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Abstract The physical properties of the protoplasm have
long been of interest, and today, several intricate methods,
including atomic force microscopy, have been employed in
studies of cellular mechanics. However, many current
concepts and experimental approaches actually have their
beginnings over 300 years ago. Unfortunately, these pioneer-
ing studies have been all but forgotten. In this paper, we have
reviewed some of the early literature on cellular mechanics to
place modern work within an historical framework. It is clear
that with current nanoscience approaches, modern experi-
ments employing cell indentation, manipulation, particle
rheology and micro- or nano-needle poking are now quanti-
fying mechanical properties which were only qualitatively
described 100 years ago. Aside from the variety of approaches
our predecessors have employed to understand cellular
mechanics, we feel an understanding of the past will help to
propel nanoscience into the future. As nanophysiology and
nanomedicine are developing, we as a community should take
time to consider the early roots of these fields.
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Introduction

“Much excellent research has been done with a test tube
and a Bunsen burner, but certain problems cannot be

successfully attacked without the aid of intricate appara-
tus. It is the latter type of research, in so far as it applies to
studies on the physical properties of protoplasm with
which this report deals.” (Seifriz, 1937 [1]).

In the late seventeenth century, the likes of Robert
Hooke and Antony van Leeuwenhoek were using simple
optical microscopes to peer down into a tiny living universe
in which fluid and cellular motion appeared to be extreme.
In a letter [2] written on Christmas Day, 1702, van
Leeuwenhoek describes what may be the first observations
of the ciliate Vorticella, “In structure these little animals
were fashioned like a bell, and at the round opening they
made such a stir, that the particles in the water thereabout
were set in motion thereby…which sight I found mightily
diverting.” The appearance of motion in this tiny world was
not lost on these early observers. Brownian motion of
particles and organelles inside living cells have been
commonly reported [3, 4]. It was also conjectured that it
may be possible to estimate viscosity by measuring these
quantities. Although the tools were not available in the
seventeenth century to perform accurate micro-rheology and
nano-indentation experiments, many of the philosophical
ideas and concepts we deal with today had their beginnings
over 300 years ago. Moreover, the technological basis and
understanding of cell and tissue mechanics has its foundation
in the rapid industrialisation of the nineteenth century—the
need for a thorough understanding of mechanical and
structural testing and theory (indentation, beam bending,
the Hertz model) of macroscale materials such as engines,
boats and bridges [5]. This in turn reflected an earlier silvan
economy—indeed, understanding the adaptation, structure
and material properties of different woods (oak versus pine)
preceded and defined our concept of tissue adaptation (for
example, Wolff’s law as applied to the skeleton) [5]. At the
end of the nineteenth century, the mechanical properties of
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living cells were experimentally examined and analyzed
using a variety of techniques based upon these macroscale
engineering mechanics. Today, over a century later, our
current nanoscale testing and modelling of biological
materials is still fundamentally based on nineteenth-century
practices [6–8].

The living cell is a universe unto itself. It was quickly
recognized that the cellular universe is vastly complex and
always experiencing turbulent forces and dynamics within
the protoplasm which were somehow related to function. In
this historical review, we will present work from very early
studies involving the mechanical motion and properties of
living cells. We will attempt to describe these studies in
relation to modern approaches including, but not limited to,
atomic force microscopy (AFM) [9]. Although this review
hardly covers the entire wealth of scientific literature on the
subject, we have attempted to revisit discoveries and
philosophical concepts over the past 300 years to fit current
work on cellular mechanics into an historical perspective. We
hope such perspective will reveal that although we are asking
similar questions as early scientists, modern nanoscale
approaches are finally providing robust quantitative descrip-
tions of cellular mechanics. These modern approaches are
becoming of great importance as the role of nanoscience in
physiology and medicine is now emerging.

The role of mechanical forces in biology is certainly not
a new idea but is currently gaining wider acceptance.
However, this has not always been the case. In 1850,
Carpenter wrote “the degree to which the phenomena of
Life are dependent upon Physical agencies has been the
subject of inquiry and speculation among scientific inves-
tigators of almost every school. That many actions taking
place in the living body are conformable to the laws of
mechanics, has been hastily assumed as justifying the
conclusion that all its actions are mechanical…” In 1917,
Thompson discussed the apparent mechanical nature of
cellular processes in his classic On Growth and Form [5],
writing that “…though they resemble known physical
phenomena, their nature is still the subject of much dubiety
and discussion, and neither the forms produced nor the
forces at work can yet be satisfactorily and simply
explained.” At about this time, many reports were emerging
which began to quantify mechanical properties in cells
which, until this point, had largely been supported by
qualitative, empirical observations. Moreover, early debates
about the appropriate theoretical picture one should have
about the cell were also emerging [3, 4, 10, 11]. Cells were
initially thought to be of homogeneous gels, sols, visco-
elastic and plastic fluids. These lines of thought continue
today; however, many models have been developed which
describe cellular mechanics in several ways, including a
viscoelastic continuum, a combination of discrete mechan-
ical elements, or a combination of viscoelastic fluid within

a dense meshwork [6–8, 12–18]. However, for the number
of models which exist today, there seem to be just as many
experimental proofs which either support or refute each
proposed model (for example, recent work on the soft glass
rheology phenomenon [19, 20]). Through experimental
refinement over the past century, highly accurate measure-
ments of viscosity, elasticity, plasticity and motion have
been carried out by several techniques. However, this has
not led to a complete theoretical description of cell
mechanics that is both time-dependent and predictive.

Importantly, it is not fully understood whether these
mechanical phenomena and properties are merely side
products of biological processes or if they are intimately
controlled at the genetic and physiological level through
feedback loops, actuation and/or response pathways. In the
past several years, some reports have begun to answer this
highly complex question [21–25]. Here, we will generally
limit our discussion towards AFM-based contributions,
given the scope and contributors to this special issue on
nanophysiology in the Pflügers Archiv European Journal of
Physiology. However, contributions from many fields and
techniques have been fundamental in the development of
our current understanding of cellular mechanics [6–8].
Clearly, the field of cell mechanics and especially its
relation to cell physiology or nanophysiology is vital and
growing as many avenues exist to explore the micro- and
nano-scopic cellular world. In this review, we will attempt
to place modern AFM work side-by-side with studies from
the seventeenth century onward to fit our understanding
within a fascinating and sometimes surprising historical
framework.

The architecture of the protoplasm In the late nineteenth
century, cell doctrine was being generalized and the term
protoplasm was used widely as a description of the contents
of a cell [3, 26–30]. Early on, the protoplasm was viewed
almost spiritually, as it had the ability to self-replicate, and
many at the time accepted the idea of so-called vital and
physical forces existing within the cell. Vitalists believed
that vital forces emanated directly from the “Will of the
Omnipotent and Ominpresent Creator” [31], and physical
forces were a result or the modi operandi of Vital forces.
Over time, there emerged a great debate between the
“Vitalists” and “Mechanists” about the structure, function
and purpose of the protoplasm, where mechanists believed
that all processes within the cell could be explained by
physical or chemical mechanics [32, 33]. Many of these
arguments actually continued well into the twentieth
century, often arising from the inability of scientists to
determine the exact chemical structure of the protoplasm or
to explain certain mechanical phenomena [34–37].

The main elements of cellular architecture within the
protoplasm were determined in the mid to late 1800s, and
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up until that point, cells were considered as small compart-
ments containing homogeneous fluids [38]. With the
development of modern microscopic techniques during the
eighteenth and nineteenth centuries [1], including darkfield
illumination, oil immersion lenses and high-quality glass
optics free from aberrations, together with advances in
sample preparation and staining methods (developed by the
great European histologists such as Golgi, 1906 Nobel
Laureate), the nucleus, nucleoli, chromatin, nuclear mem-
branes, vacuoles, cytoplasmic streaming, filamentous struc-
tures (cytoskeleton, reticulum, the mitotic spindle, and
actin–myosin striations in muscle) were observed [28–30,
38–40] (Fig. 1). The granular nature of the protoplasm led
to the belief that it was accurately described as a colloidal
suspension, giving rise to the early discussions and
measurements of viscosity [4, 30]. As with the development
of the optical microscope, the AFM, a new paradigm in
microscopy, was utilized early on to visualize some of these
cellular structures.

Early AFM imaging of live cells quickly revealed the ability
to image elements of the cytoskeleton as well as monitoring its
dynamics [41–45]. Nuclei were often observed as large
structures and contributing significantly to the apparent height
of the cells. Due to the nature of AFM imaging, mechanical
information was readily inferred and later quantified using
various imaging mechanisms [41, 46, 47]. High-resolution
AFM imaging has provided detailed information on the
structure, function and mechanics of nucleic acids [48–55],
several types of membrane proteins [56–61], nuclear pore
complexes [62–67], biological filaments [68–77], molecular
motors [78–83] and cell wall surfaces [84–92] which was not
accessible with optical microscopy in the 1800s. Although
there are many technological differences between both optical

and scanning probe microscopy techniques, separated by well
over a century, both have intriguingly pointed towards the
mechanical nature of the cell.

Protoplasmic mechanics In a series of three lectures given
by Stuart [93] in 1737 and 1738, it was shown that blood,
blood vessels and nerves, dissected from a corpse, could all
be tested mechanically. Early concepts of hydrostatics,
elasticity and viscoelastic fluids were discussed and,
apparently, it was observed that nerves were inelastic. In
the living organism, mechanical oscillations were studied at
length. In his lecture in 1857, Paget [94] discusses the
spontaneous contractions of the heart after being removed
from a living organism. The mechanical contractions were
observed to continue without the need for a functioning
nervous system, a property of heart and muscle cells which
have been exploited recently in the AFM literature [95–98].
Other mechanical oscillations were discussed such as
observations on ~3 μm diameter vacuoles in several
organisms, cell-wall oscillations in plants and the move-
ment of cilia [94]. In each of these cases, no known muscle
structure or nervous system was present. It was not
understood how such mechanical oscillations provided an
advantage to these organisms. However, the concept of
biological mechanics was clearly under development.

Early studies on the mechanical properties of the
protoplasm were mainly concerned with viscosity. This
was partly due to experimental limitations as microscopic
methods of observation were not yet well developed
(Fig. 2). Cytoplasmic streaming (the circular flow of
cytoplasm in eukaryotic cells) was observed very early [4,
99] and used as a qualitative measure of the protoplasmic
viscosity. It was also clear that the motion of internal

Fig. 1 Images of living cells
from the late nineteenth century.
a Detailed studies of mitosis
were completed by Campbell in
1890 (image reproduced with
permission from the Torrey
Botanical Society [172]).
b Striated structures were
observed in cardiomyocytes of
many species including humans
in 1887 (image reproduced with
permission from the American
Society of Microscopists
[173]). c Modern immuno-
fluorescence staining of actin
with rhodamine-phalloidin,
over a century later, also reveals
striated structures in rat
cardiomyocytes
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granules could also be used as markers for viscosity
measurements [3, 4]. This represents some of the earliest
uses of particle tracking in cell mechanics and is essentially
a predecessor of modern-particle tracking and micro-
rheology measurements [100, 101]. Although this early
work was carried out in the 1920s and suffers from an
obvious lack of appropriate experimental and theoretical
considerations, some of the same issues were being
discussed as they are today, such as the influence of the
size of the granule, the mesh size of the protoplasm,
damage to the cell and the influence of temperature [3, 4,
102]. Similarly, an early magnetic microscope developed in
1923 [103] was used to oscillate nickel particles (~16 μm in
diameter) inserted into living cells. Aside from the
similarities to modern particle micro-rheology [19, 20,
100, 101], this approach is similar in concept to magnetic
bead-twisting cytometry [104–106]. An early example of
magnetic manipulation also involved injecting iron particles
into bacteria and observing how fast they were attracted to
an electromagnet [4]. A distinct but very common approach
to viscosity measurements at the time involved the
centrifugation of cells. Granules would be “thrown to one
end of the cell” and slowly migrate back to their original
position”, a qualitative estimate of protoplasm viscosity at
the time [4].

Changes in viscosity were measured during sea urchin
egg mitosis and fertilization, sometimes by as much as
two orders of magnitude [4]. Interestingly, it was also
observed that preventing changes in viscosity could halt

mitosis [107, 108]. Furthermore, changes in protoplasmic
viscosity in response to the action of temperature, radiation,
electric currents and several chemicals (anaesthetics, salt,
organic solvents, and even the early chemotherapy agents
being developed in the 1940s) have all been measured [3, 4,
29, 107, 109–124]. Although the major observable in AFM
studies is the Young’s modulus or elasticity (which is a
related but fundamentally different parameter from viscos-
ity), similar measurements have been performed in cells over
the last two decades with AFM. These include the effects of
anti-cytoskeletal drugs [41, 125, 126], chemotherapy
reagents [114, 127] and electrical stimulation [27, 128].

The majority of AFM mechanical measurements on
living cells rely on nano-indentation approaches and
extracting mechanical parameters from measured force–
displacement curves. Although the main mechanical indi-
cator is taken to be elasticity, rheological parameters have
also been extracted from living cells using various
approaches [129–131]. Indentation approaches have been
used in conjunction with scanning to produce force maps
[41–44, 132] or in single spots on living cells to measure
time dependence [125, 127]. Early indentation experiments
on living cells almost a century ago employed the use of
glass microneedles which were slowly inserted into many
cell types to estimate viscosity [39, 133–135]. Although
very qualitative, this method and variants of “micro-
dissection” became a very common way to estimate the
mechanical properties of the protoplasm. In 1931, a “micro-
operation” with a microneedle was described in which

Fig. 2 Early microscopes
used in the study of cellular
mechanics. a The Leeuwenhoek
microscope from the early 1600s
was one of the first utilized in
early microscopy (image
reproduced with permission
from Molecular Expressions
images). b The magnetic
microscope from the 1920s used
in studies which were the
predecessors of modern particle
microrheology. The microscope
incorporated an electromagnet
(arrow) into the design to
oscillate magnetic micro-
particles inserted into living
cells (image reproduced with
permission from The Company
of Biologists [103]). c The
modern AFM, integrated with
an inverted laser scanning
confocal microscope to allow
simultaneous mechanical
perturbations and measurements
to be performed while imaging
cellular structures in three
dimensions
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needles were used to push and penetrate into organelles of
living cells [135]. Interestingly, in 2005, a “nanoscale
operation” was described in which an AFM tip, modified
with a nanoneedle, was employed to push and penetrate
into the nucleus of living cells [136]. Although separated by
about three quarters of a century, both reports describe the
penetration and deformation of the cell nucleus using very
similar approaches (Fig. 3). Granted, the AFM measure-
ment provided a quantitative measure of force which was
not possible with the early report. Furthermore, simulta-
neous laser scanning confocal imaging (Fig. 2) provides
much more detailed three-dimensional information which
was also not possible in 1931.

Just prior to the development of the AFM in 1986, “cell
poking” with calibrated microneedles was developed [137–
139]. Unlike the early methods which pushed the needle
straight through the cell, the needle was indented into the
cell membrane to measure cellular deformations and
elasticity. Complementary to much older work from the
late 1920s, the effect of anti-cytoskeletal drugs were also
measured [137]. Some early examples of whole-cell
elasticity were demonstrated using plant cells [140]. Plant
tissue was clamped on either end and stretched using

known weights to produce stress–strain curves. Conceptu-
ally, this work is related to modern directions towards
investigating multi-cellular assemblies, monolayers and
tissues [16, 24, 25, 141]. Micropipette aspiration [142–
145] has also come into use to study whole-cell mechanics
by examining cellular and nuclear deformations in response
to suction [146–149]. Microplates [150, 151] have been
employed to measure cellular deformation and elasticity in
response to force. Cells have been either literally
“ploughed” from a surface using a cantilever to measure
adhesion forces which aid in attachment and motility [152].
There is an extensive literature, dating back to the late
1800s, on wound healing and migration which are also
highly mechanical in nature [153]. Recently, AFM has been
used to measure the protrusive forces [44, 154] at the edge
of migrating cells in complement to traction force assays
[155, 156], micropipette and laser trap studies [157].
Migration is a key element in cancer metastasis, and in
recent years, cells have been optically trapped and stretched
in electromagnetic fields to measure mechanical properties in
relation to metastatic potential [158–161] (complementary to
early deformability assays [162]). In addition, magnetic traps
have been utilized to perform rheological measurements with
magnetic beads [20, 163–165]. Measurements of mechanical
parameters, organelle deformations and force transmission
have all been performed with magnetic bead-twisting
cytometry [163, 166]. These studies are similar in concept
to the early studies by Seifriz [103] and his magnetic
microscope as well as early organelle tracking in response to
indentations with micropipettes [135].

Obviously, there have been a wide variety of approaches
demonstrated over the past 150 years to measure the
mechanical properties of living cells. Although the me-
chanical properties of living cells and organisms was
initially very conceptual, we have witnessed a significant
growth in the methodologies employed to measure such
properties [6–8]. Many laboratories worldwide have be-
come expert at measuring mechanical properties of cells;
however, it is clear from the above literature review that
many of the same questions are being asked today that
were posed and explored over the past century. Clearly,
biological cells and tissues possess mechanical properties,
and these properties do appear to change during physio-
logical processes and in disease. Mechanical detection of
these states may indeed be a key development important for
the future of ‘nanomedicine’ and ‘nanophysiology’. How-
ever, these concepts have existed for some time, and it begs
the question—Is there more we can do aside from
developing very accurate tools to mechanically detect
biological processes?

Outlook on cell mechanics and “nanophysiology” In 1737,
Stuart [93] originally discussed the idea of being able to

Fig. 3 Cell indentation as a means of measuring mechanical
properties was developed as in the early 1900s. a In 1931, glass
microneedles (arrow) were used to “operate” on living cells by
indenting and eventually entering the nucleus (image reproduced with
permission from the Royal Society [135]). b Much later, modern
techniques using AFM as seen in the phase-contrast micrograph.
These similar methods of “nano-indentation” have also been described
as “nano-operations” [136]
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control the heart by stimulating it correctly. Although the
measurement of accurate mechanical parameters is of
extreme importance, the idea of controlling and altering
biological pathways is equally enticing. Previously, it has
been shown that mechanical force delivered by the AFM tip
can induce various chemo-mechanical responses [167–
169]. In recent work, it has also been shown that the
mechanical environment of many cell types (including
cancer and stem cells) can be used to control and alter gene
expression and differentiation pathways [21–25, 164, 170,
171]. We now have the tools to measure mechanical
properties, and we have the tools to alter the mechanical
environment of a cell or even deliver well-defined forces to
a cell. Therefore, can we now move towards initiating and
controlling biological pathways in cell cultures and per-
haps, one day, in vivo? Perhaps, the emerging field of
nanophysiology will include a branch dedicated to the
nanomechanical control of biological pathways. This
poorly understood area of pursuit, in concert with ultra-
sensitive detection technologies and modern pharmaceutical
treatments, may have a significant role to play in the
development of nanomedicine and the diagnosis and
treatment of diseases.

Complementary to the many applications one may
envision for nanotechnology in medicine and physiology,
it is also becoming clear that the governing physical
principles of cell mechanics remain poorly understood and
the subject of intense debate. Specifically, the concept of
elasticity is ill-defined for a living cell. The cell is
heterogeneous, dynamic, undergoes continuous cytoskeletal
remodelling and likely highly anisotropic. Therefore, the
Hertz model, commonly used in AFM nanoindentation
experiments, does not ideally apply. Furthermore, the
cellular Poisson ratio is equally ill-defined and has
conventionally been taken to be constant, although this
may not actually be the case. There is no evidence to show
that the Poisson ratio does not itself change during
physiological processes, and this may or may not be
correlated to changes in Young’s modulus. Therefore, as
mentioned above, our theoretical descriptions of cell
mechanics still require much further development. However,
there is no doubt this will occur as future debates and
empirical observations take place.

Conclusions regarding cellular mechanics are often
drawn from studies carried out on one cell type, under a
limited set of conditions, and generalized towards a broad
range of cells, if not all cells. However, we suggest that
mechanical responses and the biochemical/structural basis
for mechanical parameters are likely dependent on the type,
physiological and mechanical environment of the cell.
Although many cell types contain the same structural
components (that is, the cytoplasm, cytoskeleton, nucleus,
membranes, etc.), it may be unlikely to utilize them along

identical pathways during biological processes. Therefore,
rather than searching for a unified theory of cell mechanics,
we, as a community, might try to identify heterogeneity in
phenotypic mechanical responses and transduction path-
ways in living cells. Classification might be according to
the mechanical model(s) (or combination of models) which
describes the cell most appropriately, along the lines of
which signalling pathway(s) are activated upon mechanical
stimulation, which internal structures are important for
mechanotransduction, or the mechanical changes which
take place during physiological processes.

Regardless of this speculation, the field of cell mechanics
is alive and well. The trend towards interdisciplinary
research among so-called nanoscientists is an encouraging
one and represents one of the major advances in the field of
cell mechanics. In the early studies of the protoplasm, there
was significant antagonism and territorial fighting between
biologists and chemists [37]. Today, we see that scientists are
becoming ever more able and willing to cross diverse
disciplinary lines. As we look back on the history of cell
mechanics, we realize that it was only about 100 years ago
that a raging debate was taking place about the components
of the protoplasm. Certainly, the field today is full of
speculation, inconsistencies and disagreement, but this is
what drives science forward.
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