
INVITED REVIEW

Determination of the architecture of ionotropic
receptors using AFM imaging

Nelson P. Barrera & Robert M. Henderson &

J. Michael Edwardson

Received: 24 September 2007 /Accepted: 26 October 2007 / Published online: 17 November 2007
# Springer-Verlag 2007

Abstract Fast neurotransmission in the nervous system is
mediated by ionotropic receptors, all of which contain
several subunits surrounding an integral ion channel. There
are three major families of ionotropic receptors: the ‘Cys-
loop’ receptors (including the nicotinic receptor for acetyl-
choline, the 5-HT3 receptor, the GABAA receptor and the
glycine receptor), the glutamate receptors (including the
α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid,
kainate and N-methyl-D-aspartic acid receptors) and the
P2X receptors for adenosine triphosphate. These receptors
are often built from multiple types of subunit, raising the
question of the stoichiometry and subunit arrangement
within the receptors. This question is of therapeutic sig-
nificance because in some cases drug-binding sites are
located at subunit–subunit interfaces. In this paper, we
describe a general method, based on atomic force micros-
copy imaging, to solve the architecture of multi-subunit
proteins, such as the ionotropic receptors. Specific epitope
tags are engineered onto each receptor subunit. The sub-
units are then expressed exogenously in cultured cells,
and the receptors are isolated from detergent extracts of
membrane fractions by affinity chromatography. The recep-
tors are imaged both alone and in complex with anti-epitope
antibodies. The size of the imaged particles provides an
estimate of the subunit stoichiometry, whereas the geometry
of the receptor–antibody complexes produces more detailed
information about the receptor architecture. We use an
automated, unbiased system to identify receptors and
receptor–antibody complexes and to determine the geom-

etry of the complexes. We are also able to determine the
orientation of the receptors on the mica substrate, which
will allow us to solve the subunit arrangement within
receptors, such as the GABAA receptor, which contain
three types of subunits.
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Introduction

Fast neurotransmission is mediated by ionotropic receptors,
which contain several subunits arranged pseudo-symmetrically
around a central ion pore [17, 30, 36, 39, 44, 47, 55, 59, 65].
Neurotransmitter binding to the receptor causes a conforma-
tional change in the receptor, which leads to the opening of
the pore and a subsequent change in the firing rate of the
target neuron. There are three major families of ionotropic
receptors: the ‘Cys-loop’ receptor family, which includes the
nicotinic receptor for acetylcholine, the 5-HT3 receptor, the
GABAA receptor and the glycine receptor [17, 36, 44, 59,
65], the glutamate receptor family, comprising the α-amino-
3-hydroxy-5-methylisoxazole-4-propionic acid, kainate and
N-methyl-D-aspartic acid receptors [30, 47], and the P2X
receptor family [39, 55]. Receptors from all three families are
often constructed from multiple types of subunits, raising the
question of the subunit stoichiometry and arrangement within
the receptor.

By far the best characterised of the Cys-loop receptors is
the nicotinic acetylcholine receptor, largely thanks to the
extensive electron microscopy (EM) studies of the Torpedo
electroplaque form of the receptor by Unwin et al. [49, 70]
and also the recent discovery of the acetylcholine binding
protein in the snail [13, 18]. This latter protein is
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homologous to the extracellular domain of the nicotinic
receptor and, unlike the intact receptor, is amenable to
study by X-ray crystallography. The nicotinic receptor
assembles as a pentamer, composed of four types of
subunits, α, β, γ and δ, in the order α, γ, α, δ, β, anti-
clockwise around the pore, when viewed from the synaptic
cleft [37]. The other members of the Cys-loop family are
much less well characterised. Isolated GABAA and 5-HT3

receptors have been imaged by EM and appear as cylinders
of length 11 nm and diameter 7–8 nm, with a vestibule of
diameter 2–3 nm [11, 12, 52]. The pentameric structure of
the channels is clearly visible in the EM images. By
analogy, the glycine receptor is also assumed to be
pentameric [17]. The glutamate receptors are all tetramers
[30, 47]. Fortuitously, they have a large extracellular
domain and a modular structure, which has permitted the
application of both X-ray crystallography and homology
modelling, resulting in the production of extensive struc-
tural information [30, 47]. The P2X receptors are relatively
poorly characterised. Cross-linking studies have indicated
that they are trimeric [2, 54], although there have also been
suggestions that they are tetramers [40], hexamers or even
nonamers [2, 54]. Isolated receptors have been imaged both
by EM [48] and by atomic force microscopy (AFM) under
fluid [50]. Their large extracellular domains appear to be
arranged in the form of crown-shaped structures, perhaps
containing an inner vestibule.

Despite the availability of quite detailed structural
information, the arrangement of subunits within the
ionotropic receptors is often unclear. Even in the case of
the nicotinic acetylcholine receptor, agreement about the
subunit arrangement was not reached until fairly recently
[37, 49, 70], and the composition of the other members of
the Cys-loop family is still largely unclear. In the case of
the GABAA receptors in particular, the subunit arrangement
is of therapeutic significance, as drugs such as the benzo-
diazepines are known to bind at subunit–subunit interfaces
[65]. The glutamate receptors are often heteromeric,
although the subunit arrangements are again unknown
[30, 47]. P2X receptors are known to exist as both
homomers and heteromers [2, 27, 34, 41, 54, 55], and the
heteromers have different characteristics from the parent
homomers [27, 34, 41], indicating that the properties of
endogenous receptors may vary in subtle ways depending
on the subunit composition.

One method to determine the arrangement of subunits
within ionotropic receptors involves generating constructs
in which the subunits are joined together by linker
sequences, to form concatemers. This procedure forces the
subunits into predetermined arrangements. The function-
ality of various arrangements can then be tested in heterol-
ogous expression systems such as Xenopus oocytes or
transfected mammalian cells. This method has been

successfully applied to the α1β2γ2 form of the GABAA

receptor. Different combinations of subunits were concate-
nated as trimers and dimers, and various trimer/dimer pairs
were expressed in Xenopus oocytes [8]. Many combina-
tions did not give functional receptors. From the minority
of combinations that did lead to functional expression, it
was possible to deduce that the likely subunit arrangement
was αβαγβ, anti-clockwise when viewed from the outside
the cell. This arrangement was later confirmed by the
concatenation of all five subunits in this order [9]. A similar
result has recently been reported for the neuronal nicotinic
acetylcholine receptor containing α3 and β4 subunits. It
was shown that a ββαβα concatemer had characteristics
very similar to those of receptors built from monomeric α-
and β-subunits [31].

Subunit concatenation undoubtedly provides valuable
information about the assembly of ionotropic receptors.
However, the construction of the concatemers is rather
laborious, and progress using it has been slow. In addition,
there is concern that receptors might be forcibly produced
that do not exist in vivo. We have sought an alternative
method that more directly examines the architecture of
receptors constructed form individual subunits. The AFM-
based method described here is rapid, robust and generally
applicable to a wide variety of multi-subunit proteins.

General features of the AFM-based method

In our method, epitope tags (one of which must be His6) are
engineered onto individual receptor subunits, and the
receptors are expressed exogenously by transfection of a
suitable cell line (tsA 201). The cells are lysed, and a
membrane fraction is prepared. The membrane fraction is
solubilised in detergent, and the receptors are isolated from
the detergent extract through the binding of the His6 tag to
Ni2+-agarose beads. The receptors are eluted from the beads
by incubation with imidazole. The receptors are then bound
to a mica substrate and imaged by AFM. The molecular
dimensions of a large number of the bound receptor
particles are measured and used to calculate particle
molecular volumes. A frequency distribution of molecular
volumes is produced, and the peak volumes are then
compared with the volume expected for an individual
subunit, calculated on the basis of its molecular mass. This
process produces an estimate of the likely subunit stoichi-
ometry of the receptor. The receptors are then incubated
with antibodies against the epitope tags on the subunits.
The receptor–antibody complexes are bound to mica and
again imaged by AFM. Receptors decorated by two
antibodies are identified in the AFM images, and the angles
between the bound antibodies are measured. A frequency
distribution of angles is produced. The peak angles define
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the geometry of the receptor, which in turn reveals its
subunit stoichiometry. When the receptor contains more
than one type of subunit, the antibody tagging is repeated
for each subunit. In this way, the subunit arrangement
within the receptor can be determined.

Receptor isolation

In a typical experiment, we transfect tsA 201 cells growing
on five 162-cm2 culture flasks with the appropriate
complementary deoxyribonucleic acid(s) (cDNA). We then
wait for 48 h to allow receptor expression. Cells are lysed,
and nuclei and cell debris are pelleted by low-speed
centrifugation (700×g for 5 min in a cooled Eppendorf
bench centrifuge). The supernatant from this step is spun at
21,000×g for 15 min in the same centrifuge. The pellet
from this spin is dissolved in a detergent solution (usually
1% CHAPS) by incubation at 4°C for 1 h on a rotating
wheel. Unsolubilised material is precipitated by centrifuga-
tion at 100,000×g for 1 h, and the supernatant is then
incubated with pre-washed Ni2+-agarose beads at 4°C for
30 min. The beads are washed three times in buffer, and the
bound receptor is eluted with two 500-μl batches of
200 mM imidazole followed by one 500-μl batch of
400 mM imidazole. The receptor is usually found mainly
in the second 200-mM imidazole batch.

We find that CHAPS efficiently solubilises the receptors
that we have studied. However, there is no particular reason
why this detergent should be used. Our advice would be to
optimise the procedure by trialling a number of detergents,
checking for yield and stability of the oligomeric receptor
during isolation. The protein yields in our receptor
preparations are low. We typically concentrate a fraction
of the eluted receptor, using centrifugation in Centricon™
columns, and then run immunoblots of the concentrated
material to check for the presence of the receptor subunits.
It is also possible to use silver-stained gels to check for the
purity of the sample. An alternative method for checking
purity is to run a batch of non-transfected cells in parallel

with the receptor isolation and to compare the AFM images
of samples obtained from transfected and non-transfected
cells. In our experience, the images given by samples from
non-transfected cells are usually almost featureless, in
contrast to the receptor isolates, which appear as spreads
of protein particles (Fig. 1).

Receptor imaging

Isolated proteins are diluted to a final concentration of
about 40 pM, and a 45-μl solution of the protein is added to
a poly-L-lysine-coated 1-cm mica disc attached to a steel
puck. The proteins are allowed to adsorb to the mica for
10 min. The surface of the mica is then washed with Milli-
Q water and dried under nitrogen. Imaging is performed
with a Multimode atomic force microscope (Digital Instru-
ments). Samples are imaged in air, using the tapping mode.
The silicon cantilevers used have a drive frequency
~300 kHz and a specified spring constant of 40 N/m
(Mikromasch). The applied imaging force is kept as low as
possible (target amplitude ~1.6–1.8 V and amplitude
setpoint ~1.3–1.5 V).

The molecular volumes of the protein particles are deter-
mined from particle dimensions based on AFM images.
After adsorption of the receptors onto the mica support, the
particles adopt the shape of a spherical cap. The heights and
half-height radii are measured, and the molecular volume is
calculated using the following equation:

Vm ¼ ph=6ð Þ 3r 2 þ h 2
� � ð1Þ

where h is the particle height and r is the radius [62].
Molecular volume based on molecular mass can be

calculated using the equation

Vc ¼ M0=N0ð Þ V1 þ dV2ð Þ ð2Þ

where M0 is the molecular mass, N0 is Avogadro’s number,
V1 and V2 are the partial specific volumes of particle and

Fig. 1 Typical AFM images of
samples prepared from non-
transfected (a) and transfected
(b) tsA 201 cells. The image in
b, adapted from Barrera et al.
[6], shows a homogenous spread
of particles in a sample isolated
from cells transfected with
cDNA for the P2X2 receptor
subunit. The mean molecular
volume of these particles is
409 nm3, close to the volume
expected for a homotrimer
(390 nm3)
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water, respectively, and d is the extent of protein hydration
[62]. Because ionotropic receptors are glycoproteins, the
volume contributions of core protein and attached oligo-
saccharides should ideally be calculated separately. Partial
specific volumes for protein (0.74 cm3/g) and carbohydrate
(0.61 cm3/g) have been reported previously [26]. The extent
of glycosylation of a receptor subunit can be determined by
comparing the mobilities on gels of fully glycosylated
protein and protein that has been deglycosylated with N-
glycanase F (e.g. [6]).

When the receptors are dried down, they flatten
extensively on the mica substrate, likely because of
electrostatic attractions between the protein and the poly-
L-lysine used to coat the mica. Consequently, the shape of
the protein will become distorted into the spherical cap
normally observed. It has been shown previously, however,
that there are no significant differences in molecular
volumes determined under fluid and in air [62]. Thus, for
the extent of protein hydration, we routinely use the value
of 0.4 g of water per gram of protein reported for a typical
globular protein (human serum albumin) in solution [29].
Particle radii are measured at half the maximal height of the
particle in an attempt to compensate for the tendency of
AFM to overestimate this parameter when the radii of both
particle and tip are similar (i.e. in the nanometre range). By
using this method, a very good correlation has been
obtained between predicted and calculated molecular
volumes for proteins of widely varying molecular masses
[62]. Nevertheless, given all the caveats associated with this
procedure (i.e., distortion of the protein during attachment,
the likely presence of detergent, convolution of the image
because of the geometry of the scanning tip), we feel that it
is unsatisfactory to rely on volume measurements alone to
determine the stoichiometry of the receptor. In this respect,
antibody tagging is a powerful corroborative technique.

Imaging of receptor–antibody complexes

We have imaged receptors containing a number of different
epitope tags—His6, haemagglutinin (HA), V5, Myc and
FLAG. Suitable monoclonal antibodies for receptor deco-
ration are commercially available for all of these tags. Tags
can be attached either to the N terminus or the C terminus
of the receptor subunit, and the choice of location will
depend on where a tag can be added without affecting the
assembly of the receptor. Whether or not the tag has any
effect on the properties of the receptor should ideally be
tested functionally. To some extent, the incubation con-
ditions between receptor and antibody need to be deter-
mined by trial and error. The ideal concentrations of
receptor and antibody will depend on the yield of receptor
from the isolation procedure, which can vary. Typically, we

incubate the receptor at a concentration of around 0.2 nM
with antibody at around 0.4 nM. The incubation is
overnight (about 14 h) at 4°C. After the incubation, the
proteins are diluted to a final concentration of about 40 pM,
before addition of a 45-μl aliquot to the mica. This
procedure will give a spread of receptors decorated with
antibodies. Typically, around 20–25% of the receptors have
one bound antibody, and about 7–10% of them have two
bound antibodies. Few receptors are seen with more than
two antibodies bound, as expected from the binomial
distribution. Of course, it is theoretically possible to
increase the efficiency of decoration by using a higher
concentration of antibody. However, because most recep-
tors have more than one subunit that is recognised by the
antibody, the receptors and antibodies will tend to form a
network, resulting in the production of protein aggregates at
higher concentrations of antibody. The method that we use
results in the production of a satisfactory number of doubly
decorated receptors, which is the key to the success of the
method. One possible way to circumvent the problem of
aggregate formation is to use Fab fragments of antibodies,
which are monovalent. We have found recently that Fab
fragments do bind to epitope tags on receptors. However,
we have not yet explored their use in producing more
efficient receptor decoration.

The concentrations of receptor and antibody detailed
above result in the production of a spread of reasonably
well-separated particles. The AFM images are analysed, and
the numbers of receptors that are undecorated or decorated
by either one or two antibodies are counted. Of course, it is
necessary to be sure that an antibody is really bound to a
receptor and has not simply attached next to it on the mica.
To check this, we run two control experiments—imaging
receptors alone and after incubation with a control anti-
body against an epitope tag not present on the receptor.
We then compare the tagging profiles for the various
conditions and confirm that the positive conditions give a
significantly greater number of antibody-tagging events.
We also measure the height of the ‘saddle’ between the
receptor and the antibody and consider only those events
where the saddle is at least 0.2 nm high to be genuine
tagging events.

Once a reasonable number (i.e. at least 40) of receptors
doubly decorated by antibodies have been identified, we
then measure the angles between the two bound antibodies
by joining the height peaks of the antibody to the height
peak of the receptor. We then produce a frequency
distribution of the angles and determine where the peaks
of the distribution lie. The angle peaks provide the key
information about the subunit stoichiometry and arrange-
ment within the receptor. The angle peaks are typically
broad, likely reflecting both flexibility in the attachment of
the antibody to the receptor and the fact that the receptors
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attach to the mica in a variety of orientations. This latter
complication is discussed further below.

Automated recognition of receptors
and receptor-antibody complexes

Our AFM analysis involves the measurement of the
dimensions of receptor particles using the AFM software.
In addition, we measure the angles between antibodies
attached to the receptor subunits, performing a geometric
analysis of complexes. Initially, we carried out this anal-
ysis manually, which is an extremely laborious process.
For a large data set, an operator will have to interpret
several hundred images, while a typical image may con-
tain more than a hundred receptors and/or receptor–
antibody complexes.

We have now developed a framework for the automation
of our AFM analysis [3] and validated it on P2X6 receptors,
which we had already characterised extensively. The
receptors were isolated and subjected to AFM analysis.
We compared the results obtained by the conventional
manual analysis with those given by the automated scheme.
We found that the two methods generated very similar
results, suggesting that this automated method can be used
for determining the architecture of other multi-subunit
protein complexes. We now apply the method routinely in
our analyses.

Homo-oligomeric receptors

We first applied our method to a relatively simple
ionotropic receptor system—P2X receptor homomers [6].
We began by addressing the stoichiometry of the P2X2

receptor homomer. A His6 tag was engineered onto the N
terminus of the P2X2 receptor subunit, and the receptors
were expressed in tsA 201 cells and isolated as described
above (Fig. 1). When the receptors were imaged, the
molecular volume distribution had a single peak at
409 nm3. The predicted size of a single P2X2 receptor

subunit is 130 nm3. Hence, the measured size was close to
the value expected for a trimer (390 nm3). The small
discrepancy between measured and expected values is
likely a consequence of the presence of detergent attached
to the isolated receptors. To confirm the trimeric arrange-
ment of subunits, we incubated the receptor with an
antibody against its epitope tag and imaged the receptor–
antibody complexes. We found that the frequency distribu-
tion for angles between pairs of antibodies bound to the
receptor had a single peak at 123° (Fig. 2). This result
(close to 120°) again pointed to a trimeric structure for the
P2X2 receptor.

Unlike the P2X2 receptor, the P2X6 receptor, when
expressed exogenously in cells such as Xenopus oocytes or
cultured olfactory bulb neurons, is not efficiently delivered
to the plasma membrane [2, 10]. Instead, transport of
the receptor is arrested in the endoplasmic reticulum, sug-
gesting that it might be retained by the ‘quality control’
machinery of the cell. A possible reason for this retention is
that it is not being correctly assembled, perhaps because the
P2X6 receptor subunits are unable to oligomerise. To test
this idea, we produced P2X6 subunits tagged at their
C termini with a His6 epitope tag. When we imaged the
receptor by AFM, the receptor particles were clearly
smaller than those seen with P2X2, and the molecular
volume frequency distribution had a single peak at
145 nm3, close to the predicted value of 97 nm3 for a
single P2X6 receptor subunit. This AFM analysis, there-
fore, confirmed that the P2X6 receptor is unable to
oligomerise [6].

To account for the failure of the P2X6 receptor subunit to
oligomerise, we looked for anomalous features in the P2X6

receptor sequence. Of the seven P2X receptor isoforms, the
P2X6 subunit has a particularly hydrophobic N terminus.
We speculated that this region might interact with an
(unknown) ER chaperone protein in such a way as to
prevent its assembly into receptor oligomers. Assuming that
this interaction was likely to be hydrophobic, we added
positive charge to this N-terminal region by mutating two
serine residues (residues 3 and 11) to lysines. We found that
the introduction of these mutations caused a fourfold

Fig. 2 Analysis of complexes
between P2X2 receptors and
antibodies against an N-terminal
His6 tag. a Representative AFM
image of a receptor liganded by
two antibodies. b Distribution of
angles between pairs of bound
antibodies. The mean angle is
123°, close to the value
expected for a homotrimer
(120°). The figure is adapted
from Barrera et al. [6]
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increase in cell surface expression of the receptor. When we
expressed the mutated sequence in tsA 201 cells, isolated
the receptors and imaged them by AFM, we found two
types of particles—large and small [57]. The frequency
distribution of molecular volumes now had two peaks, at
120 and 340 nm3, consistent with the presence of both
monomers and trimers. Analysis of the numbers of particles
within the two peaks indicated that 42% of the particles
were receptor trimers. We also imaged the isolated mutant
P2X6 receptors after incubation with an anti-His6 antibody
that recognises the C-terminal His6 tag. We found that some
of the larger particles were decorated with one, two or
occasionally three antibodies. The angles between pairs of
bound antibodies were measured, and a frequency distribu-
tion of angles was constructed. The distribution had a single
peak at 124°, confirming that the mutant receptor was able
to form homotrimers.

Our results suggest that the N terminus of the P2X6

receptor is normally preventing its assembly into trimers. It
is known that the P2X6 subunit can associate with both
P2X2 and P2X4 to form heteromeric receptors, which have
properties distinct from the corresponding homomers [27,
41]. Furthermore, P2X6 is co-localized with both P2X2 and
P2X4 in many parts of the central and peripheral nervous
systems [22, 42, 43, 61, 64, 66, 69, 72]. It is possible,
therefore, that the P2X6 subunit operates as a modulatory
subunit rather than a receptor in its own right. The retention
of P2X6 in the endoplasmic reticulum would then prevent
non-functional subunits from reaching the cell surface and
provide an intracellular pool of subunits ready to be
incorporated into heteromeric receptors. Furthermore, the
role of P2X6 as a modulatory subunit might be regulated in
response to changes in circumstances. For example,
expression of P2X6 is known to change under pathological
conditions such as cancer and zinc deficiency [20, 51, 58,
71]. We have begun to examine the control of P2X
heteromer assembly, and these results are discussed below.

Another receptor homomer that we have studied is the
5-HT3A receptor. This receptor belongs to the Cys-loop
superfamily, and EM imaging of isolated native 5-HT3

receptors has revealed the pentameric structure charac-
teristic of this receptor superfamily [11, 12]. Two 5-HT3

receptor subunits have been identified—A [46] and B [23,
25]. The A-subunit forms functional receptor homomers,
whereas the B-subunit forms 5-HT3A/B receptor heteromers
but not homomers. We expressed 5-HT3A subunits bearing
a Myc-His6 tag at its C terminus in tsA 201 cells [5]. When
the isolated receptor was imaged, the frequency distribution
of molecular volumes was broad, with a peak at 757 nm3.
The value predicted on the basis of the molecular mass of a
5-HT3A receptor pentamer was 511 nm3. Hence, the
discrepancy between observed and predicted molecular
volumes was much greater that was seen for the P2X2

receptor (above). One likely reason for this is the presence
of twenty transmembrane domains in a 5-HT3 receptor
pentamer (compared with only six in a P2X2 receptor
trimer), which would attract a greater amount of bound
detergent. Incidentally, this result does emphasize the
difficulty in trying to estimate the subunit stoichiometry
of a transmembrane receptor on the basis of molecular
volume calculation alone. We next imaged the receptor in
complex with either anti-Myc or anti-His6 antibodies. In
both cases, singly and doubly tagged receptors were seen,
and the occurrence of these complexes was far more
common than was seen when a control antibody (anti-
V5), or no antibody was used, indicating that both anti-Myc
and anti-His6 antibodies specifically decorate the receptor.
For both antibodies, the frequency distribution for angles
between pairs of bound antibodies had two peaks, one at
around 72° and one at around 144°, consistent with the
decoration of either adjacent or non-adjacent subunits in a
receptor pentamer. The areas under the two angle peaks
were approximately equal, indicating that there was no
preference for the binding of the pairs of antibodies at either
an acute or an obtuse angle. Hence, there was no evidence
for steric hindrance in the binding of the antibodies to the
receptor.

Our results for homomeric receptors indicate that our
method gives accurate information about subunit stoichi-
ometry. We now go on to consider the application of this
technology to more interesting examples where the receptor
contains two or more different subunits.

Receptors containing two types of subunit

We alluded above to the fact that P2X6 subunits are able to
form hetero-oligomers with both P2X2 and P2X4. We
decided to examine the stoichiometry of P2X2/6 heteromers
and specifically to test the idea that the stoichiometry of a
P2X heteromer might be plastic and dependent on relative
levels of subunit expression. To do this, we engineered
different tags on the two subunits—initially His6 on P2X2

and HA on P2X6. When we compared the expression of the
two subunits in cells that had been transfected with a
mixture of equal amounts of the two cDNAs by immuno-
blotting, we found that the ratio of expression of the two
subunits was about 4 P2X2:1 P2X6 [4]. When His6-
containing proteins were isolated and imaged, the frequen-
cy distribution for molecular volumes had three peaks, at
115, 217 and 360 nm3. Because the predicted volumes of
P2X2 and P2X6 subunits are around 130 and 97 nm3,
respectively, the peaks likely represent receptor monomers,
dimers and trimers. Each particle in the AFM images could
be assigned on the basis of its size to one of these peaks.
When the receptors were incubated with either anti-His6 or
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anti-HA antibodies, large particles, corresponding to recep-
tor trimers, decorated by the antibodies could be identified.
We found that there were about five times as many
receptors decorated by two anti-His6 antibodies as by two
anti-HA antibodies. Hence, the numbers of receptors
doubly decorated by one antibody or the other were in the
approximate ratio of subunit expression. Furthermore, when
the epitope tags on the subunits were switched, to produce
HA-tagged P2X2 and His6-tagged P2X6, the antibody
decoration profile was reversed. Next, we changed the ratio
of cDNAs used in the transfection so that 2.5 times as many
P2X6 subunits as P2X2 subunits were expressed. When the
receptors were isolated, we found that about 2.5 times as
many receptors were doubly decorated with anti-HA anti-
bodies (against the tag on the P2X6 subunit) as by anti-His6
antibodies (against the tag on the P2X2 subunit). Our
conclusion from these results was that the subunit stoichi-
ometry of the P2X2/6 hetero-oligomer depends on the
relative levels of subunit expression.

The antibody decoration profile of the 5-HT3A receptor
homomer has been described above. Although 5-HT3A

homomers probably exist in vivo, most endogenous 5-HT3

receptors have properties consistent with the presence of
both A- and B-subunits [24, 32, 35, 73]. For instance, the 5-
HT3A homomer has a much lower single-channel conduc-
tance than the 5-HT3A/B heteromer, and the Hill slope for
agonist activation of the homomer is higher than that for the
heteromer [23, 25, 38]. We were interested, therefore, in
determining the subunit stoichiometry and arrangement of
the 5-HT3A/B receptor heteromer. Because the receptor is a
pentamer, the possible permutations containing two sub-
units are more complex than for the trimeric P2X receptor.
Specifically, there are six ways in which a pentamer
containing A- and B-subunits can be built (Fig. 3). To
solve the receptor architecture, we engineered different
epitope tags on the two subunits—Myc-His6 on the A-
subunit and V5-His6 on the B-subunit [5]. We transfected

tsA 201 cells with equal amounts of the two cDNAs, and
isolated receptors from the transfected cells. After AFM
imaging of the receptor alone, the frequency distribution of
the molecular volumes was broad (as for the 5-HT3A

receptor) and had a single peak at 704 nm3, smaller than the
value for the 5-HT3A homomer, which was expected
because the B-subunit has a lower molecular mass than
the A-subunit. When the receptors were incubated with
either anti-His6, anti-Myc or anti-V5 antibodies, doubly
decorated receptors were observed (Fig. 4a). The frequency
distributions of angles between pairs of bound antibodies
had two peaks, at about 72 and about 144°, for both anti-
His6 and anti-V5 antibodies, but only one peak, at 144°, for
the anti-Myc antibody (Fig. 4b). These results indicate that
pairs of B-subunits (with the V5 tag) can either be adjacent
or non-adjacent but that pairs of A-subunits (with the Myc
tag) could only be non-adjacent. The only subunit stoi-
chiometry and arrangement that is consistent with this
antibody decoration profile is B-B-A-B-A (arrangement
‘e’ in Fig. 3).

Receptors containing three types of subunit—determination
of the orientation of the receptor

Many types of GABAA receptor contain three different
subunits [45]. The most common form of the receptor in the
brain is the α1β2γ2 form [45], which has the subunit
stoichiometry 2α:2β:1γ [28]. The subunit arrangement
within the receptor has been shown by the use of subunit
concatenation to be α,β,α,γ,β, anti-clockwise when
viewed from the outside of the cell [8, 9]. The AFM-based
method described above (e.g. for the 5-HT3A/B heteromer)
should be able to demonstrate that neither the two α-
subunits nor the two β-subunits are adjacent. Indeed, we
showed several years ago, by placing a His6 epitope tag on
the α-subunit and imaging complexes between the isolated

Fig. 3 Six possible subunit
arrangements in a 5-HT3A/B

receptor heteromer
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receptor and anti-His6 antibodies, that this receptor contains
two non-adjacent α-subunits [53]. However, determination
of the absolute subunit arrangement by AFM analysis
requires finding the position of the γ-subunit (for example)
in relation to the α- and β-subunits, to distinguish between
the arrangements αβαγβ and αβαβγ. Two further
advances are needed to accomplish this task: (1) decoration
of the receptor simultaneously with distinguishable ligands
for two types of subunit and (2) determination of the
orientation of the receptor on the mica support.

We have addressed these challenges using the α4β3δ
form of the receptor as a model system. The α4β3δ
receptor, although a minor component of the total GABAA

receptor population, has some interesting properties, such
as an extrasynaptic location [14, 56, 67], a high sensitivity
to GABA [1, 16] and a slow rate of desensitization [16],
factors that allow it to exert a tonic inhibition of neuronal
excitability [19]. It also has a potential involvement in
epilepsy [15, 21, 63, 68]. Consequently, it is a promising
target for the development of novel drugs.

We transfected tsA 201 cells with cDNAs for α4-, β3-
and δ-subunits. The α-subunit had a FLAG-His6 epitope
tag, the β-subunit had a V5-His6 tag, and the δ-subunit had

Fig. 5 AFM analysis of α4β3δ GABAA receptors. a Representative
AFM image of a receptor (large central particle) liganded by one anti-
HA antibody, directed against the δ-subunit (larger peripheral
particle, arrow), and two anti-FLAG Fab fragments, directed against
the two α-subunits (smaller peripheral particles, arrowheads).
b Illustration of the experiment designed to determine the
orientation of the receptor on the mica support. Twice as many
receptors were decorated with concanavalin A (con A) or mono-
clonal antibody bd17 when the receptors were bound to poly-L-
glutamate than when they were bound to poly-L-lysine, indicating
that the receptors normally prefer to bind extracellular face down to
poly-L-lysine-coated mica

Fig. 4 Analysis of complexes between 5-HT3A/B receptors and
subunit-specific antibodies. a Gallery of images, adapted from Barrera
et al. [5], of receptors that are either unliganded (top row) or liganded
by either one (middle row) or two anti-V5 antibodies (bottom row),
directed against the B-subunit. b Schematic illustration of the
distribution of angles between pairs of anti-Myc antibodies, directed
against the A-subunit (top) and anti-V5 antibodies (bottom). In the
study reported in Barrera et al. [5], 40 receptor–antibody complexes
were analysed in each case. The angle distributions indicate that the
subunit arrangement around the central ion pore is B-B-A-B-A
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an HA-His6 tag. All tags were on the C termini of the
subunits. Receptors were isolated from the transfected cells
by the usual procedure. Fab fragments of the anti-FLAG
antibody were generated using papain digestion. When re-
ceptors were incubated with these Fab fragments, receptor–
Fab complexes were produced (Barrera et al., unpublished
data). A frequency distribution for angles between pairs of
bound Fabs had a single peak, at about 144°, indicating that
the α-subunits are non-adjacent. We then incubated the
receptors with both anti-FLAG Fabs and anti-HA anti-
bodies, to decorate both α- and δ-subunits simultaneously.
We identified receptors that had been decorated with two
Fabs and one antibody. A representative image is shown
in Fig. 5a. Note that the Fabs can be clearly distinguished
from the whole antibody on the basis of their smaller size.
Hence, we now have a method for finding the position of
the δ-subunit relative to that of the two α-subunits.

The receptors are normally bound to poly-L-lysine-
coated mica, which provides a positively charged surface.
We speculated that the receptors would bind to this support
through a negatively charged surface on the protein. This is
most likely to be the extracellular domain, which contains
negatively charged oligosaccharides, in contrast to the
intracellular domain, which contains many positively
charged amino acids. If this is indeed the case, then the
orientation of the receptors should be reversed when they
are bound to poly-L-glutamate-coated mica, which provides
a negatively charged surface. To test these ideas, we bound
receptors to the two surfaces and incubated them with either
the lectin concanavalin A, which should bind to the
oligosaccharides on the extracellular face of the receptor
[33], or monoclonal antibody bd17, which recognises an
epitope at the N terminus of the β-subunit [60]. We
reasoned that receptors bound extracellular face down
would have their binding sites for both concanavalin A
and antibody bd17 occluded. Receptors decorated with
smaller particles were observed after incubation with either
concanavalin A or antibody bd17, irrespective of the mica
coating. Significantly, however, we found that for both
concanavalin A and antibody bd17, there was about twice
as much binding when the receptor was bound to poly-
L-glutamate than to poly-L-lysine, indicating that more
extracellular faces were occluded when the mica was coated
with poly-L-lysine. We conclude that the receptor normally
binds predominantly extracellular face down to poly-
L-lysine-coated mica (Fig. 5b). Armed with this information
and the ability to decorate two different subunits simulta-
neously, we are now in a position to determine the absolute
subunit arrangement within any GABA receptor containing
up to three subunits.

The use of concanavalin A to determine the orientation
of a protein on the mica should be applicable to many
integral membrane proteins, which tend to be glycosylated

on their extracellular faces. The additional use of an
antibody directed against an epitope on either the extracel-
lular or the intracellular face will obviously depend on the
availability of suitable antibodies.

Future perspectives

We have recently extended our AFM-based method to a
study of the subunit stoichiometry of transient receptor
potential channels (TRPC). In a preliminary series of
experiments, we have confirmed that TRPC1 homomers
are tetrameric [7]. It is well known that TRPC subunits
assemble to form a variety of heteromeric channels. Our
method provides a means of addressing the subunit
arrangement within these channels. It also should be
applicable to a wide variety of multi-subunit proteins,
including other ionotropic receptors and ion channels.
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