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Abstract
Purpose  In the last 20 years, bariatric surgery has achieved an important role in translational and clinical research because 
of obesity comorbidities. Initially, a tool to lose weight, bariatric surgery now has been shown to be involved in several 
metabolic pathways.
Methods  We conducted a narrative review discussing the underlying mechanisms that could explain the impact of bariatric 
surgery and the relationship between obesity and adipose tissue, T2D, gut microbiota, and NAFLD.
Results  Bariatric surgery has an impact in the relation between obesity and type 2 diabetes, but in addition  it induces the 
white-to-brown adipocyte trans-differentiation, by enhancing thermogenesis. Another issue is the connection of bariatric 
surgery with the gut microbiota and its role in the complex mechanism underlying weight gain.
Conclusion  Bariatric surgery modifies gut microbiota, and these modifications influence lipid metabolism, leading to 
improvement of non-alcoholic fatty liver disease.
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Introduction

Obesity is a major public health problem that has been 
increasing worldwide [1]. This multifactorial disease is asso-
ciated with an increased risk of developing several medical 
conditions, such as insulin resistance, hypertension, dyslipi-
daemia, non-alcoholic fatty liver disease (NAFLD), cardio-
vascular disease and even some types of cancers. In addition, 
it is the major risk factor for type 2 diabetes (T2D) [2, 3].

Bariatric surgery has been demonstrated to success-
fully achieve significant and sustainable weight loss and 
improvement of associated comorbidities [4, 5]. The 

benefits observed in metabolic disease, independently of 
weight loss, define bariatric surgery as metabolic surgery. 
In 1978, L. Varco described metabolic surgery as “the opera-
tive manipulation of a normal organ system to achieve a 
biological result for a potential health gain” [6]. The first 
surgical management for obesity was in 1952, when V. Hen-
rikson, a Swedish surgeon, performed a 105-cm small bowel 
resection on a woman with obesity [7]. Since then, there 
have been six historically dominant procedures in bariatric 
surgery [6]: jejunoileal by-pass (JIB), Roux-en-Y gastric 
by-pass (RYGB), then modified in one anastomosis gastric 
by-pass (OAGB), vertical banded gastroplasty (VBG), bili-
opancreatic diversion (BPD) and its modification duodenal 
switch (DS), adjustable gastric banding (AGB) and sleeve 
gastrectomy (SG) (Table 1). Globally, the number of surgical 
procedures has dramatically increased from 146,301 proce-
dures carried out in 2003 to 604,223 surgical procedures in 
2018 [8, 9]. SG is the most performed bariatric procedure 
(55.4%), followed by RYGB (29.3%), then OAGB (6.6%), 
whereas no other single surgical procedure exceeds 1.5% [8].

These procedures were originally designed to achieve 
weight loss, but now it is known that bariatric surgery involves 
molecular, anatomical and physiological alterations even by 
weight-independent mechanisms, with long-term effects [4, 5].
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Anatomical changes resulting from metabolic surgery can 
alter physiology. Anatomical modifications in SG include 

excision of the enteroendocrine cells (EECs) bearing greater 
curvature of the stomach, whereas RYGB anatomical rear-
rangements decrease the time required to the nutrients for tran-
sit into the small bowel, by-passing the stomach, duodenum 
and early jejunum. These anatomical changes induce weight 
loss but might have additional consequences, that are weight-
independent, with benefits on obesity comorbidities [10, 11] 
(Table 2).

This narrative review discusses the underlying mecha-
nisms that could explain the impact of bariatric surgery and 
the relationship between obesity and adipose tissue, T2D, 
gut microbiota and NAFLD.

Bariatric surgery procedures

Bariatric procedures can be categorized according to their 
presumed mechanism of action in promoting weight loss. 
This may consist of malabsorption, gastric restriction or any 
combination of these mechanisms (Table 3).

The aim of restrictive procedures is to decrease the 
amount of ingested food through a reduction of the gastric 
volume; while in malabsorptive procedures, a part of the 
small intestine is removed or by-passed, leading to a reduc-
tion in gastrointestinal absorptive surface.

JIB was the first pure malabsorptive procedure, but it 
was burdened with significant complications, including 
diarrhoea, protein malnutrition, micronutrient and elec-
trolyte deficiencies, and anal complications [7, 9]. Despite 

Table 1   History of bariatric surgery

* Apollo Endosurgery, Austin, TX, USA
BPD, biliopancreatic diversion; VBG, vertical banded gastroplasty; 
RYGB, Roux-en-Y gastric by-pass

Year Surgeon Procedure

1954 Payne Jejunoileal by-pass
1966 Mason Gastric by-pass
1973 Printen Gastroplasty
1977 Griffen Roux-en-Y gastric by-pass
1978 Wilkinson Nonadjustable gastric band
1979 Scopinaro Biliopancreatic diversion
1982 Mason Vertical banded gastroplasty
1985 Garren-Edwards First endoscopic endoluminal gastric 

balloon
1986 Kuzmak Adjustable gastric band
1988 Hess BPD with duodenal switch
1991 Apollo* Bioenteric intragastric balloon
1993 Forsell Laparoscopic adjustable gastric band
1994 Hess Laparoscopic VBG
1994 Wittgrove Laparoscopic RYGB
1997 Rutledge One anastomosis gastric by-pass
2003 Regan Laparoscopic sleeve gastrectomy
2012 Thompson Endoscopic sleeve gastroplasty
2013 Espinos Primary obesity surgery endoluminal 

(POSE)

Table 2   Obesity-associated diseases and their improvement after bariatric surgery

NAFLD, non-alcoholic fatty liver disease; NASH, non-alcoholic steatohepatitis; AST, aspartate transaminase; ALT, alanine transaminase; ALP, 
alkaline phosphatase; GGT​, gamma-glutamyltransferase

Type 2 diabetes mellitus • Haemoglobin A1c < 6.0–7.0%
• Absence of medication
• Fasting glucose < 100 mg/dl
• Reduction of insulin resistance

Cardiovascular disease • Reduction in cardiovascular deaths
• Reduction in myocardial infarction and stroke
• Reduction in systolic blood pressure

Liver disease • 85% NAFLD and NASH resolution
• Reduction in histological markers of steatosis, fibrosis, hepatocyte ballooning and 

lobular inflammation
• Reduction in biochemical markers, including AST, ALT, ALP, GGT​

Dyslipidemia • Reduction in LDL cholesterol, VLDL cholesterol, total cholesterol and triglycerides
• Increase in HDL cholesterol

Respiratory disease • Improved respiratory disturbance index
• Improved sleep quality (sleep efficiency and rapid eye movement latency)
• Reduced requirement for continuous positive airway pressure

Psychosocial disease • Improved psychosocial functioning and social interaction
• Increased physical activity
• Reduced depression
• Improved health-related quality of life and health perception

Osteoarthritis and chronic back pain • Reduction in pain
• Increase in function/activities of daily living
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this, intestinal by-pass is seldom performed in superobese 
patients; thus, Scopinaro proposed an intestinal by-pass pro-
cedure called BPD [12]. BPD includes a partial gastrectomy 
with closure of the duodenum and a long intestinal by-pass 
with a Roux limb of 250-cm length and a 50-cm common 
channel. The procedure was then modified in DS where the 
distal gastrectomy was a sleeve gastrectomy, and the com-
mon channel had a length of 100 cm [13]. However, surgical 
complexities and the risk of long-term complications have 
limited the popularity of these procedures.

Restrictive procedures reduce the stomach capacity by cre-
ating a smaller chamber for food intake. One of the earliest 
restrictive procedures was VBG, which involved the creation 
of a vertical pouch of about 50-mL volume with an outlet flow 
encircled by a fixed band to prevent it from dilatation [14]. 
The concept of an external gastric band sustains the use of 
AGB. Initially not adjustable, and then adjustable thanks to 
a subcutaneous port, AGB became popular by laparoscopic 
approach [15]. However, an overall modest performance and 
band complications have reduced the number of this procedure 
over the years. The most recent restrictive procedure is the SG. 
This procedure was initially performed as the first step of a 
two-staged DS in high-risk patients who undergo SG and after 
about 1 year, intestinal by-pass [16]. However, many patients 
obtained good results with the SG alone; thus, it was adopted as 

a stand-alone procedure. In SG, the gastric greater curvature is 
resected, and thus, the stomach is reduced to a narrow tube. The 
removal of the greater curvature induces weight loss but also 
hormonal changes, such as a reduction of serum ghrelin levels, 
which help promote early satiety and prolonged satiation.

RYGB is the most popular version of gastric by-pass, 
originally proposed by Mason [17]. The procedure, currently 
considered the “gold standard” in bariatric surgery, includes 
a vertical lesser curvature pouch, coupled with a jejuno-jeju-
nostomy, in addition to a gastro-jejunostomy and a common 
limb of around 150 cm. Thus, it is a combination of restrictive 
and malabsorptive procedures. Of course, the complete pro-
cedure of DS, which includes SG and intestinal by-pass, can 
also be considered a combined restrictive and malabsorptive 
procedure. Another combined procedure is OAGB, a gastric 
by-pass that involves only one anastomosis—an end-to-side 
anastomosis between the gastric pouch and a jejunum loop 
150–250 cm from the Treitz ligament [18]. Patients undergo-
ing OAGB were found to have more nutritional deficiencies 
compared with those who underwent RYGB [19]. To avoid 
these problems, some surgeons suggest reducing the length of 
the biliopancreatic limb to less than 150 cm [20].

In recent years, many endoscopic techniques have been 
proposed to induce weight loss, especially in superobese high-
risk patients [21]. The most popular endoscopic technique 

Table 3   Bariatric surgery procedures

JIB, jejunoileal by-pass; BPD, biliopancreatic diversion; VBG, vertical banded gastroplasty; AGB, adjustable gastric banding; SG, sleeve gastrec-
tomy; RYGB, Roux-en-Y gastric by-pass; OAGB, one anastomosis gastric by-pass; DS, duodenal switch; BIB, bioenteric intragastric balloon

Weight loss mechanism Procedure Advantages Disadvantages/risks

Malabsorptive JIB Good weight loss High risk of nutritional and vitamins deficiencies, diarrhoea, liver failure
Malabsorptive BPD Sustained weight loss High risk of nutritional and vitamins deficiencies, diarrhoea, anemia, 

intestinal ulcers
Complex procedure

Restrictive VBG Good weight loss
Easy to perform

Long-term weight regain, stapler leak, outlet obstruction, recanalization of 
proximal stomach, gastro-oesophageal reflux

Restrictive AGB Laparoscopic surgery
Adjustable, reversible, less 

pain, fewer nutritional effects

Less weight loss than RYGB, harder to maintain loss, vomiting
Band slippage or erosion, tubing breakage

Restrictive SG Laparoscopic surgery,
Good weight loss
Easy to perform
Short hospitalization

Irreversible, stapler leak, gastro-oesophageal reflux

Combined RYGB Laparoscopic surgery
High percentage of weight loss

Vitamin deficiencies
Anastomotic leak
Internal hernia

Combined OAGB Laparoscopic surgery
Simpler than RYGB
Good weight loss

Vitamin deficiencies
Anastomotic leak
Less risk of internal hernia

Combined DS Sustained weight loss High risk of nutritional and vitamins deficiencies, loose, foul smelling 
stools, anemia, intestinal ulcers

High complex procedure
Restrictive BIB Endoscopic procedure

Good weight loss
Temporary device
Long-term weight regain
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is the intragastric balloon insertion that decreases the intra-
luminal gastric volume to induce early satiety during food 
intake [8]. The device is temporary and must be removed 
within 6 months, mostly because weight loss is transient. The 
intragastric balloon, in fact, is used as a bridge to definitive 
bariatric surgery. Other endoscopic procedures include endo-
scopic sleeve gastroplasty involving full-thickness sutures and 
primary obesity surgery endoluminal (POSE) procedure that 
creates up to ten gastric plications. Both procedures reduce 
the gastric cavity by remodelling the stomach [21].

Bariatric surgery and adipose tissue

Adipose tissue is recognized as an endocrine organ impli-
cated in the physiopathology of obesity and its comorbidities 
[22, 23]. As the organ is a self-contained group of tissues 
that perform a specific function, in the adipose organ, we can 
distinguish two different adipose tissues, the white adipose 
tissue (WAT) storing energy and the brown adipose tissue 
(BAT) using energy for thermogenesis [24]. The WAT can 
be divided into two broad categories, visceral adipose tis-
sue (VAT) located in the peritoneal cavity and subcutaneous 
adipose tissue (SAT) located under the skin. The WAT-BAT 
cooperation consists of the reciprocal ability of conversion 
in relation to physiologic requirement of the body [25].

The endocrine function of the adipose tissue is carried out 
by the secretion of hundreds of different signalling proteins 
called adipokines into the circulation [26]. These include 
leptine that suppresses appetite when lipid storage is high 
and stimulates pro-inflammatory immune response [27] and 
adiponectine that acts on other organs such as the liver and 
muscle, and is highly correlated with metabolic derange-
ments of obesity and T2D [28].

Although the adipose organ of animals and humans with 
obesity is increased at both subcutaneous and visceral sites, 
VAT alone is responsible for the onset of obesity-associated 
metabolic disorders [29–31]. These disorders result from 
adipose tissue dysfunction and inflammation. In obese mice 
and humans, inflammatory cells infiltrate adipose tissue pro-
ducing inflammatory mediators that may explain the cor-
relation between visceral fat and cardiovascular and meta-
bolic complications, such as insulin resistance and T2D [3, 
32–34]. Macrophages are the main inflammatory cells found 
in inflamed adipose tissue. Hypertrophic adipocytes die 
and remnants of dead adipocytes are surrounded by active 
MAC2 immunoreactive macrophages reabsorbing the large 
debris. These form a characteristic histopathology feature 
denominated crown-like structure (CLS) [33]. Furthermore, 
VAT is composed by more fragile adipocytes compared to 
those of SAT; in obese subjects, these adipocytes die with a 
smaller critical death size inducing major inflammation [34].

Why visceral fat behaves differently from SAT in animals 
and humans with obesity is a concept that is important to 
understand. The size of adipocytes in VAT is smaller than 
that of subcutaneous fat. The reason for this difference is 
not known, but a hypothesis can be proposed. Since a large 
proportion of VAT in young people is composed by BAT 
and age is an important factor inducing BAT to WAT conver-
sion, a daring hypothesis for the different size could be that 
subcutaneous fat originates from WAT adipocyte precursors, 
while visceral fat originates from conversion of BAT. This 
theory was recently demonstrated using a mouse-model lack-
ing ATGL (adipose-triglycerides lipase) [3]. In these mice, 
adipocytes cannot use stored lipids for thermogenesis and 
BAT is converted into a WAT-like tissue. This WAT-like tis-
sue derived from BAT conversion is more prone to death as 
shown by the number of CLS in the WAT-like tissue com-
pared with regular WAT with the same size of adipocytes. 
WAT, producing adipokines, growth factors, enzymes and 
active immune cells such as macrophages and T cells, takes 
part in the progression of inflammation in obesity [35]. These 
data offer an explanation to the higher level of inflammation 
in VAT and as the visceral obesity is the clinical condition 
more frequently associated to T2D in obese patients [3].

Studies of depot-specific fat mass show how bariatric sur-
gery induces both VAT and SAT reduction with a metaboli-
cally beneficial redistribution among different anatomic depots 
[36–39]. Through reduction of WAT, bariatric surgery reverses 
the balance between pro-inflammatory and anti-inflammatory 
mediators [40, 41]. Recent studies show that post-surgical 
circulating levels of adiponectin and leptin are significantly 
increased and decreased respectively [41, 42]. Similarly, serum 
inflammatory mediators IL-6 and TNF are downregulated 
[36, 43]. Adiponectin reduces fat storage and inflammation, 
increases fibrinolysis and additionally activates 5′-AMP-acti-
vated protein kinase (AMPK) after surgery. Indeed, subcuta-
neous adipose tissue levels of AMPK increase after metabolic 
surgery [44], and AMPK has been associated with improve-
ments in inflammation, oxidative stress, mitochondrial biogen-
esis and insulin resistance in several tissues [45]. However, it is 
unclear whether AMPK reduces oxidative stress or whether the 
reduction of oxidative stress suppresses AMPK [44].

Preclinical and clinical studies suggest that bariatric sur-
gery induces changes in BAT by enhancing thermogenesis 
[46]. Increasing BAT size has been observed after RYGB 
[47, 48]. This effect could be due to an increase of glucagon-
like peptide 1 (GLP-1) in RYGP, which improves thermo-
genesis and increases BAT size [49, 50]. On the other hand, 
no significant changes in BAT size were observed in patients 
submitted to SG [51]. However, SG may enhance BAT ther-
mogenesis contributing to improve glycaemic control [47, 
52]. How BAT activation after surgery modulates the energy 
balance and remission of T2D is unknown. One possible 
mechanism may act through bile acids that promote BAT 
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thermogenesis via interaction with the thyroid system and 
GLP-1 receptor signalling [53, 54].

Bariatric surgery and T2D

T2D is the most frequent form of diabetes accounting for 
about 90% of all diagnosis of diabetes. It represents one of 
the most important pathologies in Western countries, with 
592 million T2D patients expected by 2035 [55, 56]. T2D is 
the fifth leading cause of death [57]. Thus, all efforts to pre-
vent or treat this disease must be encouraged, and all aspects 
of related scientific research on causes and physiopathology 
should be strongly sustained by governments worldwide.

T2D is associated with progressive loss of pancreatic 
beta-cell function and mass [58]. As previously reported, 
obese fat in mice and humans is infiltrated by macrophages 
[32, 59]. Macrophages cause a chronic low-grade inflam-
mation producing mainly TNFa and IL6. The mechanism 
by which tissue inflammation influences insulin sensitivity 
is unclear, but these molecules have been proven to inter-
fere with the insulin receptor causing insulin resistance 
[60–63]. The gradual transition of insulin resistance to 
T2D is linked with a change in pancreatic islet composi-
tion. During compensated insulin resistance, pancreatic 
islets are conspicuous by their hyperplasia, resulting from 
increased cell number and size [58]. But as compensa-
tion fails, islet mass gradually decreases, and beta-cells 
become depleted of their characteristic insulin secre-
tory granules, ending with a functional exhaustion which 
coincides with the onset of T2D [58, 63, 64]. Recently, it 
has been demonstrated that obese mice have an increased 
noradrenergic innervation of Langerhans islets, with data 
supporting nerve-epithelial contacts with beta-cells [58, 
65]. A recent paper confirmed these data in humans [66]. 
Thus, considering the well-known inhibitory activity of 
noradrenaline on insulin secretion, the hypothesis is that 
the lack of insulin secretion inducing T2D after a period 
of hyper-production is not due to beta-cell exhaustion, but 
to beta-cell inhibition by increased noradrenergic innerva-
tion. For unknown reasons, bariatric surgery could induce 
a de-innervation process in the Langerhans islets restoring 
the insulin secretory activity of beta-cells. Data supporting 
a direct innervation of pancreatic islets by neurons located 
in the intestinal wall are in line with the idea that surgical 
removal or intestinal by-pass could influence pancreatic 
islet innervation [67].

In the last decade, a considerable amount of high-qual-
ity evidence supported that bariatric surgery has an effec-
tive role in the treatment of T2D, with an improvement 
of glucometabolic profiles and a complete remission of 
diabetes [68]. The effects of metabolic surgery are sta-
ble over time, with a substantially greater effect at five 

years compared with medical treatment [69]. Some factors 
contribute to the post-operative diabetes response after 
surgery. Patients with a BMI > 30 kg/m2 and those with a 
BMI < 30 kg/m2 have distinct remission predicting factors. 
Low HbA1c is a predictor of remission in low–high-BMI 
patients while the length of time in which the patients 
are affected by diabetes is a predictor in high-low-BMI 
patients [70].

In fact, in animal models of obesity and in humans under-
going different types of bariatric surgery, T2D improves 
within days to weeks, whereas weight loss occurs much 
more slowly [68]. The weight-independent mechanisms 
involved are not completely understood, but they include 
the incretin effect of GLP1, alterations in bile acids and 
changes in gut microbiota composition [5]. GLP1 increases 
dramatically after bariatric surgery, independently of both 
calorie reduction and weight loss [71]. Therefore, reduction 
of food intake (anorexic effect of surgery), reduction of insu-
lin resistance (long-term weight reduction after surgery) and 
increase of insulin secretion (which is weight loss independ-
ent) improves diabetes. Bile acids probably interact with the 
gut microbiota in the duodenum and proximal jejunum. The 
gut microbiota has an interdependent relationship with bile 
acids, whereby bile acids affect the microbiota composi-
tion by altering bacterial membrane integrity, and the gut 
microbiota can alter bile acid synthesis and function, includ-
ing bile acid deconjugation, dihydroxylation, oxidation and 
epimerization [72, 73]. The effects and interactions of these 
systems are illustrated in Fig. 1.

Bariatric surgery and gut microbiota

The human gut, mainly the colon, holds the greatest numbers 
of microbiota in the organism. Humans and microorganisms 
have long benefited from this symbiotic relationship, yet our 
understanding of the extent and meaning of this co-existence 
has been limited due to the lack of reliable and effective 
tools to study it. Recent evidence has suggested a role for 
alterations in the gut microbiota in promoting or aggravating 
different diseases such as obesity [74].

Components of gut microbiota are now considered to play 
a significant role in several fields, such as the regulation of 
intestinal function, metabolism, behaviour and immunity [75].

The adult gut microbiota is dominated by two phyla, Fir-
micutes and Bacteroidetes, which constitute about 90% of 
all the bacterial species in the gut [74]. Many studies have 
shown a relative decrease of Bacteroidetes with a relative 
increase in Firmicutes in the obese microbiota, but the find-
ings are still weak [76–79]. A difficult question is whether 
changes in the intestinal microbiota precede the development 
of obesity or reflect the obese phenotype. Of course, diet, 
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microbiota and immunity participate in the development of 
obesity [80–83].

Several theories discuss the hypothesis that gut micro-
biota can induce obesity. One hypothesis is that the gut 
microbiota of individuals with obesity is capable of fer-
menting dietary carbohydrates that increases the rate of 
short-chain fatty acids (SCFAs), providing extra energy, 
which are then stored as lipids or glucose [77, 78, 84]. 
In fact, Firmicutes, which are major producers of the 
SCFAs, are increased in the obese faecal microbiota [76]. 
This theory is supported by transplanting obese faecal 
microbiota in germ-free mice and finding a higher level 
of Firmicutes in faecal samples and an increase in body 
fat [76]. Carbohydrate and lipid metabolism are highly 
influenced by microbiota that increase the bioavailability 
of monosaccharides, and the subsequent induction of de 
novo hepatic lipogenesis. The microbiota of genetically 
obese mice is rich in enzymes involved in the fermentation 
of dietary fibre; the products of dietary fibre fermentation 
include SCFAs such as acetate, propionate and butyrate 
[74], which generally improve glucose and energy homeo-
stasis [85]. Preclinical and human studies show that obese 
individuals present higher faecal concentrations of SCFAs 
than lean controls [75, 86]. However, the role of SCFAs is 
controversial because obesity-inhibiting properties have 
been described [87]. SCFAs suppress the inflammatory 
immune response in the gut [88, 89] and they are involved 
in the release of GLP-1 and leptine, which may downregu-
late appetite and thus reduce caloric intake [90].

Weight loss interventions, as bariatric surgery, induce 
a decrease in faecal SCFAs, mainly due to low-carbohy-
drate diets [87]. This reduction could be an indication of 
reduced efficiency with which energy is harvested from 
dietary SCFAs during weight loss among overweight or 
obese individuals [75, 87]. Given the benefits of SCFA 
on colon cancer risk [91], studies are needed to clarify 

if the decrease of SCFA is a potential adverse effect of 
weight loss.

Another theory is that a key process in the biologi-
cal physiology of obesity includes systemic inflammatory 
changes.

The systemic increased levels of adiponectin and inflam-
matory cytokines, such as tumour necrosis factor-alpha 
(TNF-α) and interleukin-6 (IL-6), has also been associated 
with hypertrophy of adipose tissue and with augmented risk 
of metabolic disorders such as cardiovascular diseases, fatty 
liver disease and T2D [74]. Despite these various associa-
tion studies, the causal pathways between obesity, inflamma-
tion and metabolic disease remain incompletely understood. 
The presence of low-grade systemic inflammation associated 
with obesity usually involves a complex network of signals 
interconnecting several organs [92, 93]. Understanding the 
mechanisms that regulate gut microbiota homeostasis and 
dysbiosis will lead to a better comprehension of the inflam-
mation-related pathophysiology of obesity and consequently 
could provide an avenue for interventions aimed at modulat-
ing gut microbiota in individuals with obesity [94, 95].

The ingestion of high fat diets could be a facilitating 
factor in the disruptions of gut microbiota homeostasis in 
obesity [74, 95]. These diet-induced changes in the micro-
biota physiology can cause low-grade systemic inflamma-
tion in obesity and may even precede or predispose to obe-
sity [94–98]. Changes in the composition of gut microbiota 
increase intestinal mucosal inflammation with changes in 
gut permeability. Together, these processes can result in 
increased metabolic endotoxemia and in an increase of com-
ponents such as plasma lipopolysaccharides (LPS) within 
the circulating system [99]. The gut microbiota-related 
inflammatory changes have been linked to activation of toll-
like receptor 4 (TLR4) signalling and to a resulting increase 
in intestinal levels of LPS [100]. Studies have also shown 
that increased levels of LPS, together with TLR4, are risk 

Fig. 1   The cross-linking 
between bariatric surgery 
and adipose tissue, glucose 
metabolism, gut microbiota 
and NAFLD. Restrictive and/or 
malabsorptive surgeries such as 
SG and RYGB have important 
effects on lipid and glucose 
metabolism by direct action 
or through modification of gut 
microbiota. SCFAs, short-chain 
fatty acids; GLP1, glucagon-like 
peptide 1
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factors for obesity, insulin resistance and cardiovascular dis-
eases [101–103].

Significant changes in gut microbiota have been noted 
after bariatric surgery, specifically with increases in Bacte-
roidetes, Fusobacteria, Verrucomicrobia and Proteobacteria 
and a reduction of Firmicutes, Clostridiales, Clostridiaceae, 
Blautia and Dorea [55, 104, 105]. An increase in Bacteroi-
detes species has been correlated with a reduction in body 
fat mass and leptin, while the Firmicutes responsible for 
dietary carbohydrate fermentation and energy harvesting are 
decreased [106, 107].

Most of the changes in microbial composition occurred 
within 3 months and those changes were maintained up to 
a year [108]. This points out how remodelling of the micro-
bial community occurred mainly within the first 3 months 
after surgery [108].

Gut microbiota modifications are different between bari-
atric procedures [109]. Bacteroides vulgatus, a bacteria 
increased in patients with obesity and positively correlated 
with glycaemic status, is reduced significantly after SG, 
whereas it is not significantly affected by either post-AGB 
or post-RYGB [110]. Furthermore, SG also increases Fae-
calibacterium prausnitzii, another bacterium decreased in 
obese subjects with T2D that increases post-RYGB [111]. 
These data allow hypothesizing that the change in these 
bacteria could be involved in the glucose improvement 
observed after SG; however, this is still unclear. In another 
study, comparing SG and RYGB in a small sample size, 
Murphy et al. observed that although SG was associated 
with functional changes in gut microbiota, these were fewer 
than those observed post-RYGB43. Furthermore, in another 
study comparing SG and RYGB, both procedures induced 
similar clinical improvement, but gut microbiota modifica-
tions involved distinct pathways according to the surgical 
technique [112].

Post-RYGB patient gut microbiota reduced body weight 
gain when transferred into germ-free mice. These effects 
appear to be part of the weight loss-independent mecha-
nisms of RYGB, as the germ-free mice colonized with the 
microbiota from post-RYGB patients gained 43% less body 
fat than mice colonized with the microbiota from weight-
matched patients who did not have surgery [113].

RYGB produces significant metabolic changes, including 
decrease in plasma bile acid content and increases in various 
amines production, which reflect changes in the microbial 
metabolism of precursors like choline [114].

Bariatric surgery affects bile acids (BAs) metabolism 
[110]. BAs influence glucose metabolism by increasing insu-
lin sensitivity and reducing gluconeogenesis [115] through 
increased secretion of GLP-1 and activation of TGR5, 
improving the energy balance [116]. Moreover, BAs play a 
role in the gut microbiota composition and in the weight loss 
after bariatric surgery [117]. A recent study conducted by 

Ilhan et al. focused attention on the gut microbiota of obese 
patients who had underwent RYGB. Surgery causes a reduc-
tion in faecal BA concentration, which relates to changes 
in microbiota composition, and the gut microbiota itself is 
involved in the modulation of BAs metabolism [118]. In 
fact, the anatomical changes made in RYGB increase the 
amount of BAs reaching the lower intestine, thus allowing 
conjugated BAs to be actively reabsorbed in the terminal 
ileum and primary BAs to enter the colon and be trans-
formed into secondary BAs by the gut microbiota [111]. 
These changes are linked with fatty liver disease. In NAFLD 
patients, the serum primary/secondary BAs ratio is signifi-
cantly higher compared to controls and correlates with the 
severity of NAFLD [119]. Bariatric surgery produces a sig-
nificant repopulation of the gut microbiota and a reversal of 
the circulating primary/secondary BAs ratio, thus inducing 
metabolic improvements with positive effects on NAFLD 
and metabolic syndrome [119].

Bariatric surgery and NAFLD

NAFLD is defined as more than 5% fat accumulation in 
hepatocytes [120]. In adult population, NAFLD has a high 
prevalence, especially in people with obesity (65.7%) and 
T2D (74%) [121–123]. The association between NAFLD 
and T2D can be explained by insulin resistance, dyslipidae-
mia and the accumulation of liver triglycerides in NAFLD 
and beta-cell defect in T2D [124]. NAFLD can progress 
from simple hepatic steatosis to steatohepatitis (NASH), 
which is characterized by inflammation and hepatocyte 
degeneration. A small proportion of NASH will further 
progress to liver fibrosis/cirrhosis and hepatocellular car-
cinoma. Obesity is a dominant risk factor for development 
of NAFLD and NASH, with 4.5-fold increased risk of hepa-
tocellular carcinoma [125].

Secretion of adropin, an insulin sensitizing factor, and of 
sex hormone-binding globulin (SHBG) can be observed in 
the liver affected by NAFLD [41]. Lower levels of SHBG 
could be involved in the development of NAFLD and T2D, 
but data are still unclear [41].

Many studies have shown that dysregulation of the gut 
microbiota can be involved in the pathogenesis of NAFLD 
[126–128]. Changes in the abundance and diversity of 
the gut microbiota have been linked to the progression of 
NAFLD; each stage of NAFLD has a special gut microbiota 
signature [129].

In NAFLD, Bacteroidetes are reported to be decreased, 
while levels of Firmicutes and Proteobacteria are increased, 
especially in patients with obesity [126, 129, 130]. Changes 
in microbiota in NASH are reported to overlap with steatosis, 
with differences identified especially in patients diagnosed 
with NASH with fibrosis. For example, Eubacterium rectale 
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is increased in moderately severe NAFLD, but decreased in 
NASH with fibrosis [129]. The higher the degree of fibrosis, 
the higher the abundance of Proteobacteria, and this sug-
gests the role of these bacteria in the process of liver fibrosis, 
although the exact mechanism is still unknown [131].

The expression of genes involved in LPS synthesis in gut 
microbiota is increased in NASH compared with steatosis, 
while increased flagellar biosynthesis gene expression in 
NASH indicates fibrosis. Furthermore, bacterial transloca-
tion due to increased gut permeability and increased blood 
levels of LPS have been associated with NAFLD [132, 133].

The intestinal microbiota has the ability which seems to 
play a role in the pathogenesis of NAFLD, through different 
pathways of bacterial metabolites such as bile acids, SCFAs, 
amino acids, choline and ethanol [129].

Weight loss is currently the mainstay of NAFLD treat-
ment. A 3 to 5% weight loss has been shown to reduce 
steatosis, and a greater weight loss of up to 10% might be 
necessary to improve hepatic necro-inflammation [134]. 
However, most NAFLD patients are not able to achieve 
such weight loss by diet restriction, but bariatric surgery 
can produce up to 85% resolution of NAFLD and NASH, 
with an improvement of both histological and biochemical 
markers [135]. Oxidative stress and lipid peroxidation in 
patients with NAFLD also improve after metabolic surgery, 
reducing DNA damage and the inflammatory cascade from 
hepatocellular injury to fibrosis and cirrhosis [135].

Analysing the effect of specific bariatric procedures, SG 
determines improvements in aspartate aminotransferase, ala-
nine aminotransferase, triglycerides and high-density lipopro-
tein serum levels and the NAFLD resolution assessed with 
ultrasound imaging and histological amelioration [136–139]. 
RYGB leads to reduction of steatosis, lobular inflammation, 
ballooning degeneration and centrilobular/perisinusoidal 
fibrosis [140–143]. Several studies suggest that RYGB is more 
effective compared with SG and LAGB in terms of benefits 
on NAFLD, NASH and fibrosis, whereas, in other studies, 
SG shows a better improvement than RYGB in serum levels 
of hepatic enzymes [136, 144, 145].

As mentioned above, bariatric surgery has additional 
effects beyond weight loss, which contribute to amelioration 
of NAFLD. Post-surgical changes in the gut microbiota and 
bile acid circulation, as well as a decrease in portal influx of 
free fatty acids, may also be beneficial for metabolic syndrome 
and NAFLD, as suggested by recent studies [115, 146–148].

Future perspective

A substantial number of metabolic modifications occurs 
after bariatric surgery. The mechanism involved might be 
either weight dependent or weight independent. The cross-
linking of these mechanisms is key in the long-term effects 

after surgery. Inflammation in visceral fat is strictly con-
nected with insulin resistance and T2D, but it is also related 
with gut microbiota. However, human studies on changes 
in the gut microbiota are still relatively unpowered, are not 
always conclusive and vary across different populations. For 
these reasons, further research is needed to investigate how 
microbiota modifications are related to glucose and lipid 
metabolism after bariatric surgery.
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