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Abstract
Background  Our aim was to build a skill assessment system, providing objective feedback to trainees based on the motion 
metrics of laparoscopic surgical instruments.
Methods  Participants performed tissue dissection around the aorta (tissue dissection task) and renal parenchymal closure 
(parenchymal-suturing task), using swine organs in a box trainer under a motion capture (Mocap) system. Two experts 
assessed the recorded movies, according to the formula of global operative assessment of laparoscopic skills (GOALS: score 
range, 5–25), and the mean scores were utilized as objective variables in the regression analyses. The correlations between 
mean GOALS scores and Mocap metrics were evaluated, and potential Mocap metrics with a Spearman’s rank correlation 
coefficient value exceeding 0.4 were selected for each GOALS item estimation. Four regression algorithms, support vector 
regression (SVR), principal component analysis (PCA)-SVR, ridge regression, and partial least squares regression, were 
utilized for automatic GOALS estimation. Model validation was conducted by nested and repeated k-fold cross validation, 
and the mean absolute error (MAE) was calculated to evaluate the accuracy of each regression model.
Results  Forty-five urologic, 9 gastroenterological, and 3 gynecologic surgeons, 4 junior residents, and 9 medical students 
participated in the training. In both tasks, a positive correlation was observed between the speed-related parameters (e.g., 
velocity, velocity range, acceleration, jerk) and mean GOALS scores, with a negative correlation between the efficiency-
related parameters (e.g., task time, path length, number of opening/closing operations) and mean GOALS scores. Among 
the 4 algorithms, SVR showed the highest accuracy in the tissue dissection task ( MAE

median
= 2.2352 ), and PCA-SVR in the 

parenchymal-suturing task ( MAE
median

= 1.2714 ), based on 100 iterations of the validation process of automatic GOALS 
estimation.
Conclusion  We developed a machine learning–based GOALS scoring system in wet lab training, with an error of approxi-
mately 1–2 points for the total score, and motion metrics that were explainable to trainees. Our future challenges are the 
further improvement of onsite GOALS feedback, exploring the educational benefit of our model and building an efficient 
training program.
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Introduction

Due to the widespread dissemination of minimally inva-
sive surgery such as laparoscopic and robotic surgeries that 
require specific psychomotor skills, working hour restric-
tions, and ethical consideration regarding patient safety, 
simulation training outside the operating theater has been 
utilized in a broad range of surgical disciplines. In order 
to practice essential laparoscopic surgical skills, we also 
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utilized simulation training using cadaveric porcine organs, 
including tissue dissection around the aorta, applying a 
Hem-o-lok in the vascular pedicle, and renal parenchy-
mal closure, and reported its good construct validity [1]. 
Recently, we developed a novel motion capture (Mocap) sys-
tem that could recognize each surgical instrument individu-
ally irrespective of instrument exchanges [2], and identified 
the motion characteristics of multiple surgical instruments 
according to the level of surgical experiences in a series of 
our aforementioned wet lab training. For example, in a task 
of tissue dissection around the swine aorta named “Task 1”, 
a shorter path length and faster velocity/acceleration/jerk 
were observed for both scissors and a Hem-o-lok applier 
in experts (> 50 laparoscopic surgeries), and especially in 
experts with > 100 cases, scissors moved more frequently in 
the close zone (0 < to < 2 cm from aorta) than in those with 
50–99 cases [3].

Our goals are to characterize experts’ psychomotor skills 
based on motion metrics of surgical instruments, further 
improve surgical skills, and promote patient safety. As the 
next step, in order to enrich laparoscopic training programs, 
we aim to build a machine learning–based skill assessment 
system, in which the skill level is automatically evaluated 
and trainees receive explainable feedback based on the 
Mocap metrics of surgical instruments. In brief, two experts 
watched the recorded movies and evaluated the surgical dex-
terity according to the formula of global operative assess-
ment of laparoscopic skills (GOALS) [4]. Using the mean 
GOALS scores as training data, we developed a machine 
learning–based GOALS scoring system in wet lab training, 
which could mitigate the educators’ workload, and promote 
self-training and peer-learning opportunities.

Materials and methods

The institutional review board approved the present study 
(No. 018–0257). We previously reported the initial results 
based on the present Mocap system among urologic sur-
geons, a junior resident, and medical students (first data col-
lection: n = 45, from December 2018 to February 2019) [3]. 
We continued data collection, including general and gyneco-
logic surgeons (second data collection: from the end of May 
2019 to September 2019). In the second data collection, par-
ticipants performed tissue dissection around a swine aorta 
(task 1), and needle driving and making knots on kidney 
parenchyma (task 3), while only needle driving on kidney 
parenchyma (task 2) was not included because the charac-
teristics of motion metrics divided by the level of surgical 
experiences were almost the same between tasks 2 and 3 in 
the first data collection [3]. Overall, a total of 70 participants 
performed 89 training sessions of tasks 1 and 3 during the 
whole study period (19 participants overlapped during the 

first and second data collections). Written informed consent 
was obtained regarding the use of their data for research.

We previously reported the details of the present train-
ing tasks [3]. Briefly, swine cadaveric organs were set in 
a box trainer (Endowork ProII®, Kyoto Kagaku, Japan). 
During the training, one of the 4 authors (TA, MH, JF, and 
NI) performed the role of a scopist, using a video system 
(VISERA Pro Video System Center OTV-S7Pro, Olympus, 
Japan). In task 1, participants were asked to dissect tissues 
around the aorta, dividing encountered mesenteric vessels 
after applying a Hem-o-lok clip. In task 3, using a 15-cm 
2–0 CT-1 VICRYL® thread, participants were required to 
complete three square single-throw knots at 2 different sites 
on a kidney. If participants had trouble with the simulation, 
the scopist verbally guided each step of the task. All train-
ing sessions were video-recorded for later analyses. Demo-
graphic data and experience of laparoscopic surgeries were 
collected after the training session. The subjective mental 
workload was assessed by NASA Task Load Index after each 
training session for subsequent analysis.

Motion capture analysis

We previously reported the details of the present Mocap 
system [3]. Briefly, the Mocap system, which consists of 6 
infrared cameras (OptiTrack Prime 41, NaturalPoint Inc., 
USA), simultaneously tracked multiple surgical instruments. 
Infrared reflective marker sets with a different arrangement 
pattern were attached to handles of each surgical device, 
which enabled our system to recognize each instrument indi-
vidually regardless of the exchanges of instruments. The tip 
trajectories were calculated based on the positional relation-
ship between the tip and handle. The track of the tip of a 
device ( xi, yi, and zi ) was smoothed via the Savitzky-Golay 
filter [5], and its derivatives 

(

djxi

dtj
,
djyi

dtj
, and

djzi

dtj
(j = 1 to 3)

)

 
were also calculated by the filter. The definitions of measure-
ment outcomes (Mocap metrics) are summarized in Sup-
plementary Table 1. In the second data collection, grasping 
forceps with strain gauges were utilized in task 1 in order to 
measure the grasping force and position of grasping forceps, 
although it was not a focus of the present study. Figure 1 
shows pictures of the Mocap system, a surgical instrument 
with infrared markers, and endoscopic views of training 
tasks.

Analyses and statistics

Two experts (TA and KH) evaluated the recorded movies 
in accordance with the GOALS formula [4]. Both raters 
performed more than 500 laparoscopic surgeries, and they 
were familiar with GOALS assessment because they were 
involved in the original validation study of the present wet 
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lab model [1]. Anonymous video recordings were given to 
the two experts, and they independently scored the mov-
ies without any discussion or knowledge of participants’ 
backgrounds. The mean scores were utilized for subsequent 
analysis. The correlation was also evaluated by Spearman’s 
rank correlation coefficient. Next, correlations between 
mean GOALS scores and Mocap metrics were evaluated. 
For the subsequent machine learning analyses in order to 
develop an automatic skill assessment system according to 
the formula of GOALS, suitable Mocap metrics with a coef-
ficient absolute value of more than 0.4 were selected for 
each GOALS item estimation based on the two authors’ dis-
cussions (KE and TA). Supplementary Table 2 summarizes 
the hypothesis for each item’s estimation, derived from the 
discussion process. In task 3, the score of “Tissue handling” 
was omitted because needle and thread manipulations were 
the main components of this drill.

In order to establish automatic GOALS assessment, 
we utilized the four regression algorithms: support vector 
regression (SVR), principal component analysis (PCA)-
SVR, ridge regression (RR), and partial least squares regres-
sion (PLSR). Each algorithm has hyperparameters that must 
be determined before building a model. In this study, a grid 
search is performed to identify the best combination of 
parameters. The details of these algorithms and candidate 

parameters for the grid search are shown in Supplementary 
Table 3.

All Mocap metrics were normalized using robust Z-score 
normalization before inputting for these regression algo-
rithms. The robust Z score, zi, for data, xi, can be calculated 
as follows:

Here, xm is the median for data x , and NIQR is the normal-
ized interquartile range, calculated as NIQR = 0.7414 ⋅ IQR 
( IQR=interquartile range).

In order to evaluate the accuracies of each regression 
model, the mean absolute error (MAE) was used. MAE is 
calculated as follows:

where n is the number of subjects, yi is an actual GOALS 
score of subject i , and ŷi is that predicted.

Model validation was conducted by nested and repeated 
k-fold cross-validation, a combined method of nested k-fold 
cross-validation and repeated cross-validation. Supplemen-
tary Fig. 1 shows the data flow of the validation process. In 

zi =
xi − xm

NIQR
.

MAE =
1

n

n
∑

i=0

|

|

yi − ŷi
|

|

,

Fig. 1   Photographs of the simulation training. a The Mocap system, 
which consisted of 6 infrared cameras (OptiTrack Prime 41, Natu-
ralPoint Inc., USA), simultaneously tracked the movements of mul-
tiple surgical instruments during a series of training steps. b Scissors 
infrared reflective marker sets with an individual arrangement pattern 

were attached to handles of surgical instruments. c Swine aorta set in 
a dry box trainer. d Swine kidney set in a dry box trainer. e Task 1, a 
view of tissue dissection. f Task 1, a view of Hem-o-lok application. 
g Task 3, a view of needle driving. h Task 3, a view of making a knot
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this validation method, nested k-fold cross-validation was 
repeated with different dataset divisions. The number of rep-
etitions was set to 100 times in this study.

Spearman’s rank correlation coefficient was calculated 
using pandas ver. 1.1.4, data analysis library for Python 
(version 3.8.6.) [6]. All procedures of machine learning 
(parameter tuning, training, and validation models) were 
conducted using Scikit-learn, the machine learning library 
of Python [7]. The accuracies of each machine learning 
model calculated in the validation process were compared 
by the Kruskal–Wallis test. The Mann–Whitney U test was 
also utilized to assess the differences in model accuracy of 
each pair. Kruskal–Wallis and Mann–Whitney U tests were 
performed using JMP 14 (SAS, Japan).

Results

Table 1 shows a summary of participants’ backgrounds. 
Forty-five urologic surgeons, 9 gastroenterological surgeons, 
3 gynecologic surgeons, 4 junior residents, and 9 medical 
students voluntarily participated in the training during the 
study period. Previous experiences of laparoscopic surgery 
were as follows: 0–9: n = 20, 10–49: n = 18, 50–99: n = 7, 
100–499: n = 18,  ≥ 500: n = 7. As described above, 19 joined 
the training multiple times, which resulted in a total of 89 
training sessions. Due to video recording failure (task 1: 
n = 1 and task 3: n = 5), 88 movies of task 1 and 84 movies 
of task 3 were available for subsequent analyses.

Supplementary Fig.  2 shows scatterplots of GOALS 
scores assessed by the two experts. Good interrater correla-
tions of GOALS scores were confirmed in both tasks 1 and 
3 (Spearman’s rank correlation coefficient: task 1 = 0.7773, 
task 3 = 0.878). As shown in Supplementary Table 4, a good 

correlation was also confirmed in each component (coef-
ficient: 0.6662–0.8443).

Figure 2 (a: task 1, b: task 3) shows a heatmap of Spear-
man’s correlation coefficients between Mocap metrics and 
the mean GOALS scores (each item and total). In both tasks, 
a positive correlation was observed between the speed-
related parameters (e.g., velocity, velocity range, accelera-
tion, jerk) and mean GOALS scores, with a negative corre-
lation between the efficiency-related parameters (e.g., task 
time, path length, number of opening/closing operations) 
and mean GOALS scores. In other words, Mocap analysis 
revealed that surgeons with high GOALS scores manipulated 
surgical instruments fast and dynamically, which resulted in 
greater efficiency.

Table 2 summarizes the correspondence between each 
GOALS item and the selected Mocap metrics with a coef-
ficient of 0.4 or higher. For example, regarding depth per-
ception in task 1, as summarized in Supplementary Table 2, 
because we hypothesized that metrics associated with move-
ments along the sheath axis reflect depth perception, and 
"applying a Hem-o-lok clip on the vessel smoothly and 
quickly" strongly reflects a good spatial ability, we utilized 
the depth path length (DPL) and number of opening/clos-
ing operations for grasping forceps, DPL and depth velocity 
(DV) for scissor forceps, and all Mocap metrics with > 0.4 
coefficient for the clip applier in subsequent machine learn-
ing analyses for the automatic skill assessment system.

Figure 3 shows box plots of MAEs regarding the accu-
racy of estimated GOALS scores (total) under repeated 
and nested cross-validation in each machine learn-
ing model (SVR, PCA-SVR, RR, and PLSR). Table  3 
also shows a summary of the tests results including each 
GOALS component. Regarding the total GOALS score, 
the SVR method showed the highest accuracy in task 1 
(Fig. 3a), and PCA-SVR in task 3 (Fig. 3b). The medians 
of the model accuracy of the 100 iterations of the valida-
tion process were MAEmedian = 2.2352 in task 1 (SVR), and 
MAEmedian = 1.2714 in task 3 (PCA-SVR). Figure 4 shows 
scatter plots of actual and predicted GOALS scores derived 
from 100 iterations. In task 1 (SVR), the errors between 
actual and predicted scores were smaller in the participants 
with actual scores > 15, and small in all participants in task 
3 (PCA-SVR).

Discussion

Using motion metrics of the instruments, several previous 
studies were aimed to measure surgical skills [8, 9], and 
machine learning showed good performance to classify 
laparoscopic surgeons according to previous surgical expe-
rience [10–13]. For example, Oropesa et al. compared three 
methods: linear discriminant analysis (LDA), SVM, and an 

Table 1   Summary of participants’ backgrounds

n = 70

Age, years Median 35 (range, 23–57)
Sex Male/female = 61/9
Background Urologic surgeon, n = 45

Gastroenterological surgeon, n = 9
Gynecologic surgeon, n = 3
Junior resident, n = 4
Medical student, n = 9

Experience of laparoscopic 
surgery

0–9, n = 20
10–49, n = 18
50–99, n = 7
100–499, n = 18
 ≥ 500, n = 7

Dominant hand Right/left = 67/3
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adaptive neuro-fuzzy inference system (AN-FIS), to classify 
42 participants according to previous surgical experience 
(> 10 laparoscopic surgeries performed vs. < 10) by leave-
one-out cross-validation [12]. Instrument movements were 
captured in three box trainer tasks (peg grasping task, task 
that requires placing three elastic bands through their cor-
responding posts, and coordinated peg transfer task) by the 
TrEndo tracking system [10]. They observed that the mean 
accuracy of classification was 71% with LDA, 78.2% with 
SVM, and 71.7% with AN-FIS. Overall, previous research-
ers utilized simple training tasks such as “peg transfer”, 
“pattern cutting”, or “suturing”, which did not require the 
exchange of surgical instruments, utilized previous surgical 
experience as a surrogate marker of surgical competence, 
and focused on the differential accuracy of each machine 
learning model regarding surgical competency, not provid-
ing comprehensive feedback to trainees based on the move-
ments of surgical instruments. Rather, in the present study, 
using relatively complex training tasks (task 1: tissue dissec-
tion around a swine aorta, task 3: renal parenchymal closure) 

for which we previously reported good construct validity [1], 
we aimed to develop a wet-lab training model that offered 
completely objective feedback to trainees according to the 
GOALS formula.

Because our prior study showed that the level of surgical 
experience was not always associated with surgical dexter-
ity on Mocap-based evaluation, we reviewed the recorded 
movies, and scored those according to the GOALS formula. 
GOALS is an already validated and widely used assessment 
tool for grading laparoscopic surgical skills, and consists of 
five items: depth perception, bimanual dexterity, efficiency, 
tissue handling, and autonomy [4]. Each item is scored on a 
Likert scale between 1 and 5, which results in a total score 
between 5 and 25. As a result, we observed good interrater 
correlation between the two experts for the total score and 
for each item both in tasks 1 and 3 (Supplementary Fig. 2, 
and Supplementary Table 4), and the mean scores were uti-
lized for subsequent analyses.

As the next step, we evaluated the correlation between the 
mean GOALS scores and Mocap metrics. In both tasks, a 

S_NOC

G_NOC

Time (b)(a)
Time

Fig. 2   Heatmap of Spearman’s correlation coefficients between 
Mocap outcomes and mean GOALS scores (a task 1, b task 3). In 
both tasks, a positive correlation was observed between the speed-
related parameters (e.g., velocity, velocity range, acceleration, jerk) 
and mean GOALS sores, with a negative correlation between the 
efficiency-related parameters (e.g., task time, path length, number 
of opening/closing operations) and the mean GOALS scores. “DP”, 
“BD”, “E”, “TH”, and “A” are items of GOALS. DP = Depth per-
ception, BD = bimanual dexterity, E = efficiency, TH = tissue han-
dling, A = autonomy. The prefixes of each item in the figure (“G”, 
“S”, “H”, “R”, “L”) are instruments. G = Grasping forceps, S = scis-
sor forceps, C = clip applier, R = right needle holder, L = left needle 
holder. The suffixes of each item in the figure are Mocap parameters. 

Time = operative time, BD = bimanual dexterity, ROB = ratio of fre-
quency of opening/closing for both forceps, RPLB = ratio of path 
length for both hands, ADBO = average distance between both for-
ceps when opening/closing, ADB = average distance between both 
forceps, PL = path length, V = average velocity, A = average accel-
eration, J = average jerk, (Close, Near Far) = distribution of working 
area, (Idle, Low, Middle, High, Very high) = distribution of veloc-
ity, DPL = depth path length, DV = depth velocity, NOC = number 
of opening/closing operations, AGRA = average gripper rotation 
angle, (Roll, Pitch, Yaw) = average attitude angle, AL-Roll/AL-Pitch-
Yaw = angular length of Roll/Pitch and Yaw, WA = working area, 
AIT = average inserting time
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positive correlation was observed in the speed-related met-
rics (e.g., velocity, velocity range, acceleration, jerk), and a 
negative correlation in the efficiency-related metrics (e.g., 
task time, path length, number of opening/closing opera-
tions). Because we aimed to calculate each GOALS item’s 
score according to its original meaning, potential Mocap 
metrics were selected based on the two authors’ discussions, 
as summarized in Supplementary Table 2. For example, as 
described above, we utilized the depth path length (DPL) 
and number of opening/closing operations with grasping 
forceps (we hypothesized that poor depth perception results 
in failure to grasp tissues), DPL and depth velocity (DV) 
with scissor forceps, and all Mocap metrics with > 0.4 coef-
ficient with the clip applier regarding depth perception in 
task 1. Because we considered that “applying a Hem-o-lok 

clip on a pedicle smoothly” strongly reflected the skill of 
depth perception, all Mocap metrics with > 0.4 coefficient 
with the clip applier were included. In task 3, after discus-
sion, we discontinued “Tissue handling” calculation because 
the task consisted of needle and thread control, not tissue 
manipulation.

In the present study, we utilized the four major algorithms 
for automatic GOALS estimation. As SVR and PCA-SVR 
are non-linear regression methods, and RR and PLSR are 
linear regression methods, we aimed to utilize a variety of 
regression methods. Regarding the validation process, in 
general, “leave-one-out cross-validation” has a tendency 
whereby the generalization error often has high variance 
because the model is constructed by [n-1] samples out of 
a total of [n] samples, and the constructed models may be 

Table 2   Correspondence table of each GOALS item and the selected Mocap parameters with a coefficient of more than 0.4

A Average acceleration, AIT average inserting time, AL-Roll/AL-PitchYaw angular length of roll/pitch and yaw, BD bimanual dexterity, DPL 
depth path length, DV depth velocity, (Idle, Low, Middle, High, Very high) distribution of velocity, J average jerk, NOC number of opening/clos-
ing operations, PL path length, V average velocity, WA working area

Task 1
Item General Grasping forceps Scissors Clip applier
Depth perception DPL, NOC DPL, DV V, A, J, Idle, High, Very high, DV, 

AIT
Bimanual dexterity Time PL, AL-Roll PL, AL-Roll, AL-PitchYaw, WA Idle, AL-PitchYaw, AIT
Efficiency Time PL, DPL, NOC, AL-Roll, AL-

PitchYaw
PL, V, A, J, Idle, Middle, DPL, DV, 

NOC, AL-Roll, AL-PitchYaw, 
WA

V, A, J, Idle, High, Very high, DV, 
AIT

Tissue handling PL, NOC, AL-Roll, AL-PitchYaw PL, NOC, AL-Roll, AL-PitchYaw, 
WA

Autonomy Time V, A, J, Idle, Middle V, A, J, Idle, High, Very high, AIT
Task 3
Item General Right needle holder Left needle holder
Depth perception DPL, DV DPL, AV
Bimanual dexterity Time, BD PL, AL-Roll PL, AL-Roll, AL-PitchYaw
Efficiency Time, BD PL, V, A, Low, Middle, High, DPL, 

DV
PL, V, Idle, Middle, DPL, DV, AL-

PitchYaw
Tissue handling Not calculated
Autonomy Time V, A, Low, Middle, High V, Idle, Middle

Fig. 3   Box plots of mean 
absolute errors (MAEs) under 
repeated and nested cross-
validation in each machine 
learning model in task 1 (a) and 
task 3 (b). SVR = support vector 
regression, PCA-SVR = princi-
pal component analysis-SVR, 
RR = ridge regression, and 
PLSR = partial least squares 
regression

(a) Task 1 (b) Task 3
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identical to each other and the same as models built from 
the entire training set, which may result in overfitting. For 
these reasons, we performed k-fold cross-validation. In addi-
tion, in order to optimize hyper parameters of a model while 
avoiding overfitting to the dataset, we utilized nested cross-
validation by nesting k-fold cross-validation. Regarding the 
accuracy of the machine learning model, in general, MAE 
and root mean squared error (RMSE) are frequently utilized. 
Regarding RMSE, because it uses the square error for cal-
culation, it might be strongly influenced by outliers. In the 
present study, aiming to evaluate the error equally among all 
data, we used MAE, which utilizes an absolute error value 
for accuracy estimation.

As presented in Fig. 3 and Table 3, the SVR method 
showed the highest accuracy in task 1, and PCA-SVR in 
task 3. The medians of the model accuracy of 100 iterations 
of the validation process were MAEmedian = 2.2352points 
in task 1 (SVR), and MAEmedian = 1.2714points in task 3 
(PCA-SVR). In other words, the SVR model can estimate 
the GOALS score with an error of approximately 2.2 points 
in the range of GOALS scores of 5–25 in task 1, and PCA-
SVR with an error of approximately 1.3 points in the range 
of GOALS scores of 4–20 in task 3. As shown in Fig. 4, the 
errors between actual and predicted scores were smaller in 
the participants with actual scores > 15 in task 1, and small 
in all participants in task 3 (PCA-SVR). Our observations 
suggest that in task 1, automatic feedback is more reliable 
in better surgeons, while reliable in a range of surgeons in 
task 3, and both tasks should be included in training drills 
in order to provide accurate feedback to participants accord-
ing to the GOALS formula. Our future challenge is further 
improvement for onsite GOALS feedback. A randomized 
control study, with the hypothesis that motion capture–based 
feedback enhances the initial phase of the learning curve, 
would be an interesting study to address the educational 
benefit of the current model. In addition, we consider that 
our automated GOALS score can be used as part of a skill 
credentialing system.

Limitations of this study include the small sample size, 
lack of qualitative assessment of the tissue dissection and 

intracorporeal knot suture themselves, and heterogeneity 
including, for example, three surgeons were left-handed, 
although they performed actual surgeries with a right-
handed style. Regarding the accuracy of the tip position, 
we previously compared the tip position calculated by the 
positional relationship between the tip and handle, with the 
actual tip position, which was measured by tracking the 
marker attached to the tip of devices [2]. The positional 
errors were less than 2 mm, and the current smoothing pro-
cess also might influence the metrics, although we consider 
the errors to be within an acceptable range.

In addition, the present study was never free from the 
uncertainty derived from human assessment of the GOALS 
score, although we utilized mean scores from two experts, 
who independently assessed the movies in a blind manner 
in order to mitigate human bias. The selection process of 
Mocap metrics for each GOALS item calculation was also 
not free from bias. As described above, in order to miti-
gate the risk of overfitting, we utilized a combined method 
of nested and repeated k-fold cross-validation. In the cross 
validation process, training sets were not used as test sets in 
each iteration. We consider that this method can mitigate 
the risk of overfitting compared with “leave-one-out cross-
validation. However, the data splitting method (training and 
validation) is not free from overfitting or model selection 
bias, and we need to validate our model with an external 
cohort. In order to validate our system, we just started new 
data collection, with several improvements including the 
use of another motion camera system with ease of port-
ability that does not require calibration (OptiTrack V120: 
Trio, NaturalPoint Inc., USA). Using this system, we are 
now collecting Mocap data in cadaveric simulation train-
ings (laparoscopic nephrectomy task). Because it is a more 
complicated and long-duration task, we might be able to 
analyze the change of Mocap characteristics according to the 
progress of the task, with the hypothesis that experts have 
specific Mocap features in terms of “robustness” to long 
surgery. Furthermore, to clarify tacit knowledge regarding 
surgical dexterity, different approaches such as explainable 
artificial intelligence might be necessary. Nevertheless, the 

Fig. 4   Box plots of actual vs. 
predicted GOALS scores of 
tasks 1 and 3. The predicted 
scores of task 1 were calculated 
by SVR, and those of task 3 
were calculated by PCA-SVR. 
These models show the highest 
accuracy in each validation 
process. Since nested and 
repeated k-fold cross-validation 
was conducted in this study, the 
predicted GOALS score for one 
subject was obtained 100 times

(a) Task 1 (b) Task 3
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machine learning algorithms automatically enabled us to 
asses surgical psychomotor skills based on the motion met-
rics of surgical instruments.

Conclusions

Using machine learning algorithms, we developed a Mocap-
based skill assessment system in wet lab training, with a 
total GOALS score error of approximately 1–2 points, which 
can provide completely objective feedback to trainees. Our 
future challenges are the further improvement of onsite 
GOALS feedback, exploring the educational benefit of our 
model, and building an efficient training program.
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