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Abstract C. elegans recognizes and discriminates among
hundreds of chemical cues using a relatively compact
chemosensory nervous system. Chemosensory behaviors
are also modulated by prior experience and contextual cues.
Because of the facile genetics and genomics possible in this
organism, C. elegans provides an excellent system in which
to explore the generation of chemosensory behaviors from
the level of a single gene to the motor output. This review
summarizes the current knowledge on the molecular and
neuronal substrates of chemosensory behaviors and chemo-
sensory behavioral plasticity in C. elegans.
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Introduction

Of the classic five senses defined by Aristotle (De Anima,
Book 1II), the microscopic free-living nematode C. elegans
has just three. Worms can smell, taste, and respond to
touch, but they cannot hear, and whether or not they
respond to light is a matter of debate. As C. elegans lives in
the soil and feeds on dead and decaying organic matter and
bacteria, these animals must, therefore, rely on their
chemosensory abilities to locate and navigate their way to
food sources and mates, and to avoid toxic substances and
predators. Thus, not surprisingly, C. elegans turns out to
have a highly developed chemosensory system capable of
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not only recognizing, but also discriminating, among
hundreds of chemical cues. Moreover, like sensory behav-
iors in all organisms, chemosensory responses in C. elegans
retain the ability to be modulated by both contextual cues
and past experience. In this review, I discuss recent findings
on the molecular and neuronal bases of C. elegans chemo-
sensation. For the sake of brevity, I will concentrate solely
on these behaviors in the hermaphrodite. I refer the reader
to several excellent publications and references therein
addressing C. elegans male chemosensory behaviors [1-6].

The importance of chemosensation

The ability to perceive chemical cues plays a critical role in
shaping C. elegans behavior and development throughout
its lifecycle. Although the chemosensory nervous system
develops embryonically [7], it is unlikely that embryos are
able to sense external chemicals because of the presence of
the relatively impermeable eggshell. However, chemical
signals sensed during the first larval stage are essential in
directing the choice of the appropriate developmental
program. C. elegans constitutively secretes a pheromone
that serves as a measure of population density [8§—10]. L1
larvae assess levels of this pheromone, as well as levels of
food in their environment to make a critical developmental
decision. Under overcrowded conditions and low food
abundance, animals enter into the dauer developmental
stage by downregulating the daf-7 TGF-f3 and insulin
signaling pathways, whereas under conditions more condu-
cive to growth and reproduction, animals proceed in the
reproductive cycle [11-17]. Dauer larvae can reenter the
reproductive cycle when conditions improve. The ability to
sense pheromone and food via the chemosensory neurons is
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essential for correct regulation of this developmental choice
[18]. Indeed, a hallmark of many mutants defective in
chemosensory neuron structure or function is their com-
promised ability to regulate neuroendocrine signaling to
correctly make this decision (e.g., [19-24]).
Chemosensory signals also regulate additional aspects of
development and physiology including the regulation of
body size and lipid homeostasis. Animals with compro-
mised chemosensory neuron structure and/or function are
small and accumulate fat [25-29]. A TGF-f3 signaling
pathway has been implicated in regulating body size [30],
and the DBL-1 TGF-f ligand is neuronally expressed [31].
However, it is not yet clear whether chemosensory inputs
function via modulation of the dbl-1 TGF-{3 pathway or via
alternate pathways to regulate body size. A neuroendocrine
signal from the chemosensory neurons released in response
to external or internal nutrient signals has been proposed to
regulate fat storage in the intestine [27-29], but pathway
components have not yet been defined. As the requirement
of chemosensation in regulating body size and fat storage
may be independent of the ability of animals to locate food
sources or the rate of food consumption and storage,
internal metabolic state may be altered by chemosensory
perception to regulate cell size and fat metabolism [26, 27].
The perception of environmental chemical cues also
regulates C. elegans lifespan. A key signaling pathway
regulating C. elegans lifespan and those of other organisms
acts via insulin/IGF signaling [15, 32—37]. Mutations that
prevent the worm from sensing the environment correctly,
such as mutants with defective ciliary structures (see
below), or compromised sensory signal transduction,
exhibit lengthened lifespan via downregulation of insulin
signaling [38, 39]. Moreover, ablation of specific subsets of
chemosensory neurons results in increased or decreased
longevity [40], suggesting that different chemosensory
neurons promote or antagonize longevity. An attractive
hypothesis is that chemosensory cues regulate levels of
insulin, which in turn regulate longevity. Indeed, expression
of the daf-28 insulin peptide gene in sensory neurons
appears to be regulated by sensory cues such as food [13].
In addition to regulating development via neuroendo-
crine signaling, chemosensory stimuli also play a role in
regulating multiple motor programs. In particular, locomo-
tory behaviors are modulated by food cues and prior
experience of feeding or starvation. Upon encountering
food in the form of a bacterial lawn, well-fed worms exhibit
a slowed locomotory response, which is mediated by
mechanosensory inputs [41]. However, if worms have been
starved previously for a period of time and then placed on
bacteria, their locomotion is further reduced (enhanced
slowing response) [41]. This enhanced slowing response is
mediated by chemosensory signals from food, and serotonin
signaling [41]. Although it is unclear how bacterial chemo-
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sensory cues are integrated with a memory of prior
starvation experience to regulate serotonin levels, it is
likely that chemosensory neurons play an important role in
transmitting food signals.

Prior experience of food signals also regulates the
locomotory behavior of animals in the absence of food.
Shortly upon removal of food, animals exhibit an “area-
restricted search behavior” characterized by high frequency
of reversals, whereas on prolonged removal of food the
frequency of reversals is decreased with coordinated
increase in the duration of forward movement [42-45].
These behaviors are regulated by inputs from distinct sets
of chemosensory neurons [42, 43].

Chemosensory signals also regulate locomotory behav-
iors of continuously well-fed animals on bacterial lawns.
When placed on a lawn, individual worms exhibit periods
of either “dwelling” or “roaming” behavior characterized by
low speeds/high turning rate and high speeds/low turning
rates, respectively [26]. Mutants with altered chemosensory
neuron function spend longer periods in the dwelling vs the
roaming state, indicating that the periods spent in each of
these states are modulated via chemosensory inputs [26].
Additional motor behaviors regulated by chemosensory
inputs from food include egg-laying and pharyngeal
pumping [46-50]. Taken together, these observations
indicate that environmental chemosensory cues regulate
multiple aspects of C. elegans behavior, development, and

physiology.

Wiring the chemosensory circuit

The C. elegans adult hermaphrodite nervous system
contains a total of 302 neurons, a full 10% of which are
predicted to mediate responses to environmental chemicals
[51-53]. Chemosensory neurons are localized at the head
and tail, and grouped into sense organs. In the head, six
chemosensory neurons are present in the inner labial
sensilla, and 11 pairs in the bilateral amphid organs
[51, 52]. The bilateral phasmid organs in the tail contain an
additional two pairs of chemosensory neurons each [54].
Each chemosensory neuron type exhibits the typical
invertebrate sensory neuron bipolar structure, with a single
axon, and a single dendrite that terminates in cilia housing
primary chemosensory signal transduction components
[51, 52, 55-58]. Cilia, in turn are exposed either directly or
indirectly to the external environment via openings in the
cuticle lined by the processes of support cells [51, 52].
Some of these cilia have relatively simple structures,
whereas other chemosensory neurons possess cilia of
highly elaborate and complex structures, and are presumably
specialized for their sensory functions [55].
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Reconstruction of the neuronal connectivity map from
serial section electron micrographs has shown that chemo-
sensory neurons can be both presynaptic and postsynaptic
to other chemosensory neurons as well as interneurons [53]
(Fig. lab), suggesting the possibility of cross-talk and
feedback regulation of chemosensory function (discussed
further below). Both electrical and chemical synapses are
present, and individual chemosensory neurons also contain
dense core vesicles and express neuropeptide genes [53,
59-62]. The major postsynaptic outputs of the chemo-
sensory neurons are a few interneuron types, with each
interneuron type receiving inputs from partly overlapping
groups of chemosensory neurons [53] (Fig. 1a,b).

Chemosensory neurons that sense toxic chemicals
exhibit largely distinct connectivity patterns from those
sensing attractive chemicals. Thus, the ASH, ADL, and
AWRB sensory neuron types, which are the primary sensors
of toxic chemicals or nociceptive stimuli, synapse directly
onto backward command interneurons that direct backward
locomotion via activation or inhibition of motor neurons
[53] (Fig. la), enabling the worm to execute a rapid and
robust escape response when these neurons are activated
[63—65]. On the other hand, neurons that sense attractive
chemicals synapse onto intervening layers of interneurons.
The AIY interneurons receive inputs from the ASE, AWC,
and AWA amphid chemosensory neurons, whereas the AIA
interneurons receive inputs from the ASK, ASG, ASH,

Fig. 1 Neural circuits for che-
mosensory navigation behav-
iors. Chemosensory neurons are
indicated by triangles, inter-
neurons by hexagons, and
motorneurons by ovals. Only a
subset of the pre- and postsyn-
aptic partners of each neuron
type is shown. T-bars represent
gap junctions. Command inter-
neurons driving backward or
forward locomotory behaviors
are indicated in shades of
brown. Note that chemosensory
neurons such as ASH that me-
diate avoidance, are directly
connected to the command
interneurons (a). In contrast,
chemosensory neurons such as
AWC that mediate attraction
behaviors are indirectly
connected to the command
interneurons via layers of addi-
tional inter- and motorneurons
(b). Adapted from [53]

Locomation

ADL, ASE, ASI, and AWC chemosensory neurons [53]
(Fig. 1b). These first layer interneurons likely serve as
important sites of coincidence detection, signal integration,
and processing. It is not yet known whether the synaptic
connections between these sensory neurons and interneu-
rons are excitatory or inhibitory. Indeed, the AWC chemo-
sensory neurons are predicted to inhibit the AIY, and
activate the AIB interneurons under specific environmental
conditions and in response to prior experience, although
this remains to be shown physiologically [42—44]. Primary
interneurons synapse onto a layer of secondary interneurons
or motor neurons, which in turn are presynaptic to the
command interneurons directing backward or forward
locomotory movement [53, 66] (Fig. 1b). A network of
additional interneurons and motor neurons direct more
subtle but crucial aspects of chemosensory behaviors
including the regulation of head and neck movement to
allow efficient navigation of chemical gradients [43].
Integration of sensory inputs at these different layers
ultimately dictates the duration of time spent by the animal
in the forward, as opposed to the backward, moving state,
thus regulating movement up or down a chemical gradient
(see below)[43, 44, 64, 66—68]. These anatomical and
functional mapping studies indicate that in contrast to
chemosensory circuits in other model organisms such as
Drosophila or the mouse, the chemosensory circuit in
C. elegans is relatively shallow. In other words, only a few

Locomotion
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synapses separate the chemosensory neurons from the
motor neurons that direct behavioral output, suggesting
that these circuits may use distinct mechanisms to process
and integrate sensory stimuli.

Navigating towards or away from a chemical

A critical function of any chemosensory system is to enable
the animal to detect and navigate towards the source of an
attractive chemical. Chemotactic ability allows C. elegans
to locate food sources or mates, and to avoid predators. In
the laboratory, chemotaxis behaviors can be assayed simply
by placing a single animal or populations of animals on an
agar plate containing a point source of a chemical, and
quantifying the number of animals at the source after a
period of time [69—72]. Under these conditions, C. elegans
exhibits robust chemotaxis behavior towards a wide range
of chemicals at a range of concentrations. Thus, worms
must be able to detect small changes in concentration and
translate this information into the appropriate pattern of
motor behavior so as to move up the chemical gradient.
Although in theory C. elegans could detect changes in
chemical concentration by comparing concentrations at the
head and tail, or between the left and right members of a
sensory neuron pair, it has been shown previously that
spatial comparisons likely do not play a role in driving
nematode chemotaxis [69, 70]. Instead, worms navigate a
chemical gradient using temporal comparisons of encoun-
tered concentrations [73, 74], similar to the mechanisms
used in bacterial chemotaxis [75]. Worm movement on agar
plates consists of periods of forward movement, punctuated
by sudden turns or reversals that lead to changes in

direction [76]. Quantitative analyses of worm movement
on shallow gradients, or in response to abrupt changes in
chemical concentration have shown that the probability of
turns/reversals (collectively referred to as “pirouettes™) is
directly correlated with changes in concentration [73, 77,
78]. When moving up the gradient toward an attractive
chemical (dC/dt > 0), worms suppress pirouettes while
increasing the duration of forward movement, whereas
when moving down the gradient (dC/d¢ < 0), worms
increase the probability of pirouettes and decrease the
duration of forward movement. Pirouettes not only serve to
terminate movement in the direction of falling concen-
trations, but also reorient the worm up the gradient, with the
degree of reorientation proportional to the degree that the
animal was off-course [73]. The net result of this strategy is
to allow the animal to move towards and accumulate at the
point source. Similar mechanisms are also employed by
worms to navigate thermal gradients above their preferred
temperature [79, 80].

Presumably, sensory neurons detect concentration
changes and transmit this information to the downstream
circuitry to modulate forward movement and pirouettes.
Although sensory neurons responding to specific chemicals
have been identified, the exact contribution of these
neurons to specific aspects of chemotaxis navigation
behaviors have not been explored in detail. An exception
is the ASE chemosensory neuron. Ablation of the ASE
neurons reduces but does not completely abolish the ability
of worms to chemotax towards a point source of aqueous
attractants including NaCl, while perturbation of ASE
function, together with ADF, ASG, and ASI results in a
more complete defect [72] (Table 1). Intriguingly, it has
been shown that in ASE-ablated animals, the ability to
respond to decreases in salt concentration is abolished,

Table 1 Chemical responses mediated by individual chemosensory neurons

Neuron Attraction to: Avoidance of: References

AWA Diacetyl, pyrazine, trimethylthiazole, 2,3-pentanedione [high] [71, 83]

AWB 2-nonanone, 1-octanol (off food) [65, 91]

AWCL Benzaldehyde, Isoamyl alcohol, Trimethylthiazole, [71, 83, 99]
Butanone or 2,3-pentanedione, Diacetyl [high]

AWCR Benzaldehyde, Isoamyl alcohol, Trimethylthiazole, [71, 83, 99]
Butanone or 2,3-pentanedione, Diacetyl [high]

ASE Na'" (ASEL), CI” (ASER), K" (ASER), Biotin, cAMP Ccd**, cu** [72, 98, 178]

ADF Na', CI", Biotin , cAMP (minor) [72]

ASG Lysine, Na*, CI", Biotin , cAMP (minor) [72]

ASH l-octanol, Cd**, Cu®*, SDS, quinine  [58, 104, 179] [65, 178]

ASI Lysine, Na*, CI", Biotin , cAMP (minor) [72]

ASJ

ASK Lysine Quinine, SDS (minor) [72, 104, 179]

ADL Cu", Cd**, 1-octanol (off food) [91, 178] [58, 65]

PHA/PHB SDS (antagonistic) [104]
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whereas animals continue to respond to concentration
increases, perhaps via the ADF, ASG, and ASI neurons
[77]. It will be interesting to determine whether the ability
to respond to positive or negative changes in concentration
is segregated to different chemosensory neurons, to the
left/right members of a neuron pair, or is a property of
downstream components of the chemosensory circuit.

Mapping chemicals to chemosensory neurons

Each of the 11 amphid chemosensory neuron pairs mediates
responses to distinct subsets of aqueous or volatile
chemicals (Table 1). (As the distinction between smell
and taste is somewhat arbitrary for the worm, I will
henceforth refer to both sensory modalities together as
chemosensation). Individual sensory neurons have been
associated with their ability to respond to specific chemicals
by both genetic and physical perturbation methods. In the
laboratory, the majority of the nervous system appears to
be dispensable for worm survival [81]. Thus, single
neuron types can be selectively killed using a tightly
focused laser beam and the resulting behavior of the
operated animals assessed to determine the contribution of
that neuron to the behavior [82]. These experiments have
revealed a number of shared and unique features of
chemosensory coding in C. elegans.

First, similar to other olfactory systems, low concen-
trations of chemicals are sensed by smaller numbers of
neurons than higher concentrations [83] (Table 1). Second,
the same chemical may act as a repellent at one concentra-
tion, and as an attractant at a different concentration [70,
71, 84-86]. Third, even at low concentrations, the ability to
sense a particular chemical may be distributed among
several neurons. For instance, low concentrations of NaCl
(0.4 M) and biotin (0.2 M) are sensed primarily by the ASE
neurons, with contributions from the ADF, ASG, and ASI
chemosensory neurons [72] (Table 1). As mentioned above,
it is possible that a subset of neurons respond to a negative
change in chemical concentration, whereas others respond
to a positive change [77]. Fourth, as C. elegans responds to
a large repertoire of chemicals [69-72, 87, 88] using a
small number of chemosensory neurons, each neuron type
recognizes multiple chemicals of unrelated structures,
pointing to the presence of multiple chemoreceptors in
each neuron type. Fifth, to further emphasize the impor-
tance of avoiding noxious chemicals, the ability to sense
noxious chemicals is largely segregated from the ability to
respond to attractive chemicals at the level of the sensory
neurons themselves (Table 1). Thus, the ASH, ADL, and
AWB neurons mediate aversive behaviors more or less
exclusively, whereas attraction is mediated by the remain-

ing eight pairs of amphid chemosensory neurons [58, 65,
71, 72, 89-91]. This organization is similar to observations
in the mammalian and Drosophila gustatory system, where
sensory cells responding to sugars and other palatable
compounds are segregated from those sensing bitter and
hence, toxic compounds [92-97]. This strategy of separat-
ing attractive and aversive responsiveness at the sensory
neuron level is also efficient in terms of circuit wiring in C.
elegans as repellent-sensing neurons are directly connected
to the backward command interneurons to effect rapid
reversal responses (Fig. 1a). An obvious prediction from
these observations is that expression of a receptor for an
attractive odorant in a neuron that mediates avoidance
should trigger avoidance of that chemical. This has been
shown to be the case [91], underscoring that the sensory
neuron, and not the molecules it expresses, is the arbiter of
the behavioral outcome.

Although the left/right pairs of a neuron type were
initially thought to be equivalent in terms of chemosensory
responses, it is now increasingly evident that C. elegans
generates further functional diversity by assigning distinct
chemosensory response profiles to each of a left/right
sensory neuron pair. Thus, the left ASE neuron is the
primary sensor of Na' ions, whereas the right ASE neuron
responds to C1” and K [98] (Table 1). On the other hand,
while both the left and right AWC neurons sense
benzaldehyde, either the left or the right AWC neuron
responds to the volatile odorant butanone, and the other
neuron responds to 2,3-pentanedione [71, 99] (Table 1).
The advantages of assigning the sensory functions
stochastically as in the AWC neurons [100], or via a
developmentally hardwired mechanism as for the ASE
neurons [101-103] is not immediately obvious. A sugges-
tion from these findings is that other chemosensory neuron
types are likely to also exhibit left/right functional diversi-
fication, essentially doubling the sensory neuron repertoire.

What are the functions of the inner labial and the phasmid
sensilla? To date, no specific chemosensory functions have
been assigned to the inner labial chemosensory neurons.
However, the PHA and PHB phasmid chemosensory
neurons may sense chemical repellents and antagonize
ASH-mediated avoidance behaviors [104] (Table 1).

The neurons required for responses to complex biolog-
ically relevant cues are not fully defined. Worms are
attracted to, or avoid, different bacteria [68, 105, 106],
and it is not yet known whether these behaviors are
mediated primarily via a single bacterially produced
chemical, or whether a set of chemicals must be recognized
as an ensemble to provide a chemical signature for a
specific bacterial strain. Similarly, although a major
regulator of worm behavior and development is levels of
the constitutively produced dauer pheromone [8—10, 107—
109], the neurons that respond to pheromone are also not
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yet defined. Presumably, males and hermaphrodites also
produce signals to attract or repel each other, but these
cues and the relevant sensory neurons are unknown [3, 4].
As “...behavior is messy” (with apologies to [110]), the
development of technologies for imaging neuronal activity
in single neuron types in vivo in response to an applied
stimulus [111-115] may allow for more precise functional
mapping of chemicals to sensory neuron types.

The molecules for taste and smell

As in Drosophila and vertebrates, many chemicals are
sensed by seven transmembrane domain G protein-coupled
receptors (GPCRs) in C. elegans. Given the critical
importance of chemosensation for the worm’s survival, it
is perhaps not surprising that nearly 10% of the C. elegans
genome is devoted to encoding predicted chemosensory
receptors (CRs), a current total of ~1,500 molecules [58,
116-118]. In comparison, the Drosophila genome is
predicted to encode ~62 olfactory and ~68 gustatory
receptors [119—123], whereas the mouse genome encodes
~1,200 olfactory and 38 gustatory GPCRs [93, 94, 124—
128]. Although the expression patterns of only a handful of
CR genes have been examined [58, 129], it is clear that in
stark contrast to the vertebrate or Drosophila olfactory
systems, each chemosensory neuron in C. elegans
expresses multiple CR genes, perhaps as many as 20 per
neuron type (Fig. 2). In this respect, the worm chemo-
sensory system is similar to the bitter-sensing taste cells in
vertebrates, which express multiple bitter receptors per cell,
with each receptor being selectively tuned to a small subset
of bitter compounds [93, 127, 128, 130].

What is the molecular receptive range (MRR) of each
C. elegans CR? Does each CR in C. elegans respond
selectively to one chemical, a small set of chemicals of
related structure, or to an “odotope” present on multiple
chemicals of overall unrelated structures? Unfortunately,
the answer to this issue is still not resolved. Only one
chemical has been linked to its cognate receptor [56, 131];
the ligands for other receptors are as yet unknown.
Remarkable strides have been made in defining receptor—
ligand interactions in other systems (e.g., [132—135]), so it
is surprising that so little is known about this issue in the
C. elegans chemosensory system. Part of this lack of
knowledge may be attributed to the large size of the
C. elegans CR gene family, which makes it difficult to
employ the type of analysis that has been used so elegantly
and effectively to “de-orphanize” Drosphila olfactory
receptor genes [132, 133]. Genetic screens have also failed
to yield additional CR gene mutants, perhaps pointing to
some degree of redundancy in this system. One critical
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issue, however, has been a paucity of knowledge regarding
the identities of ecologically relevant chemical cues for C.
elegans. As C. elegans are free-living, they are likely to be
generalists responding to many chemicals produced by
different strains of bacteria, most of which are uncharac-
terized. Thus, it has been difficult to make educated guesses
regarding the set of chemicals that could be used to
systematically examine CR ligand selectivity. Complicating
matters, chemosensory neurons in C. elegans also express
multiple members of other protein families such as
transmembrane guanylyl cyclases, which may also act as
chemoreceptors [136, 137], further increasing the complex-
ity of the chemosensory receptor repertoire.

As in other chemosensory systems, interaction of an
odorant with its cognate ligand is predicted to either
activate or inhibit synaptic output of a chemosensory
neuron [42, 43] (C. Bargmann, personal communication).
Although the physiological mechanisms by which activa-
tion or inhibition is mediated have not yet been described,
many of the molecules required for chemosensory signal
transduction have been identified using forward or reverse

a DAF-11  TAX-2
A ODR-1 TAIIX-4 RS
T, A

o ...\ ASE
GTP GMPE ASJ
e ASK
v
Na*/Ca?*
2 OSM-9
OCR-2
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" PUFAs ‘
v
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Fig. 2 Chemosensory signaling pathways. Chemosensory signal
transduction is mediated either via cGMP (a) or polyunsaturated fatty
acid (PUFA) (b) mediated signaling. Sensory neurons in which the
proposed pathways are believed to function are indicated at right.
Each chemosensory neuron expresses multiple CRs. The major G
subunit (ODR-3), receptor guanylyl cyclases (DAF-11, ODR-1),
c¢GMP-gated channels (TAX-2, TAX-4), and TRPV channels (OSM-
9, OCR-2) implicated in chemosensation are shown. Additional
members of these families are also expressed in, and required for the
functions of these neurons. See text for references
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genetic approaches. One of the conclusions from these
results is that multiple CRs expressed in a given cell type
converge onto a common set of downstream signal
transduction molecules. For example, a number of sensory
neuron-specific G proteins appear to act in a complex
manner to activate or inhibit signaling upon interaction of
any ligand with its cognate CR in a given cell type [19, 57,
138-140]. These G proteins act via different signaling
pathways in different chemosensory neuron types.

In the AWC olfactory neurons and in several other
neuron types, G proteins may activate guanylyl cyclases,
resulting in gating of the TAX-2/4 ¢cGMP-gated channels
[20, 22, 141-143] (Fig. 2a). Thus, in the absence of TAX-
2/4 function, these neurons fail to respond to any odorants.
However, in a subset of additional neuron types, primary
chemosensory signal transduction is likely mediated via the
OSM-9 and OCR-2 TRPV channels, which may be gated
by polyunsaturated fatty acids (PUFAs) or their derivatives
[63, 113, 144] (Fig. 2b). Neurons use either the cyclic
nucleotide or the PUFA-mediated signaling pathway,
although CRs are capable of coupling to the alternate
pathway upon misexpression [91].

As signaling mediated by chemoreceptors converges
onto a common downstream set of signal transduction
molecules, can the animal discriminate among odorants
sensed by the same neuron type? In the background of a
high constant concentration of one chemical, animals fail to
respond to a point source of that chemical, but continue to
respond to other chemicals sensed by that neuron type [71].
Similarly, prolonged exposure to one odorant decreases the
response to that odorant while sparing responses to other
chemicals sensed by that neuron [142, 145-147]. These
observations indicate that the chemosensory system is able
to discriminate among chemicals sensed by one neuron
type. In the case of the L/R asymmetric ASE and AWC
neurons, this feat is achieved simply by segregating
responsiveness to different chemicals to the left or the
right neuron [98, 99]. However, for cues sensed by both
left and right neurons, one mechanism by which the signal
transduction pathways could be insulated is via segrega-
tion of individual signaling pathways into signaling
microdomains [142, 148—151]. It is also possible that while
the core components of the signal transduction pathways
are shared, additional molecules act in an odorant pathway-
specific manner [140], allowing the neuron to discriminate
between multiple chemical cues. Finally, discrimination
may also be effectively achieved by the activation or
inhibition of different CRs expressed in a given neuron by
different chemicals, or via differential temporal dynamics of
CR function [132, 133, 152]. Identification of additional
signaling molecules, and characterization of protein func-
tion, including CRs, will be necessary to fully address this
issue.

Modulation of chemosensory behaviors

Animals must not only be able to respond to chemical cues,
but must also be able to modulate their response based on
the context of presentation and their past experience. This
behavioral plasticity may arise at the level of changes in
intracellular signaling pathways, in intercellular communi-
cation, or both. Examples of both intracellular and
intercellular plasticity mechanisms have now been de-
scribed in the C. elegans chemosensory system, revealing
a high degree of functional complexity in these relatively
simple neural circuits.

Intracellular mechanisms of behavioral plasticity A com-
mon feature of all sensory systems is the ability to adapt to
the ambient stimulus level, so as to maintain responsive-
ness. As mentioned above, prolonged exposure to high
concentrations of a chemical results in worms failing to
respond to a point source of the chemical. Adaptation
appears to be biphasic with an early, rapid stage, and a later
prolonged stage [145, 146]. Chemosensory responses are
restored upon removal from the adapting chemical, with the
time period of exposure correlating with the time required
for recovery [146]. Early steps in adaptation may be
mediated via modulation of activity of signaling compo-
nents such as receptors, channels, and other signaling
molecules via posttranslational mechanisms, resulting in
cue-specific changes in sensory neuron responses [115,
145, 153, 154] (Fig. 3a). Thus, in the AWC olfactory
neurons, phosphorylation of the TAX-2 channel appears to
play an important role in the early adaptation stage [145],
and this phosphorylation may be antagonized by the TAX-6
calcineurin phosphatase [155] (Fig. 3a). Cytoplasmic
activity of the TBX-2 transcription factor also affects early
adaptation steps via as yet unknown mechanisms [156]
(Fig. 3a). However, later steps may require changes in gene
expression. In the AWC neurons, cGMP-dependent protein
kinase EGL-4 affects both early and late steps in adaptation,
but interestingly, must be nuclear-translocated to effect the
later stages [145] (N. L’Etoile, personal communication;
Fig. 3a).

Another mechanism by which worms can rapidly alter
their behavioral responses is via modulation of expression
of individual chemoreceptor genes expressed in a single
chemosensory neuron type. As each chemosensory neuron
expresses multiple chemoreceptors, alteration of expression
of individual receptors provides a mechanism by which
worms can selectively alter their response to a single
chemical sensed by that neuron type, without altering
responses to other chemicals. Indeed, individual chemore-
ceptor genes have been shown to be regulated by a plethora
of mechanisms including neuronal activity, internal meta-
bolic state, levels of pheromone, and intercellular signaling

@ Springer



728

Pflugers Arch - Eur J Physiol (2007) 454:721-734

a DAF-11
ODR-1

09

TAX-2
TAX-4

TBX-2? 7 C*  pal4
TAX-6
\( EGL-4
o
Gene expression
CRs, other?

b

Contextual cues

Aversive cues Chemical i
Associative cues

& A A

Insulin
HEN-1
5-HT 5-HT HEN-1

5-HT

Short or long-term
behavioral plasticity
Fig. 3 Intra- and intercellular mechanisms of chemosensory neuronal
plasticity. a Molecules acting in the AWC neurons to modulate AWC
neuron plasticity are shown in red. ARR-1 encodes an arrestin
possibly playing a role in receptor desensitization [154]; over-
expression of the ODR-1 receptor guanylyl cyclase alters adaptation
to a subset of AWC-sensed odorants [142]; the TBX-2 transcription
factor acts cytoplasmically to regulate olfactory adaptation via as yet
unknown mechanisms [156]; the EGL-4 ¢cGMP-dependent protein
kinase phosphorylates the TAX-2 channel, and also translocates to the
nucleus to regulate early and late steps in olfactory adaptation,
respectively [145]; Ca®" entry through the OSM-9 TRPV channel is
required for olfactory adaptation to a subset of AWC-sensed chemicals
[146]; the TAX-6 Ca®"-dependent calcineurin phosphatase negatively
regulates adaptation [155]. b Simplified summary of intercellular
mechanisms proposed to mediate chemosensory behavioral plasticity.
Triangles represent chemosensory neurons; hexagon represents an
interneuron. Both feedforward and feedback mechanisms may act in
these circuits, and these mechanisms may result in facilitation or
inhibition of neuronal output. A subset of molecules implicated in
mediating neuronal circuit plasticity are shown. See text for
references

[25, 63, 100, 107, 108, 157] (A. van der Linden, K. Kim
and P.S., unpublished observations; Fig. 3a). Thus, dynam-
ic regulation of chemoreceptor gene expression may drive a
subset of the behavioral changes observed under different
conditions. This mechanism may not necessarily be
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restricted to C. elegans; the altered host-seeking behavior
of the mosquito Anopheles gambiae after a blood meal may
result from downregulation of olfactory receptors that
respond to components in human sweat [158-160].

Intercellular mechanisms of plasticity In addition to intra-
cellular mechanisms, intercellular communication also
plays an important role in regulating adaptation behaviors
[147, 161] (Fig. 3b). Adaptation is regulated by the
animal’s experience such that the presence of food
suppresses adaptation, whereas the absence of food pro-
motes adaptation [84, 162]. Adaptation has also been
shown to be state-dependent, such that if adaptation to
chemical A is performed in a specific context of chemical
B, subsequent adaptation to chemical A is observed only in
the presence of chemical B [163, 164]. These experience-
dependent modulation of adaptation behaviors likely
requires integration and processing of information at
downstream loci in chemosensory neural circuits [164,
165]. However, cell-cell communication between different
chemosensory neurons may also play a role in the
regulation of responses to a chemical after prolonged
exposure [138] (Fig. 3b).

Chemosensory behaviors of C. elegans may also be
modulated via associative conditioning. Upon pairing of
an attractive chemical (conditioned stimulus or CS) with
an aversive stimulus such as a noxious chemical or
starvation (unconditioned stimulus or US), worms will
avoid the CS upon subsequent encounters [166, 167].
Similarly, worms will preferentially migrate towards the
chemical paired with an attractive stimulus such as food
[168]. Two interesting pathways have been implicated in
these associative behavioral paradigms. Both hen-1/
mutants and mutants in the insulin signaling pathway,
including animals mutant for the daf-2 insulin receptor,
show a compromised ability to avoid an attractive salt
stimulus when paired with the aversive stimulus of
starvation (salt chemotaxis learning) [169, 170]. Mutations
in these genes do not affect responses to salt in the absence
of conditioning. hen-I encodes a secreted protein that acts
cell non-autonomously, suggesting that HEN-1 may
modulate circuit function by acting on presynaptic chemo-
sensory neurons, or postsynaptically on interneurons [169]
(Fig. 3b). The DAF-2 insulin receptor and its effector PI3
kinase have been shown to act only in the ASER neurons
to mediate salt chemotaxis learning, possibly via regula-
tion of ASER synaptic output [170] (Fig. 3b). The ligand
for DAF-2 in this pathway is likely INS-1, which is
produced by the AIA postsynaptic interneurons [170].
Thus, a provocative model for salt chemotaxis learning is
that upon conditioning, insulin is produced by the AIA
interneurons, which in turn feeds back onto the ASER
chemosensory neurons to regulate ASER synaptic output,
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and hence ASER functions [170]. These findings on the
role of insulin in regulating neuronal functions provides
the opportunity to define how internal metabolic state may
modulate chemosensory neuron functions. As insulin
signaling has been implicated in neuronal plasticity in
other organisms [171, 172], it will be interesting to
explore whether insulin acts via similar feedback mecha-
nisms to regulate neuronal function.

Another example of associative conditioning has recent-
ly been described [106]. Upon infection by pathogenic
bacteria, C. elegans will subsequently avoid odors associ-
ated with the pathogenic bacteria and increase its preference
towards non-pathogenic bacteria. This plasticity requires
serotonergic signaling from the ADF chemosensory neu-
rons, which then acts via serotonin receptors in downstream
interneurons to modulate aversive learning [106] (Fig. 3b).
This aversive conditioning is highly relevant for the animal
biologically, as it allows C. elegans to preferentially locate
food sources that are non-toxic based on prior experience.

The context of a presented chemical cue is also an
important modulator of behavior. The presence or absence
of food can rapidly and reversibly alter the responses of
animals to the volatile repellent 1-octanol, and this
modulation may occur presynaptically via serotonergic
signaling [65]. In another behavioral paradigm, animals
are presented simultaneously with an attractive odorant
such as diacetyl, and a repellent chemical such as Cu*"
ions. These attractive and repulsive cues are sensed,
integrated, and balanced against each other, to result in
attraction towards diacetyl, avoidance of Cu?’, or no net
directed movement depending on the relative concentra-
tions of each chemical [169]. Animals mutant for the
secreted peptide HEN-1 fail to correctly integrate these
stimuli, although these mutants retain normal responses to
each odorant when presented alone. As the receptor for
HEN-1 has not yet been identified, the locus of action of
the HEN-1 signaling pathway is unknown.

Although all the behavioral plasticity mechanisms
described above act acutely to alter circuit output, it has
recently been shown that chemosensory cues experienced
during a specific period in development can alter chemo-
sensory behaviors at a later stage [173]. Animals exposed to
a chemical during the L1 developmental stage show a
marked preference for that chemical as adults [173].
Chemicals sensed during the juvenile stage in animals such
as salmon also play a critical role in allowing the adult
animal to return to their natal area to spawn—a phenom-
enon referred to as olfactory imprinting [174, 175]. The
coincident detection of food and the chemical is necessary
for this imprinting to occur in C. elegans, and the ALY
interneurons play an important role [173]. It will be very
interesting to investigate how the memory of the chemo-
sensory experience is stored during the L1 stage, and how it

is retrieved upon encountering the chemical at the adult
stage to modulate the response.

Future directions

C. elegans has proved to be an excellent model organism in
which to explore the generation of chemosensory behavior
from the level of a single gene to the behavioral output of
the whole organism. The development of quantitative
behavioral assays and measurements of neuronal activity
[73, 77, 111, 113-115, 176, 177] will allow researchers to
further investigate the mechanisms by which neuronal
circuits encode specific behavioral responses. Several
outstanding questions remain in this field. If we are to
understand how worms sense their chemical environment, it
will be important to identify the ligands for individual
chemoreceptors. It will also be critical to understand how
information about chemical cues is encoded in spatial and
temporal patterns of neuronal and neuronal circuit activity
to alter behavior. Further dissection of the molecular and
neuronal mechanisms underlying behavioral plasticity is
also likely to provide new information regarding both
intracellular and intercellular contributions to short-term
and long-term behavioral changes, and to determine
whether similar mechanisms operate in other systems.
Finally, it will be very interesting to explore mechanisms
of polymodal sensory integration. All animals respond to
multiple types of sensory stimuli simultaneously in their
natural habitat, but how these stimuli are integrated to result
in a coherent motor output has been a difficult issue to
study experimentally. C. elegans may provide an ideal
system in which to examine how a nervous system
translates spatiotemporally complex sensory cues into the
appropriate behavioral response.
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