
causes increased superoxide formation, thus increased
oxidative stress in endothelial cells [22]. However, a recent
study did not show any change of endothelium-mediated
vasodilatation with short-term dexamethasone application
in healthy subjects [7]. On the other hand, in states of
inflammation, glucocorticoid treatment may improve endo-
thelial function. For example, in patients with giant cell
arteritis, steroid treatment was associated with an improve-
ment of brachial artery flow-mediated dilatation [15].
Interestingly, shear stress caused a nuclear localization of
the endothelial glucocorticoid receptor similar to that
induced by high-dose steroid treatment, suggesting an
antiatherosclerotic effect of glucocorticoids [23]. Addition-
ally, glucocorticoids reduce endothelial permeability and
interfere with the production and action of adhesion
molecules. For example, dexamethasone was shown to
reduce cytokine-induced expression of intercellular adhe-
sion molecule 1 (ICAM-1) and vascular cell adhesion
molecule 1 in cultured endothelial cells. By contrast, sex

hormones had no substantial effect on endothelial adhesion
molecule expression [9].

It has to be noted though that glucocorticoid action in
endothelial cells depends on the activity of 11-beta-
hydroxysteroid dehydrogenase. Abnormal 11-beta-hydrox-
ysteroid dehydrogenase expression or function will cause
mineralocorticoidrecpetor activation by glucocorticoids.
This will ensue mineralocorticoid-like action of glucocorti-
coids on the vascular endothelium [67].

Aldosterone

Several clinical studies show that aldosterone impairs vas-
cular reactivity [4, 8, 27, 46]. Interestingly, the mechanisms
are not completely understood. Aldosterone increases re-
active oxygen species in endothelial cells and reduces the
bioavailability of NO [29]. This is associated with impaired
endothelium-mediated vasodilatation [56], that can be
reversed with aldosterone antagonists as has been shown
in disease states such as heart failure [1]. Reduced NO
bioavailability with aldosterone appears to be attributable to
decreased eNOS activity. This may result from decreased
levels of tetrahydrobiopterine, as normal levels depend on
adequate nicotinamide adenine dinucleotide phosphate,
reduced form (NADPH) levels [29].

A recent study shows that aldosterone decreases glucose-6-
phosphate dehydrogenase activity [29]. Decreased glucose-
6-phosphate dehydrogenase activity results in decreased
NADPH levels and thus increases oxidative stress—with
the consequences of reduced eNOS activity in increased
levels of reactive oxygen species. The authors, moreover,
have shown that aldosterone antagonists restore glucose-
6-phosphate dehydrogenase activity and thereby improve
vascular reactivity in vivo. Aldosterone effects could be
mimicked by experimental deficiency of glucose-6-phosphate
dehydrogenase.

Aldosterone treatment also adversely affects adhesion
molecules. Increased deposition of ICAM-1 has been
demonstrated in the vascular wall of aldosterone-infused
rats [45]. Spironolactone and endothelin antagonist treat-
ment reduced ICAM-1 content and reversed NAPDH
depletion in the vascular wall. Aldosterone directly induces
endothelin expression in vivo [63].

Importantly, aldosterone effects on endothelial function,
oxidative stress, and adhesion molecules, and endothelium-
derived contracting factors are associated with vascular
fibrosis and profound vascular stiffening [27]. Large artery
stiffness is related to aldosterone concentrations in hyper-
tensive subjects [4]. Aldosterone causes cardiac fibrosis as
shown in patients with heart failure [57]. Moreover,
increased aldosterone levels induce renal vascular and
tubulointerstitial fibrosis in several patient collectives such
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as diabetics and patients with heart failure or renal disease
[56].

What does atomic force microscopy add to our
understanding of the in vivo functional effects of steroid
hormones on the endothelium?

Atomic force microscopy (AFM) allows structural [3] and,
importantly, also functional imaging of endothelial cells.
There is a solid body of evidence that endothelial cell
structure influences endothelial cell function. These exper-
imental data are—to a large extent—derived from AFM
studies [32, 37, 38, 51].

The micromechanical structure of the endothelial cell
membrane is characterized by a polygonal mesh of mostly
actin and vimentin fibers [43]. This complex structure is in
a process of constant remodeling [44]. Mechanical stimuli
that act on the endothelial cell determine this process of
endothelial cell cortex remodeling [12]. It is intriguing that
endothelial cell shape and NO have profound influences
on the cytoskeleton. In a recent study, shape-engineered
endothelial cells were characterized [26]. Spindle-shaped
cells displayed reduced NO production and increased
stiffness that were related to dense actin stress fibers. By
contrast, large circular-shaped endothelial cells, which
displayed increased NO production, were soft and lacked
dense actin stress fibers. It is conceivable that NO
bioavailability determines endothelial cell cytoskeleton
and elastic properties, as NO may depolymerize actin
[20]. On the other hand, increased endothelial cell
elasticity may be associated with translocation of eNOS
to the cell membrane and hence increase eNOS activity
[28]. There is further evidence that endothelial cell elastic
properties and NO production are related to each other.
Peng et al. [42] studied NO production in endothelial cells
that were grown in tubes and subjected to pulsatile flow.
When the elastic response of the endothelial cells to
pulsatile flow was restricted by using a rigid tube,
endothelial cell NO production was reduced markedly.
This was associated with increased endothelial cell
vulnerability to ultraviolet radiation.

From these observations, it appears that endothelial cell
elastic properties are closely related to endothelial NO
production and that, again, endothelial morphological
properties at least in part determine endothelial cell
elasticity. Thus, endothelial cell stiffness appears as a
marker of endothelial cell function.

These important parameters—endothelial cell morphol-
ogical properties and elastic properties—can only be
assessed in living endothelial cells by AFM. We have
performed AFM studies regarding the effects of the various
steroid hormones outlined above on endothelial cell
properties. We observed divergent effects—in line with

the divergent effects of steroid hormones on clinically
relevant parameters [17, 18, 37].

Which parameters can be assessed by atomic force
microscopy in endothelial cells?

AFM is a nanotechnique that allows exact imaging of the
surface of living cells [33, 52]. Importantly, AFM is a
scanning procedure that relies on a mechanical sensor with
defined properties. A tiny tip is mounted on a cantilever
holder. This tip follows the surface contour of the sample
and yields an exact image of the surface topography at a
very high resolution up to several nanometers. Importantly,
detailed topographical surface scans are obtained, allowing
the quantification of the roughness of any rippled surface.
Moreover, AFM is an excellent tool to quantify the volume
of cells adherent to a nondeformable surface under in vivo
conditions and independent of the morphology of the cells
[50]. Many AFM studies were performed on endothelial
cells fixed with glutaraldehyde, as image quality generally is
higher with fixed cells [18, 17]. As living endothelial cells
are more deformable than fixed endothelial cells, AFM
measurements performed in living endothelial cells tend to
underestimate cell volume and surface; however, these
differences between fixed and living cells are only slight
and generally negligible [37]. The exact morphology of cell–
cell contacts can be visualized. In addition, the technique is
also applicable to cell substructures allowing nanoscale
imaging of cell membranes, the cell nucleus, membrane
protein clusters such as nuclear pores [34, 39, 47, 49, 53].

AFM can be performed under physiological conditions,
i.e., at 37°C in fluid. For this purpose, cells are covered by
some amount of culture medium. Therefore, it is possible to
scan living cells. AFM is particularly able to scan
endothelial cells under in vivo conditions. As the mechan-
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Fig. 1 Sketch of the development of force distance curves: 1. The AFM
tip approaches the cell surface. 2. The AFM tip touches the cell surface.
3. Further movement of the AFM tip leads to an indentation of the cell
surface. The indentation of the cell surface causes a deflection of the
laser beam which correlates to the force needed to indent the cell
surface. The stronger the deflection, the stiffer the surface is
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ical properties of the cantilever are defined, it is feasible to
measure the stiffness of the surface scanned. When the
AFM tip is pressed against the surface, the deflection of the
cantilever is measured. From these measurements, the force
necessary to indent a cell for a certain distance can be
calculated. These forces relate directly to cell stiffness [33].
A schematic view of the development of force–distance
curves is delineated in Fig. 1.

In summary, AFM is the only experimental approach to
assess both microstructure and elasticity of living cells.
These parameters of endothelial cells are—as outlined
above—closely related to endothelial function.

What are the effects of steroid hormones on endothelial
cells as assessed by atomic force microscopy?

We have studied the effects in various types of vascular
endothelial cells including human umbilical vein endothelial
cells (HUVEC), the endothelial cell line EAHy926, bovine
aortic endothelial cells (GM7373), and human coronary
artery endothelial cells.

The effects of sex hormones and glucocorticoids were
studied in HUVEC exposed for 72 h [17, 37]. A major effect
was observed with estradiol. Estradiol at physiological
concentrations (up to 15 nmol/l) produced substantial dose-
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Fig. 2 Top view AFM images of fixed HUVEC under (a) control
conditions and (b) after 72 hours treatment with 15 nmol/l estradiol (E2).
The scanned area in both pictures is 80 μm x 80 μm, the height of the
cells is depicted by the coloured bar, allowing a three dimensional
reconstruction of the cells (0 to 8 μm). It is evident, that HUVEC under
estradiol treatment have increased height and size compared to controls.
In (c) volume per cell is shown after 72 hours of treatment with estradiol
(15 nmol/l), the inhibitor of the nitric oxide synthase L NAME (1 mmol/l)

or combination of E2 and L NAME compared to controls. Cell volume
increased significantly with estradiol treatment. This effect can be
inhibited by simultaneous incubation with L NAME, indicating that the
estradiol induced changes are nitric oxide dependent (n = 20, **p<0.01).
(d) Effect of E2 with and without L NAME on stiffness (shown as
Young’s elastic modulus in kPa) in living HUVEC compared to control
conditions (control, L NAME, n = 15, *p<0.05). Modified after
Hillebrand et al. [18]
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dependent endothelial cell growth with an increase in cell
volume by up to approximately 40%. Apical surface area
also increased, but only by about 20%. These morphological
changes are consistent with spherical transformation of
endothelial cells along with a smoothing of the surface.
These morphological changes were associated with a
substantial decrease of cell stiffness. The force necessary to
indent the endothelial cell membrane by 300 nm was roughly
halved with estradiol treatment. All estradiol effects could be
abolished by coincubation with tamoxifen. Although tamox-
ifen is not a highly specific estradiol receptor antagonist, this
suggests that the observed estradiol effects were dependent
on estradiol receptors present in endothelial cells (Fig. 2).

By contrast, neither progesterone nor testosterone nor
dexamethasone significantly influenced endothelial cell
shape, volume, surface area, or stiffness.

The estradiol effects on endothelial cell growth were
mainly attributable to intracellular water and electrolyte
accumulation and only to some degree to an increase in
organic cell matter. We could show that the increase in cell
water with estradiol was caused by activation of the sodium
proton exchanger NHE1 and could be prevented by the
specific NHE1 inhibitor cariporide (HOE642). It is known
that steroid hormones can alter the set-point of the sodium
proton exchanger with the results of a more alkaline
intracellular milieu and cell volume expansion [40].

These AFM studies show related structural and func-
tional changes in endothelial cells with estradiol. With
estradiol, cells become spherical and smooth their cell
membrane surface. These morphological changes go along
with decreased cell stiffness. The decreased cell stiffness
with estradiol could have a simple biomechanical expla-
nation. According to the law of Laplace F ¼ δ2�½
2=Πð Þ � E= 1� v2ð Þ½ � � tan αð Þ; F=applied force (calcu-
lated from the spring constant [0.01 N/m] multiplied by the
measured cantilever deflection), E=elastic modulus (kPa),
ν=Poisson’s ratio assumed to be 0.5 because the cell was
considered incompressible, α=opening angle of the AFM
tip (35°), and δ=indentation depth], sphere segments with a
small radius (a model for an endothelial cell under the
influence of estradiol) are less stiff than sphere segments
with a larger radius, as the stiffness of a spherical body
correlates with the radius of the sphere. However, it is
likely that more complex mechanisms underlie the observed
structural and functional effects of estradiol. As outlined
above, experiments in shape-engineered endothelial cells
show that round-shaped cells lack actin stress fibers, are
more elastic, and exhibit increased NO production [26].
Thus, reduced stiffness means increased NO production,
i.e., improved endothelial function. Indeed, recent studies
suggest that functional endothelial cell changes by estradiol
receptor activation are associated with translocation of the
eNOS and altered expression of the endogenous eNOS

inhibitor caveolin [28]. A spherical endothelial cell adapts
more easily to changes in vessel wall diameter, i.e.,
stretches more easily with dilatation of the vessel or
increased shear stress. The response to shear stress can be
transmitted more easily in spherical endothelial cells. This
could result in more pronounced eNOS activation [26]. We
could further substantiate these data by our own findings
showing that the estradiol-induced increase in cell volume
and surface as well as the pronounced decrease in
endothelial stiffness is NO dependent [17].

The observed effects visualized by AFM—substantial
cell growth and reduced stiffness only with estradiol, not
with progesterone, testosterone, or glucocorticosteroids—
are consistent with the effects on endothelial function
outlined above. Whereas studies on the endothelial effects
of estradiol unequivocally showed improved endothelial
function and increased eNOS activity, studies on the action
of progesterone, testosterone, or glucocorticoids on the
vascular endothelium showed inconsistent or only small
effects [7, 9, 15, 22, 25, 41].

There is a solid body of evidence derived from AFM
studies regarding the effects of mineralocorticoids on the
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Fig. 3 Changes in endothelial cell stiffness in EAHy926 cells under
control conditions (black dot line) versus aldosterone treatment
(white dot line) in response to increasing sodium concentrations in
the buffered electrolyte solution are revealed. Controls were treated
with 2 μmol/l eplerenone for inhibition of possible endogenous
aldosterone secretion by the endothelial cells. Aldosterone was used
in physiological concentrations of 0.45 nmol/l. Sodium concentra-
tions were varied between 125 and 160 mmol/l and osmolality was
kept constant by adequate addition of mannitol. Force curves were
obtained by scanning the same selected endothelial cells under
varying sodium concentrations every 3 minutes. Stiffness measure-
ments at 125 mmol/l sodium in the solution (reference solution)
served as the reference value. Deviation from reference values (in %)
are reported here. Mean values of 10 independent measurements per
series of experiments are given as +/- SEM. In aldosterone treated
endothelium, mean values for stiffness at sodium concentrations
above 140 mmol/l are significantly higher compared to mean values
measured at 125 mmol/l sodium (p<0.01). However, stiffness does
not increase with rising sodium concentrations in eplerenone treated
controls (p<0.01). Modified after Oberleithner et al. [38]
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vascular endothelium [6, 31, 38]. From these studies, it
appears that the effects of aldosterone are opposite to the
effects of estradiol. We were able to show that aldosterone
dose-dependently increases endothelial cell volume and
apical surface [18]. The effects were consistent in HUVEC,
EAHy926, human coronary artery endothelial cells, and
bovine aortic endothelial cells, i.e., in cells of both venous

and arterial origin [18, 33]. Importantly, opposite to the
estradiol effects, with aldosterone cell surface, increased to
a much larger extent than volume. Surface was augmented
by more than 60%, whereas volume increased only by less
than 20% [33, 35]. The morphological correlate was a
flattening of the cells along with some rippling of the cell
membrane [33]. This means that endothelial cells contract

Fig. 4 Top view AFM images
of HUVEC monolayers grown
for 3 days in presence of 1 nM
aldosterone and then perfused
with blood. Please note the large
gaps between cells (indicated by
stars). Gaps indicate lack of
cells. Images sizes: A = 70 x
70 μm2, B = 100 x 100 μm2;
C and D = 50 x 50 μm2. Taken
from Oberleithner et al. [36]

Table 1 Morphological and functional changes of endothelial cells imaged by atomic force microscopy after treatment with estradiol,
progesterone, testosterone, aldosterone and prednisolone

Estradiol Progesterone Testosterone Aldosterone Prednisolone

Volume ++ 0 0 + 0
Apical
surface

+ 0 0 +++ 0

Shape Spherical transformation,
smoothing of cell surface

0 0 Flattening of the cells, rippling
of cell surface

0

Stiffness – 0 0 +++ 0
Mechanism Activation of estradiol receptor,

NHE1, eNOS
Activation of mineralocorticoid
receptor, ENaC

Interpretation Beneficial effect: increased
elasticity by round-shaped
endothelial cells; increased
production of NO

No effect on
shape and
stiffness

No effect on
shape and
stiffness

Detrimental effect: contraction of
cells; disruption of cell layer under
shear stress; increased vulnerability;
reduced NO production

No effect on
shape and
stiffness

0: no change; +/−: slight increase/decrease; ++/−: moderate increase/decrease; +++/−: strong increase/decrease
Data are presented as compared to control experiments.
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under the influence of aldosterone (Fig. 4). Substantial
effects already occurred with low doses of aldosterone,
corresponding to mild hyperaldosteronism [18].

The aldosterone-induced alterations of endothelial cell
morphology that were opposite to the estradiol effects also
were associated with opposite effects on endothelial cell
biomechanical properties. Using AFM as a mechanosensor,
we observed that, with aldosterone, endothelial stiffness
increased dose dependently. Again, substantial effects were
already observed with relatively low aldosterone levels
corresponding to mild elevations of plasma aldosterone
such as observed in hypertension or mild to moderate heart
failure [18].

Thus, endothelial cell contraction was associated with
endothelial cell stiffening. This finding is consistent with
the aforementioned studies in shape-engineered endothelial
cells. Spindle-shaped endothelial cells displayed dense actin
filaments and reduced NO production [26]. We were able to
relate endothelial cell stiffening with aldosterone to reduced
NO production [38]. Aldosterone-treated bovine aortic
endothelial cells that were exposed to shear stress displayed
reduced nitrite concentrations in the culture medium, thus
reduced NO formation, along with stiffening of these cells.
It is important that aldosterone effects on the vascular
endothelium depend on sodium concentrations. After 72 h of
aldosterone incubation in physiological concentration (0.45
nmol/l), endothelial cell stiffness was unaffected by acute
changes in sodium concentration below 135 mmol/l but rose
steeply between 135 and 145 mmol/l. The increase in

stiffness occurred within minutes (Fig. 3). These data show
that plasma sodium per se—within a small physiological
concentration range—alters vascular endothelial cell stiffness
and NO production, but this occurs only under a permissive
influence of aldosterone. The effects were independent of
osmolality that was kept constant by variable addition of
mannitol [38].

Aldosterone-induced morphological alteration and stiff-
ening of endothelial cells depend on activation of the miner-
alocorticoid receptor [14]. However, both fast non-genomic
and genomic effects are involved [13]. Aldosterone effects
can be completely abolished by mineralocorticoid receptor
antagonists such as spironolactone and eplerenone.

Importantly, aldosterone-induced changes in the vascular
endothelium depend on activation of the epithelial sodium
channel [35]. This is in contrast to estradiol where cell
swelling depends on the sodium proton exchanger and is
independent of the ENaC. Incubation with the ENaC
blocker amiloride prevented the endothelial effects of
aldosterone. In a recent study, the time course of aldoste-
rone action on endothelial cells was analyzed [33]. During
the first minutes after addition of aldosterone, there was a
transient increase in cell volume along with a decrease in
cell stiffness. However, after 15 min, cell volume decreased
again, and cell stiffness increased progressively. This was
associated with endothelial cell contraction. Similar effects
were observed in renal epithelial cells [16]. A recent
observation suggests that intracellular sodium regulates
the open probability of the ENaC [2]. Thus, the initial

Fig. 5 AFM images taken
before (control; time=0) and
after acute exposure of human
endothelial cells to 1 nM aldo-
sterone. a) Visible is a portion of
a living endothelial cell main-
tained in a buffered solution at
37°C. The cell apears relaxed.
b) Same cell as in a), 23 minutes
after aldosterone exposure. The
cell appears contracted.
c) Visible is a 25 μm2 plasma
membrane patch. The membrane
appears smooth. d) Same mem-
brane patch as in c) but after
aldosterone exposure. Surface
roughness is found strongly in-
creased. Taken from
Oberleithner et al. [33]
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increase in intracellular sodium during aldosterone incuba-
tion could limit further sodium entry into the endothelial
cell and initiate volume regulation and the observed cell
contraction during continued aldosterone exposure. After
further exposition to aldosterone during several days,
endothelial cell volume increases again. However, this is
to a significant degree due to accumulation of organic
material [36]. Endothelial cell stiffening is a consistent
finding also after prolonged aldosterone exposure [18].

Table 1 summarizes the morphological and functional
changes of endothelial cells imaged by AFM after treatment
with steroid hormones.

Is endothelial cell stiffening with aldosterone detrimental
as opposed to endothelial cell “softening” with estradiol?

As outlined above, an increase in endothelial cell stiffness
measured by AFM is associated with reduced NO produc-
tion. This finding is consistent in studies by different
groups. However, beyond reduced NO production and
reduced eNOS activity, endothelial cell stiffening has
additional functional implications. Peng et al. [42] showed
that, when the elastic deformation in response to pulsatile
stress was hindered, endothelial cells became vulnerable to
ultraviolet radiation. Oberleithner et al. [36] studied the
responses of endothelial cell monolayers to prolonged
shear stress in the presence of aldosterone. Along with
endothelial cell stiffening, there was a disruption of the
endothelial cell layer with aldosterone treatment [36, 37].
The aldosterone-induced endothelial cell contraction and
stiffening first led to paracellular gap formation. With
continued shear stress, endothelial cells could not with-
stand the strain and were disrupted from the layer (Fig. 4)
[36]. Thus, aldosterone-induced contraction and stiffening
of the vascular endothelium make it vulnerable to
mechanical stress. Indeed, endothelial lesions with denu-
dation of the basal membrane represent a common
phenomenon observed in the process of human athero-
sclerosis [30]. Figure 5.

Endothelial cell stiffening may even be related to the
elastic properties of the vascular bed. It has been clearly
shown that aldosterone stiffens large arteries [4]. Increased
endothelial cell stiffness with aldosterone as opposed to
reduced cell stiffness by estradiol may even contribute to
vascular deformability, at least in small vessels lacking a
marked vascular smooth muscle layer [21]. Under patho-
physiological conditions with increased pulse pressure and
an altered myogenic tone of small arteries and arterioles,
pulsatile stress is transmitted to microvessels, which results
in microvascular damage and altered pulse wave reflection
[48]. In this context, it is tempting to speculate that altered
endothelial cell stiffness may alter pulse wave reflection
and thereby contribute to systemic arterial stiffness.

Finally, there is substantial evidence that adhesion of
leukocytes or platelets to endothelial cells is associated with
reduced NO bioavailability [5, 65] and endothelial cell
stiffening [60], such as observed with aldosterone [61, 64].
In contrast, the estradiol-induced increase in endothelial
elasticity might be associated with reduced leukocyte adhe-
sion and impaired transmigration through the endothelium.

In summary, the outlined AFM studies regarding steroid
hormone effects on the vascular endothelium clearly show
that AFM allows functional imaging of living endothelial
cells. These AFM studies show consistent changes of
morphology and stiffness in endothelial cells. Endothelial
cell stiffness, as measured by AFM, emerges as an
important parameter of endothelial cell function that is not
only related to NO bioavailability but to several other
endothelial cell functional properties.

Acknowledgments The study was supported by a grant from the
Else-Kroener Fresenius Foundation, by an EU grant Tips4Cells and by
a grant from the Faculty of Medicine, University of Muenster, IMF HI
1 2 06 15. The technical support of Digital Instruments (VEECO,
Mannheim) is gratefully acknowledged.

References

1. Abiose AK, Mansoor GA, Barry M, Soucier R, Nair CK, Hager D
(2004) Effect of spironolactone on endothelial function in patients
with congestive heart failure on conventional medical therapy. Am
J Cardiol 93:1564–1566

2. Anantharam A, Tian Y, Palmer LG (2006) Open probability of the
epithelial sodium channel is regulated by intracellular sodium. J
Physiol 574:333–347

3. Binnig G, Quate CF, Gerber C (1986) Atomic force microscope.
Phys Rev Lett 56:930–934

4. Blacher J, Amah G, Girerd X, Kheder A, Ben Mais H, London GM,
Safar ME (1997) Association between increased plasma levels of
aldosterone and decreased systemic arterial compliance in subjects
with essential hypertension. Am J Hypertens 10:1326–1334

5. Bouzin C, Brouet A, De Vriese J, Dewever J, Feron O (2007) Effects
of vascular endothelial growth factor on the lymphocyte–endotheli-
um interactions: identification of caveolin-1 and nitric oxide as
control points of endothelial cell anergy. J Immunol 178:1505–1511

6. Brandes RP (2007) Avoiding vicious circles: mineralocorticoid
receptor antagonism prevents vascular oxidative stress early after
myocardial infarction. Hypertension 50:842–843

7. Brotman DJ, Girod JP, Garcia MJ, Patel JV, Gupta M, Posch A,
Saunders S, Lip GY, Worley S, Reddy S (2005) Effects of short-
term glucocorticoids on cardiovascular biomarkers. J Clin
Endocrinol Metab 90:3202–3208

8. Brown NJ (2005) Aldosterone and end-organ damage. Curr Opin
Nephrol Hypertens 14:235–241

9. Chen W, Lee JY, Hsieh WC (2002) Effects of dexamethasone and
sex hormones on cytokine-induced cellular adhesion molecule
expression in human endothelial cells. Eur J Dermatol 12:445–448

10. Collins P, Shay J, Jiang C, Moss J (1994) Nitric oxide accounts
for dose-dependent estrogen-mediated coronary relaxation after
acute estrogen withdrawal. Circulation 90:1964–1968

11. David FL, Carvalho MH, Cobra AL, Nigro D, Fortes ZB,
Reboucas NA, Tostes RC (2001) Ovarian hormones modulate

58 Pflugers Arch - Eur J Physiol (2008) 456:51–60



endothelin-1 vascular reactivity and mRNA expression in DOCA-
salt hypertensive rats. Hypertension 38:692–696

12. Davies PF, Zilberberg J, Helmke BP (2003) Spatial microstimuli
in endothelial mechanosignaling. Circ Res 92:359–370

13. Funder JW (2005) The nongenomic actions of aldosterone.
Endocr Rev 26:313–321

14. Golestaneh N, Klein C, Valamanesh F, Suarez G, Agarwal MK,
Mirshahi M (2001) Mineralocorticoid receptor-mediated signaling
regulates the ion gated sodium channel in vascular endothelial
cells and requires an intact cytoskeleton. Biochem Biophys Res
Commun 280:1300–1306

15. Gonzalez-Juanatey C, Llorca J, Garcia-Porrua C, Sanchez-
Andrade A, Martin J, Gonzalez-Gay MA (2006) Steroid therapy
improves endothelial function in patients with biopsy-proven
giant cell arteritis. J Rheumatol 33:74–78

16. Gorelik J, Zhang Y, Sanchez D, Shevchuk A, Frolenkov G, Lab M,
Klenerman D, Edwards C, Korchev Y (2005) Aldosterone acts via
an ATP autocrine/paracrine system: the Edelman ATP hypothesis
revisited. Proc Natl Acad Sci USA 102:15000–15005

17. Hillebrand U, Hausberg M, Stock C, Shahin V, Nikova D,
Riethmuller C, Kliche K, Ludwig T, Schillers H, Schneider SW,
Oberleithner H (2006) 17beta-estradiol increases volume, apical
surface and elasticity of human endothelium mediated by Na+/H+
exchange. Cardiovasc Res 69:916–924

18. Hillebrand U, Schillers H, Riethmuller C, Stock C, Wilhelmi M,
Oberleithner H, Hausberg M (2007) Dose-dependent endothelial
cell growth and stiffening by aldosterone: endothelial protection
by eplerenone. J Hypertens 25:639–647

19. Huang A, Sun D, Koller A, Kaley G (1997) Gender difference in
myogenic tone of rat arterioles is due to estrogen-induced,
enhanced release of NO. Am J Physiol 272:H1804–H1809

20. Hutcheson IR, Griffith TM (1996) Mechanotransduction through
the endothelial cytoskeleton: mediation of flow- but not agonist-
induced EDRF release. Br J Pharmacol 118:720–726

21. Ibegbuna V, Nicolaides AN, Sowade O, Leon M, Geroulakos G
(1997) Venous elasticity after treatment with Daflon 500 mg.
Angiology 48:45–49

22. Iuchi T, Akaike M, Mitsui T, Ohshima Y, Shintani Y, Azuma H,
Matsumoto T (2003) Glucocorticoid excess induces superoxide
production in vascular endothelial cells and elicits vascular
endothelial dysfunction. Circ Res 92:81–87

23. Ji JY, Jing H, Diamond SL (2003) Shear stress causes nuclear
localization of endothelial glucocorticoid receptor and expression
from the GRE promoter. Circ Res 92:279–285

24. Kanashiro CA, Khalil RA (2001) Gender-related distinctions in
protein kinase C activity in rat vascular smooth muscle. Am J
Physiol Cell Physiol 280:C34–C45

25. Khalil RA (2005) Sex hormones as potential modulators of
vascular function in hypertension. Hypertension 46:249–254

26. Kidoaki S, Matsuda T (2007) Shape-engineered vascular endo-
thelial cells: nitric oxide production, cell elasticity, and actin
cytoskeletal features. J Biomed Mater Res A 81:728–735

27. Lacolley P, Labat C, Pujol A, Delcayre C, Benetos A, Safar M
(2002) Increased carotid wall elastic modulus and fibronectin in
aldosterone–salt-treated rats: effects of eplerenone. Circulation
106:2848–2853

28. Ladage D, Brixius K, Hoyer H, Steingen C, Wesseling A, Malan D,
Bloch W, Schwinger RH (2006) Mechanisms underlying nebivolol-
induced endothelial nitric oxide synthase activation in human
umbilical vein endothelial cells. Clin Exp Pharmacol Physiol
33:720–724

29. Leopold JA, Dam A, Maron BA, Scribner AW, Liao R, Handy DE,
Stanton RC, Pitt B, Loscalzo J (2007) Aldosterone impairs vascular
reactivity by decreasing glucose-6-phosphate dehydrogenase activ-
ity. Nat Med 13:189–197

30. Mayranpaa MI, Resendiz JC, Heikkila HM, Lindstedt KA,
Kovanen PT (2007) Improved identification of endothelial erosion
by simultaneous detection of endothelial cells (CD31/CD34) and
platelets (CD42b). Endothelium 14:81–87

31. Nagata D, Takahashi M, Sawai K, Tagami T, Usui T, Shimatsu A,
Hirata Y, Naruse M (2006) Molecular mechanism of the inhibitory
effect of aldosterone on endothelial NO synthase activity.
Hypertension 48:165–171

32. Oberleithner H (2005) Aldosterone makes human endothelium
stiff and vulnerable. Kidney Int 67:1680–1682

33. Oberleithner H (2007) Is the vascular endothelium under the
control of aldosterone? Facts and hypothesis. Pflugers Arch
454:187–193

34. Oberleithner H, Giebisch G, Geibel J (1993) Imaging the
lamellipodium of migrating epithelial cells in vivo by atomic
force microscopy. Pflugers Arch 425:506–510

35. Oberleithner H, Ludwig T, Riethmuller C, HillebrandU, Albermann L,
Schafer C, Shahin V, Schillers H (2004) Human endothelium: target
for aldosterone. Hypertension 43:952–956

36. Oberleithner H, Riethmuller C, Ludwig T, Hausberg M, Schillers H
(2006) Aldosterone remodels human endothelium. Acta Physiol
(Oxf) 187:305–312

37. Oberleithner H, Riethmuller C, Ludwig T, Shahin V, Stock C,
Schwab A, Hausberg M, Kusche K, Schillers H (2006) Differen-
tial action of steroid hormones on human endothelium. J Cell Sci
119:1926–1932

38. Oberleithner H, Riethmuller C, Schillers H, MacGregor GA,
de Wardener HE, Hausberg M (2007) Plasma sodium stiffens
vascular endothelium and reduces nitric oxide release. Proc Natl
Acad Sci USA 104:16281–16286

39. Oberleithner H, Schillers H, Wilhelmi M, Butzke D, Danker T
(2000) Nuclear pores collapse in response to CO2 imaged with
atomic force microscopy. Pflugers Arch 439:251–255

40. Oberleithner H, Weigt M, Westphale HJ, Wang W (1987)
Aldosterone activates Na+/H+ exchange and raises cytoplasmic
pH in target cells of the amphibian kidney. Proc Natl Acad Sci
USA 84:1464–1468

41. Orshal JM, Khalil RA (2004) Gender, sex hormones, and vascular
tone. Am J Physiol Regul Integr Comp Physiol 286:R233–R249

42. Peng X, Haldar S, Deshpande S, Irani K, Kass DA (2003) Wall
stiffness suppresses Akt/eNOS and cytoprotection in pulse-
perfused endothelium. Hypertension 41:378–381

43. Pesen D, Hoh JH (2005) Micromechanical architecture of the
endothelial cell cortex. Biophys J 88:670–679

44. Pesen D, Hoh JH (2005) Modes of remodeling in the cortical
cytoskeleton of vascular endothelial cells. FEBS Lett 579:473–476

45. Pu Q, Neves MF, Virdis A, Touyz RM, Schiffrin EL (2003)
Endothelin antagonism on aldosterone-induced oxidative stress
and vascular remodeling. Hypertension 42:49–55

46. Quaschning T, Ruschitzka F, Shaw S, Luscher TF (2001)
Aldosterone receptor antagonism normalizes vascular function in
liquorice-induced hypertension. Hypertension 37:801–805

47. Riethmuller C, Jungmann P, Wegener J, Oberleithner H (2006)
Bradykinin shifts endothelial fluid passage from para- to trans-
cellular routes. Pflugers Arch 453:157–165

48. Safar ME, Lacolley P (2007) Disturbance of macro- and
microcirculation: relations with pulse pressure and cardiac organ
damage. Am J Physiol Heart Circ Physiol 293:H1–H7

49. Schneider SW, Larmer J, Henderson RM, Oberleithner H (1998)
Molecular weights of individual proteins correlate with molecular
volumes measured by atomic force microscopy. Pflugers Arch
435:362–367

50. Schneider SW, Matzke R, Radmacher M, Oberleithner H (2004)
Shape and volume of living aldosterone-sensitive cells imaged with
the atomic force microscope. Methods Mol Biol 242:255–279

Pflugers Arch - Eur J Physiol (2008) 456:51–60 59



51. Schneider SW, Yano Y, Sumpio BE, Jena BP, Geibel JP, Gekle M,
Oberleithner H (1997) Rapid aldosterone-induced cell volume
increase of endothelial cells measured by the atomic force
microscope. Cell Biol Int 21:759–768

52. Schnittler HJ, Schneider SW, Raifer H, Luo F, Dieterich P, Just I,
Aktories K (2001) Role of actin filaments in endothelial cell–cell
adhesion and membrane stability under fluid shear stress. Pflugers
Arch 442:675–687

53. Shahin V (2006) Route of glucocorticoid-induced macromole-
cules across the nuclear envelope as viewed by atomic force
microscopy. Pflugers Arch 453:1–9

54. Simoncini T, Mannella P, Fornari L, Caruso A, Varone G,
Genazzani AR (2004) Genomic and non-genomic effects of
estrogens on endothelial cells. Steroids 69:537–542

55. Simoncini T, Mannella P, Fornari L, Caruso A, Willis MY,
Garibaldi S, Baldacci C, Genazzani AR (2004) Differential signal
transduction of progesterone and medroxyprogesterone acetate in
human endothelial cells. Endocrinology 145:5745–5756

56. Struthers AD, MacDonald TM (2004) Review of aldosterone- and
angiotensin II-induced target organ damage and prevention.
Cardiovasc Res 61:663–670

57. Suzuki G, Morita H,Mishima T, Sharov VG, Todor A, Tanhehco EJ,
Rudolph AE,McMahon EG, Goldstein S, Sabbah HN (2002) Effects
of long-term monotherapy with eplerenone, a novel aldosterone
blocker, on progression of left ventricular dysfunction and remod-
eling in dogs with heart failure. Circulation 106:2967–2972

58. Thompson LP, Weiner CP (1997) Long-term estradiol replacement
decreases contractility of guinea pig coronary arteries to the
thromboxane mimetic U46619. Circulation 95:709–714

59. Wallerath T, Witte K, Schafer SC, Schwarz PM, Prellwitz W,
Wohlfart P, Kleinert H, Lehr HA, Lemmer B, Forstermann U

(1999) Down-regulation of the expression of endothelial NO
synthase is likely to contribute to glucocorticoid-mediated hyper-
tension. Proc Natl Acad Sci USA 96:13357–13362

60. Wang Q, Chiang ET, Lim M, Lai J, Rogers R, Janmey PA,
Shepro D, Doerschuk CM (2001) Changes in the biomechanical
properties of neutrophils and endothelial cells during adhesion.
Blood 97:660–668

61. Wang Q, Pfeiffer GR, Stevens T, Doerschuk CM (2002) Lung
microvascular and arterial endothelial cells differ in their re-
sponses to intercellular adhesion molecule-1 ligation. Am J Respir
Crit Care Med 166:872–877

62. Wellman GC, Bonev AD, Nelson MT, Brayden JE (1996) Gender
differences in coronary artery diameter involve estrogen, nitric
oxide, and Ca(2+)-dependent K+ channels. Circ Res 79:1024–
1030

63. Wong S, Brennan FE, Young MJ, Fuller PJ, Cole TJ (2007) A
direct effect of aldosterone on endothelin-1 gene expression in
vivo. Endocrinology 148:1511–1517

64. Wu L, Xiao B, Jia X, Zhang Y, Lu S, Chen J, Long M
(2007) Impact of carrier stiffness and microtopology on
two-dimensional kinetics of P-selectin and P-selectin glycopro-
tein ligand-1 (PSGL-1) interactions. J Biol Chem 282:9846–
9854

65. Wu Y, Zhou Z, Meyerhoff ME (2007) In vitro platelet adhesion on
polymeric surfaces with varying fluxes of continuous nitric oxide
release. J Biomed Mater Res A 81:956–963

66. Wynne FL, Khalil RA (2003) Testosterone and coronary vascular
tone: implications in coronary artery disease. J Endocrinol Invest
26:181–186

67. Yang S, Zhang L (2004) Glucocorticoids and vascular reactivity.
Curr Vasc Pharmacol 2:1–12

60 Pflugers Arch - Eur J Physiol (2008) 456:51–60


	How steroid hormones act on the endothelium—insights by atomic force microscopy
	Abstract
	Sex hormones
	Glucocorticoids
	Aldosterone
	What does atomic force microscopy add to our understanding of the in vivo functional effects of steroid hormones on the endothelium?
	Which parameters can be assessed by atomic force microscopy in endothelial cells?
	What are the effects of steroid hormones on endothelial cells as assessed by atomic force microscopy?
	Is endothelial cell stiffening with aldosterone detrimental as opposed to endothelial cell “softening” with estradiol?

	References




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


