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Abstract
Background Nonalcoholic fatty liver disease (NAFLD) has become the most common form of chronic liver disease in both
adults and children worldwide. Understanding the pathogenic mechanisms behind NAFLD provides the basis for identifying risk
factors, such as metabolic syndrome, pancreatoduodenectomy, and host genetics, that lead to the onset and progression of the
disease. The progression from steatosis to more severe forms, such as steatohepatitis, fibrosis, and cirrhosis, leads to an increased
number of liver and non-liver complications.
Purpose NAFLD-associated end-stage liver disease (ESLD) and hepatocellular carcinoma (HCC) often require surgery as the
only curative treatment. In particular, the presence of NAFLD together with the coexisting metabolic comorbidities that usually
occur in these patients requires careful preoperative diagnosis and peri-/postoperative management. Bariatric surgery, liver
resection, and liver transplantation (LT) have shown favorable results for weight loss, HCC, and ESLD in patients with
NAFLD. The LT demand and the increasing spread of NAFLD in the donor pool reinforce the already existing lack of donor
organs.
Conclusion In this review, we will discuss the diverse mechanisms underlying NAFLD, its implications for surgery, and the
challenges for patient management.
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Introduction

Nonalcoholic fatty liver disease (NAFLD) is the leading pri-
mary cause of chronic liver disease in both children and adults
worldwide today. Global prevalence is estimated at 25% and
accounts for the most common etiology of abnormal liver
function tests in western countries [1]. NAFLD has reached
epidemic proportions yet important geographic variabilities
must be recognized. Its prevalence has been reported to be
the highest in South America and the Middle East (> 30%),
followed by Asia (27%) and North America and Europe, who
have shown similar prevalence rates (24% and 23%,

respectively) [2]. Ethnicity also accounts for discrepancies
within regions that may be explained by differences in life-
style and diet, access to health care, and genetic factors. In the
USA, Hispanic Americans have the highest prevalence of
NAFLD and it has been shown that ethnic backgrounds influ-
ence individual susceptibility to the development of this dis-
ease [2].

NAFLD encompasses the entire spectrum of disease which
are characterized by hepatic steatosis that develops in the ab-
sence of competing liver disease etiologies such as alcohol
consumption, monogenic hereditary conditions, or iatrogenic
causes [3]. Excessive triglyceride accumulation in hepatocytes
defines NAFLD but the presence of additional histological
abnormalities is a key factor in the stage of disease, progres-
sion, and outcomes. Nonalcoholic steatohepatitis (NASH), an
inflammatory stage of NAFLD, is characterized by steatosis
as well as lobular inflammation and hepatocyte injury [4]. It
represents a more severe course of the disease resulting in a
higher risk of progressing to severe fibrosis, subsequently cir-
rhosis and hepatocellular carcinoma (HCC) [2]. Although the
degree of fibrosis and scar formation is independent and varies
in every stage of NAFLD, it represents the main prognostic
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factor for long-term outcomes and liver-related mortality in
this subpopulation [1].

NAFLD prevalence is rising in parallel with the worldwide
increase of obesity and insulin resistance. A constellation of
metabolic disorders is usually present in patients with NAFLD
and includes obesity, type 2 diabetes mellitus (T2DM),
dyslipidemias, and other features of the metabolic syndrome
(MS). The prevalence in patients undergoing bariatric surgery
exceeds 90%, and it is diagnosed in 55% of patients with
T2DM [3, 5]. The same metabolic risk factors that trigger
cardiovascular disease (CVD) appear to underly the develop-
ment of NAFLD. Consistent with this finding, cardiac and
liver-related complications are the leading causes of morbidity
andmortality in this population [4]. The presence of metabolic
comorbidities and cardiovascular disease has significant clin-
ical implications for the management and treatment of the
disease. Although patients usually have typical features of
MS, it is increasingly recognized that NAFLD can develop
in the absence of obesity. Lean NAFLD, diagnosed in patients
with BMI < 25, may be present in up to 10–20% of the
American and European population and deserves the same
clinical attention [2, 6].

Given the rise in metabolic diseases and the consideration
of new dietary and lifestyle patterns, a sustained increase in
NAFLD prevalence is expected. It is estimated that 20% of
patients develop NASH, a stage within the spectrum that is
associated with higher mortality rates [4]. The progression of
the disease leads to increased liver-specific and life-
threatening complications, such as cirrhosis and HCC, which
represent an enormous burden for the future. The upcoming
challenges and demands on health care are even greater since
it has been shown that non-cirrhotic NASH patients can also
develop HCC [3]. Accordingly, the burden of NAFLD-related
liver transplantation (LT) has increased dramatically and
places a growing strain on the health system. While
NAFLD-associated HCC is increasing drastically, NASH-
cirrhosis is now considered the second most common indica-
tion for LT in the USA after chronic hepatitis C [2]. It is
important that the complexity of these patients is taken into
account when considering and evaluating patient manage-
ment. While NAFLD prevalence remains undiminished, its
clinical, economic, and health implications are undeniable:
NAFLD has slowly become the leading cause of chronic liver
disease, patients usually coexist with multiple metabolic com-
plications, and it will soon emerge as the primary indication
for liver transplantation.

Current and future implications of pediatric
NAFLD

The global obesity epidemic of the twenty-first century has led
to a dramatic increase in the rate of obesity among children

[2]. The exponential risk of developing obesity-related liver
disease in this population poses an enormous burden on social
care and health systems in the near future. It is estimated that
NAFLD affects 3–10% of the general pediatric population and
it has emerged as the most common cause for chronic liver
disease in children. The intake of high caloric foods in com-
bination with a sedentary lifestyle foreshadows the onset of
fatty liver disease. Central obesity along with insulin resis-
tance represents the strongest risk factors for childhood
NAFLD. Despite its strong association with an unhealthy life-
style and weight gain during school years, the complex inter-
play of several environmental factors in a genetically suscep-
tible individual must be taken into account. Further elucida-
tion of the pathophysiology behind the development and pro-
gression of NAFLD in children will help to identify suscepti-
ble individuals, trigger factors, and modifiable lifestyle chang-
es. In combination, this will hopefully contribute to early di-
agnosis, prevention, and patient-tailored therapy [7].

Children with NAFLD have multiple obesity-related co-
morbidities, such as insulin resistance, dyslipidemia, MS,
and obstructive sleep apnea. Yet, few or no clinical signs
and symptoms of NAFLD hinder an early diagnosis.
Patients are usually asymptomatic, and diagnosis is often in-
cidental at a mean age of 11–13 years. In addition, current
diagnostic techniques lack sensitivity and specificity to deter-
mine the stage of disease and the extent of liver fibrosis. The
progression from reversible conditions such as steatosis to
irreversible cirrhosis makes early diagnosis a key element
for proper and timely treatment [7].

The long life expectancy of children corresponds to the
increased risk of developing long-term complications related
toNAFLD.However, further studies are needed to examine the
exact outcomes that result from childhood NAFLD. Weight
gain in childhood and adolescence not only is associated with
NAFLD development but also makes individuals susceptible
to end-stage liver disease and HCC later in life [7]. With the
earlier onset of the disease, associated complications will
appear earlier, and clinicians and surgeons are faced with youn-
ger patients who need treatment. Poor quality of life, shorter
life expectancy, and a burden on the health system will reflect
the expectation of end-stage liver disease and HCC [2].

Mechanisms of NAFLD/NASH

The development of steatosis as well as the progression to
NASH and fibrosis represents a complex and dynamic process
(Fig. 1). A combination of environmental factors, host genet-
ics, and gut microbiota can lead to an excessive influx of free
fatty acid (FFA) influx and accumulation of triglyceride
(TAG) in the hepatocytes, creating a lipotoxic environment
that leads to hepatocyte cell death, liver inflammation, fibro-
sis, and pathological angiogenesis. The subsequent hepatic
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inflammatory response promotes fibrogenesis in the liver and
is an important driving force for disease progression. Several
factors work in parallel or sequentially to promote sustained
inflammation, hepatocellular injury, and an abnormal wound
healing response shaping the clinical and histological features
of the disease [8, 9].

Insulin resistance and adipose tissue
inflammation

The coexistence of multiple metabolic comorbidities in pa-
tients with NAFLD is widely recognized and reflects systemic
dysfunctional metabolic pathways. Obesity and insulin resis-
tance form the basis for the development of hepatic steatosis.
Obesity is known to be associated with a low-grade inflam-
matory state in adipose tissue (AT) that alters cytokine

secretion and impairs insulin signaling [1, 10]. Obesity-
related insulin resistance (IR) hinders TAG storage, leads to
uncontrolled AT lipolysis, and consequently results in high
levels of circulating FFA. An increased hepatic influx of
FFA fuels TAG synthesis, and at the same time, insulin resis-
tance paradoxically upregulates de novo lipogenesis (DNL) in
hepatocytes, which further promotes hepatic fat accumulation
[8]. Dietary sugars and fats are also important sources of TAG
synthesis that contribute to hepatic steatosis [1]. In turn, the
buildup of lipids in the liver alters its endocrine function and
contributes to the maintenance and deterioration of IR.
Disrupted protein signaling from the liver in the setting of
NAFLD affects inflammation, lipogenesis, and fatty oxidation
pathways in the liver, AT, skeletal muscle, and in the pancre-
as, all of which regulate insulin action [11]. IR and NAFLD
consequently enter a vicious progression cycle and regulate
each other positively. Understanding the relationship between

Fig. 1 Mechanisms of NAFLD/NASH and surgical treatment strategies.
The pathogenesis of NAFLD is complex and multifaceted. NAFLD de-
velopment is closely related to the presence of the metabolic syndrome
(MS). In this scenario, obesity-associated inflammation and insulin resis-
tance were identified as key contributors to the disease. Lipotoxic-
induced cell stress and hepatocyte cell death fuel NAFLD and promote
the transition to more severe stages, such as NASH. Changes in the gut
microbiota as well as in the host’s genetics modify an individual’s sus-
ceptibility to disease development and progression. In particular, the set-
ting of exocrine pancreatic insufficiency and malnutrition caused after
pancreatoduodenectomy has also been proven to be an important factor
favoring the development of NAFLD. The intrinsic relationships between
MS, NAFLD, and obesity is well known.While weight loss from lifestyle
changes remains the primary recommendation, barriers to such changes
along with disease severity make management of NAFLD/NASH by
surgery an optimal treatment. However, the coexistence of multiple

metabolic comorbidities in patients with NAFLD carries an increased risk
when considering surgery. Bariatric surgery has become an alternative to
achieving significant weight loss and has been shown to stop NAFLD
progression. Liver surgery is the only curative treatment for HCC and
ESLD, two common liver-specific consequences of NAFLD. While liver
resection can cure HCC, severe cirrhosis with liver failure requires LT.
NAFLD is emerging as the leading indication for LT, and the growing
demand poses numerous challenges for patient access to LT and the pre-
and post-operative management of patients. The increasing prevalence of
NAFLD in the population and the liver donor pool represents a burden for
the future. The increasing demands on LT in combination with an excess
of NAFLD in the liver donor pools exacerbate the already existing short-
ness of graft organs. LT liver transplantation, HCC hepatocellular carci-
noma, ESLD end stage liver disease, NAFLD nonalcoholic fatty liver
disease, NASH nonalcoholic steatohepatitis
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these metabolic comorbidities is therefore essential, especially
when considering patient management.

Hepatocellular stress

Oxidative stress is involved in the pathophysiology of chronic
liver disease. Liver damage is mediated by direct cellular in-
jury, cell degeneration and demise via apoptosis, and other
forms of cell death, proinflammatory cytokine expression, he-
patic stellate cell activation (HSCs), and abnormal wound
healing responses leading to fibrosis [12]. Oxidative stress
results from an imbalance between pro-oxidant species and
anti-oxidant defense capacities. The oxidative injury to liver
cells is enhanced by an overproduction of toxic lipid metabo-
lites in the setting of hepatic steatosis. Aberrations in the lipid
metabolism together with dietary intake of FFA establish a
lipotoxic hepatic environment that triggers hepatocellular in-
jury and an inflammatory response which supports the transi-
tion from simple steatosis to NASH. The presence of lipid
peroxidation markers has been shown to correlate with
myeloperoxidase-positive neutrophils, an important source
of reactive oxygen species (ROS), and disease severity [13].
Activation of NADPH oxidase, the main enzyme in ROS
production, in Kupffer cells (KCs) and HSCs also contributes
to inflammatory and fibrogenic signaling in response to nox-
ious stimuli such as danger-associated molecular patterns
(DAMPs) and products of lipid peroxidation [9].

Mitochondria are the primary cellular source of ROS and
therefore a potential determinant for hepatocellular injury.
Patients with NASH have demonstrated to have defective he-
patic ATP synthesis due to a reduced mitochondrial respirato-
ry chain activity [14]. ROS-mediated mitochondrial DNA
damage and mitochondrial membrane lipid peroxidation ac-
cumulate over time and lead to cellular dysfunction.
Consistent functional and structural mitochondrial aberrations
can in turn potentiate mitochondrial oxidative damage, lead to
loss of mitochondrial integrity, and trigger proapoptotic sig-
naling pathways, all of which contribute to disease progres-
sion [12].

Hepatocellular death

Cell death is the ultimate driver of liver disease development
and fibrosis progression. Despite its well-known function in
maintaining homeostasis in the healthy liver, chronic liver
diseases that promote tissue fibrosis, cirrhosis and HCC, trig-
ger a maladaptive response to cell death. Hepatocyte balloon-
ing, apoptosis, necro-inflammation, and different degrees of
fibrosis in the setting of hepatic lipid accumulation histologi-
cally characterize NASH, indicating the occurrence of multi-
ple types of cell death [15]. Different modes of cell death such

as apoptosis, necrosis, necroptosis, and pyroptosis have been
shown to contribute to liver disease in a cell-, stage-, and
context-specific manner [16].

Apoptosis

Apoptosis is a well-known and highly regulated form of cell
death. Although usually considered a silent and noninflamma-
tory process, apoptosis has been identified as an important
mechanism for liver damage and is strongly associated with
the pathogenesis of NAFLD [16]. The extent of hepatocyte
apoptosis correlates with disease severity, and patients with
NASH have demonstrated to have a stronger expression of
several apoptotic pathways compared with those with only
hepatic steatosis. Feldstein et al. have demonstrated active
caspases 3 and 7 as well as a strong expression of Fas recep-
tors in NASH specimens, all which confirm the occurrence of
apoptosis in this disease [17]. A causal relationship between
apoptosis and liver fibrosis has also been elucidated.
Phagocytosis of apoptotic hepatocytes by quiescent hepatic
stellate cells stimulates their fibrogenic activity and leads to
collagen accumulation, which translates into fibrosis and pos-
terior cirrhosis [18]. Hepatocyte apoptosis has also been
linked to the release of mediators that promote a cellular im-
mune response and create an inflammatory milieu.

A wide range of intrinsic and extrinsic cellular events func-
tions as triggers of apoptosis, and mechanistically, the activa-
tion of caspases, Bcl-2 family proteins, and c-Jun N-terminal
kinase-induced hepatocyte apoptosis play a role in the pro-
gression of NASH [18]. The increased influx of fatty acids
has a lipotoxic effect on hepatocytes, and lipid-induced apo-
ptosis, a process termed lipoapoptosis, promotes fibrosis in the
setting of liver steatosis. Caspase-2 is an initiator-caspase in
lipoapoptosis, and its activity enhances pro-fibrogenic events
[18]. Death receptor-mediated apoptosis is also a key feature
of liver disease and has an inflammatory effect through the
secretion of extracellular vesicles and chemokines that recruit
and activate immune cells [16]. The Fas receptor is upregulat-
ed in steatotic livers, and TRAIL-receptor signaling correlates
with liver injury, macrophage-associated inflammation, and
fibrosis [17, 19]. Hepatocyte-apoptosis plays a fundamental
role in the progression from simple, “benign” steatosis to
NASH. However, a recent study using the pan-caspase inhib-
itor emricasan in NASH patients failed to improve disease
activity and fibrosis and suggested that inhibition of the main
apoptotic caspases 3 and 7 resulted in a shift to other types of
cell death [20].

Necroptosis

Necroptosis is a regulated type of cell death that includes
features of apoptosis and necrosis. It is believed that it acts
as a backup mechanism of programmed cell death when
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apoptosis is inhibited. Necroptosis shares upstream activating
mediators with apoptosis but morphologically resembles ne-
crosis as it causes cell swelling and rupture [16]. Receptor
interacting proteins (RIPs) are important cell stress sensors
that activate the necroptotic pathway, and the formation of
the “necroptosome,” a complex containing RIPK1, RIPK3,
and mixed lineage kinase domain-like protein (MLKL), leads
to membrane lysis and pore formation. The cellular release of
DAMPs due to cell membrane disruption is associated with
the possible activation of the innate immune system and
neighboring cells [21].

Clear understanding of the role of necroptosis in liver pa-
thology remains limited. The lack of expression of RIPK3 in
hepatocytes under basal conditions is comparable with the
increased expression that was observed after chronic ethanol
feeding and dietary mouse models of steatohepatitis.
Upregulation of RIPK3 has also been demonstrated in human
NASH and in patients with alcohol liver disease [21].
Although HFD mouse models show an upregulation of
RIP3, the genetic deletion of RIP3 increased inflammation
and hepatocyte apoptosis, suggesting a protective role of
necroptosis in the pathogenesis of NAFLD [22]. This mark-
edly contrasts previous findings that showed the harmful ef-
fects of RIP3 on liver injury in response to methionine- and
choline-deficient (MCD) feeding. RIP3K-dependent
necroptosis in MCD-fed mice led to liver injury, inflamma-
tion, induction of hepatic progenitor cells/activated
cholangiocytes, and liver fibrosis [15]. The important differ-
ences in the pathophysiology between HFD and MCD diet-
induced liver injury suggest that the metabolic state of the liver
orchestrates the balance between the different types of pro-
grammed cell deaths [22]. The controversial findings in the
two dietary models support that the different activation of
specific types of cell death influences the outcomes in liver
disease [23].

Pyroptosis

Pyroptosis is the most recently described type of programmed
inflammatory cell death. Caspase-1, a pro-inflammatory cas-
pase, activation is the primary upstream mechanism of this
pathway and involves the assemble of inflammasome multi-
protein complexes and the formation of pores in the cell mem-
brane [9]. The resulting maturation and release of interleukin
(IL)-1β and IL-18 into the extracellular space and the circula-
tion make this mechanism intrinsically proinflammatory.
Studies have shown that active inflammasome particles are
also released during this process and suggest pyroptosis as a
novel mechanism that transmits inflammatory signal to neigh-
boring cells [21].

Different mechanisms drive pyroptosis and include canon-
ical and noncanonical inflammasome activation [21]. Global
NLRP3-overactivated mutant mice have pronounced

pyroptotic cell death and severe inflammatory changes and
liver fibrosis. This reveals NLRP3-mediated pyroptosis as a
harmful hepatic stimulus [24]. Gasdermin D (GSDMD) has
recently been recognized as a key effector molecule in
pyroptosis-induced cell membrane pore formation but a clear
understanding of its contribution according to each type of
liver injury is still limited. GSDMD levels are elevated in
livers of NAFLD, and expression correlates with disease se-
verity. GSDMD global knockouts had a protective effect
when fed a MCD diet and showed less steatosis, inflamma-
tion, and fibrosis [25].

Immune system

The role of immune cells is necessary to maintain organ ho-
meostasis as they act as stress sensors and mediate a balanced
and well-coordinated response under physiological condi-
tions. An overactive immune response becomes pathological
and is seen in the context of chronic-inflammatory-driven liv-
er disease such as NASH. Pattern recognition receptors in
immune cells play a pivotal role in NASH, and downstream
signals trigger a cascade of inflammatory cytokine secretion
[9]. In addition to other endogenous and exogenous factors,
dying hepatocytes release danger signals that induce the acti-
vation of a sterile inflammatory response in cells of the innate
immune system [26]. Intercellular crosstalk increases pro-
inflammatory signaling to neighboring cells, and novel drivers
of inflammation are constantly being discovered. Importantly,
HSC activation is sensitive to most of these factors. Although
activated HSCs intend to mitigate liver damage, persistent
activation leads to pathological scar formation and destruction
of liver architecture.

In early stages of the disease, KCs coordinate the recruit-
ment of other immune cells and promote hepatocyte apoptosis
by releasing IL-1β, TNF, CCL2, and CCL5 [27]. KCs and
infiltratingmonocyte-derivedmacrophages represent different
subsets of liver macrophage populations that contribute to
liver inflammation and damage in different but significant
ways. KCs have been shown to promote lipid accumulation,
a predominant characteristic of NAFLD [28]. Neutrophil mi-
gration to the injured liver is a major source of ROS. Though
necessary to alleviate the noxious stimuli, activation of neu-
trophils must be tightly regulated due to adverse cytotoxic
effects. A higher neutrophil-to-lymphocyte ratio was found
in patients with NASH and reflects enhanced physiological
stress leading to more severe forms of the disease [29].
Innate immune cells represent a dynamic population in the
setting of liver injury, and a dysregulated or hyper-
stimulated communication between these cells creates an ideal
environment for the transition of hepatic steatosis to
steatohepatitis and fibrosis.
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Inflammasome

Inflammasomes are intracellular multiprotein complexes
present in liver parenchymal and nonparenchymal cells that
sense danger signals and control the activation of caspase-1.
The downstream cleavage and activation of pro-caspase-1
and the secretion of pro-inflammatory cytokines IL-1β and
IL-18 upon stimulation make inflammasomes key regula-
tors of inflammation and cell fate [26, 30]. The IL-1 path-
way has been described as an important mediator for the
transition from liver steatosis to steatohepatitis and liver
fibrosis in murine models of NASH [31]. Inflammasome-
induced pyroptosis contributes to an inflammatory feed-
forward loop since, as previously described, this cell death
mechanism is intrinsically pro-inflammatory. In addition to
intracellular activity, the release of inflammasome particles
following pyroptosis has been discovered as a novel mech-
anism that transmits inflammasome signaling to neighbor-
ing cells [26].

NLRP3 is the best characterized inflammasome involved
in chronic liver injury and contributes significantly to NAFLD
development. Constitutive activation of NLRP3 in mouse
models exacerbated liver inflammation and highlighted its
role in disease progression to steatohepatitis and early fibrosis
[32]. Several pathways, including pathogens and sterile in-
sults, have been described to activate NLRP3 and the molec-
ular mechanisms behind them include a decrease of intracel-
lular K+ concentration, the generation of mitochondrial-
derived reactive oxygen species (ROS), the rise of cytosolic
Ca2+, and the activity of lysosomal proteases [26]. The pres-
ence of NLRP3 inflammasome in hepatocytes, HSCs, and
liver macrophages has revealed an important crosstalk be-
tween all liver cellular types that orchestrate inflammatory
signaling. Cell specificity of inflammasome activation has
elucidated a particularly important role of NLRP3 activation
in HSCs, the main fibrogenic effector cell in liver disease.
Aberrant activation of HSCs to myofibroblasts leads to in-
creased production and deposition of extracellular matrix pro-
teins and the resulting scar formation seen in liver fibrosis.
NLRP3 inflammasome induction in HSCs favors the switch
to myofibroblasts and is sufficient to trigger fibrogenesis re-
gardless of inflammation [33]. These findings support that
inflammasomes are key modulators of the main processes that
mediate chronic, persistent liver injury.

Gut-liver axis

The intestinal microbiota (IM) represents a complex ecosys-
tem that is actively involved in protective, immune, metabolic,
and trophic functions. The multidirectional interplay between
an imbalanced IM, the immune system, the liver, and

metabolic pathways is increasingly recognized in the patho-
genesis of NAFLD [34].

Obesity is an important determinant of NAFLD, and alter-
ations in the composition of the gut microbiota have been
reported in overweight people. The ability of the microbiota
to gain energy from food is greater in obese individuals and
demonstrates that microbial genome plays a role in determin-
ing the obesity prone state [34].

The gut-liver axis includes a close bidirectional communi-
cation: (1) the secretion of bile acids and bioactive mediators
by the liver into the biliary tract and, (2) the metabolism of
endogenous and exogenous substrates by gut microorganisms
which translocate into the portal vein in order to reach the liver
[35]. Intestinal dysbiosis (imbalanced gut microbial composi-
tion) disrupts the crosstalk between the gut and liver by in-
creasing gut barrier permeability, modifying bile acid (BA)
composition, and altering enzymatic and metabolic pathways.
The loss of gut barrier integrity leads to the translocation of
bacteria and bacteria-derived products that mediate liver cell
activation through innate immune cell receptors [36]. The
subsequent immune response, mainly mediated by toll-like
receptors, creates a chronic inflammatory state that contributes
to the development of NAFLD.

BA and the gut microbiota have a well-established mu-
tual relationship. On the one hand, the intestinal microbiota
controls and modifies BA pool composition through enzy-
matic activities. On the other hand, BA induce the produc-
tion of antimicrobial peptides that inhibit gut microbial
overgrowth and prevent gut barrier dysfunction. While
dysbiosis alters BA composition, BA imbalances also shape
IM. BA regulate carbohydrate and lipid metabolism via
farnesoid X-activated receptors (FXR), and a shift in BA
composition interferes with FXR’s signaling properties.
Gut microbiota hence influence NAFLD pathogenesis by
regulating the BA/intestinal FXR axis which regulates he-
patic lipogenesis [37].

The relationship between choline deficiency and accumu-
lation of hepatic lipids is well known, and dysbiosis-related
alterations in choline metabolism and bioavailability contrib-
ute to NAFLD development. Host genetics can predispose to
choline-utilizing microbiota and together with an imbalance
between choline’s metabolites (phosphatidylcholine (lecithin)
and methylamines), hepatic triglyceride accumulation, and
liver damage [38]. Increased alcohol-producing bacteria in
NASH microbiomes has revealed a role of alcohol-
producing IM in liver inflammation. The proposed mecha-
nisms include metabolite-induced oxidative stress, weakened
intestinal tight junctions, and a resulting inflammatory im-
mune response [35, 39]. A higher prevalence of intestinal
dysbiosis in patients with NAFLD and the metabolic effects
created by shifts in host’s microbiome profile underlines the
IM as an important determinant of susceptibility to disease
development progression [40].
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Genetics

The reasons that explain why some subpopulations or individ-
uals are at increased risk of developing a more advanced form
of the disease, such as cirrhosis or HCC, remain unclear.
There is increasing amount of data showing that genetic inter-
individual variations influence the development of NAFLD.
Single nucleotide polymorphisms (SNP) in genes involved in
inflammation, oxidative stress, fibrogenesis, and metabolic
pathways have been associated with disease severity pheno-
types. Importantly, SNP in two genes, PNPLA3 (encoding
patatin-like phospholipase domain-containing protein 3) and
TM6SF2 (encoding transmembrane 6 superfamily member 2),
are consistently associated with NAFLD [2, 41]. The
PNPLA3 rs738409 gene polymorphism is more common in
non-obese/lean NAFLD than in non-obese controls [6]. The
presence of this allele also correlates with ethnic differences
seen in NAFLD, and the findings suggest that it may be a
critical element for NAFLD pathogenesis in Hispanics [1,
42]. There is a positive relationship between the PNPLA3
variant (rs738409 c.444C > G,p.Il148M) and hepatic lipid
accumulation, steatohepatitis, fibrosis, and HCC. The severity
of histological features was linked to the PNPLA3 rs738409
genotype, independent of other risk factors (43). The patho-
physiology by which PNPLA3 contributes to NASH progres-
sion, and HCC development is not fully understood, but
changes in lipid mobilization and aberrant HSCs activation
have been identified using various experimental models [8].

NAFLD following pancreatoduodenectomy

Pancreatoduodenectomy (PD) is the standard surgical treat-
ment for periampullary and pancreatic head tumor lesions,
including pancreatic and biliary malignant, premalignant,
and benign neoplasms. Advances in surgical techniques, peri-
operative management, and adjuvant chemotherapy have re-
duced surgery-related morbidity and mortality [43, 44]. With
improved long-term survival rates, there has also been an in-
crease in rates of long-term metabolic complications, includ-
ing NAFLD. The incidence of NAFLD/NASH following PD
is estimated to range from 7 to 40% and it has been shown to
develop even in the absence of preoperative MS [45–47].
Multivariable analysis of risk factors showed that female
sex, younger age, pancreatic head cancer, and small remnant
pancreatic volume were directly related to the occurrence of
NAFLD after PD [45, 48, 49]. The literature points to exocrine
pancreatic insufficiency (EPI) as the main contributor to post-
PD NAFLD. The underlying pancreatic disease, the surgical
procedure performed, and the extent of tissue loss are prog-
nostic factors for the development of EPI. EPI is reported in
50–100% of oncological patients’ post-PD as opposed to 0–
42% in distal pancreatectomy [50]. Pancreatic head cancer is a

constant risk factor for de novo post-PD NAFLD, and it is
conceivable that it is due to a small and atrophic remnant
pancreas following surgery, which increases the risk of EPI
exponentially [45]. Luu et al. showed that patients who
underwent pancreatectomy for benign noninvasive intraductal
papillary mucinous neoplasms had a lower risk of developing
NAFLD compared with patients with malignant disease. PD
and the development of pancreatic atrophy were identified as
significant risk factors in this study [51]. A small retrospective
cohort study found that newly emerging NAFLD only devel-
oped occasionally after pancreatic neuroendocrine tumor re-
section and was mainly observed in patients with recurrent
diseases. In contrast to current data, no connection with EPI
was found [46]. NAFLD after PDwas more common in wom-
en with a decrease in serum copper and was also affected by
EPI-related malnutrition [43, 44]. Early diagnosis and treat-
ment of NAFLD is important because patients are at increased
risk of developing hepatic and cardiovascular life-threatening
comorbidities. Beyond the negative effects on the quality of
life, functional status, and survival rates of patients, it also
leads to additional medical problems and affects possible post-
operative treatments including adjuvant chemotherapy [47].

Patient follow-up after PD should be carefully performed
as NAFLD can develop in early and late postoperative periods
[49]. The etiology, the course of disease, and the clinical man-
ifestations of NAFLD are different in a post-PD setting com-
pared with conventional NAFLD. Obesity and insulin resis-
tance are not predominant in this scenario. Instead, inadequate
digestion, absorption, and pancreatic exocrine function dom-
inate the pathophysiology of NAFLD after pancreatic surgery
[43, 44]. Theories include malabsorption of amino acids or
fat-soluble nutrients, which promote triglyceride accumula-
tion in the liver and an increased conversion of carbohydrates
into fat [50]. Steatogenic mechanisms in the post-PD liver
include increased FFA uptake and lipogenesis, upregulation
of PPARγ, and impairment of VLDL export from the liver
[52]. Pancreatic enzyme supplementation has been shown to
have positive effects on hepatic steatosis, supporting the
strong association between de novo NAFLD and malnutrition
due to EPI [53]. The clinical diagnosis of EPI is not sensitive,
and clinicians should not simply rule it out for lack of symp-
toms. Similarly, patients taking enzyme supplementation
should be educated about nutrition-related complications to
avoid medication non-adherence and its related metabolic
complications. Kishi et al. showed that using pancrelipase,
an agent that contains several digestive enzymes including
lipase, protease, and amylase, was more effective compared
with using other digestive enzymes [53]. Nagai et al. demon-
strated that pancrelipase improved clinical symptoms, liver
function tests, and the nutritional state in patients with previ-
ously diagnosed NAFLD [47]. Yamazaki et al. investigated
the effectiveness of early administration of pancrelipase via a
feeding tube or by mouth of pancreatic enzymes in
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combination with an elemental diet of branched chain amino
acids (BCAA) after PD. A reduced number of patients devel-
op NAFLD in the treatment group vs historical controls [54].
Still, studies have not shown whether stopping enzyme sup-
plementation leads to a refractory appearance of fatty liver
[50]. It should be noted that not all patients receiving pancre-
atic enzyme supplementation were protected from NAFLD,
and spontaneous NAFLD regression was observed in patients
without treatment. Sato et al. identified a thinner preoperative
main pancreatic duct, a lower amylase level, and a higher
minimum hepatic CT value, which reflects liver attenuation
and depicts the presence of steatosis, to predict of recovery
from NAFLD. The presence of these factors should guide the
administration of any pancreatic enzyme drug [49]. Adjusting
optimal treatment for patients following PD requires
uncovering other underlying mechanisms that promote
NAFLD occurrence and predisposes paradoxical hepatic fat
accumulation in a malnourished state [43, 44].

The presence of NAFLD/NASH is an important risk factor
for cardiovascular and liver-specific complications. Patient’s
susceptibility to developing NAFLD after PD is exponential
and underlines the importance of considering the possibility of
EPI and periodically monitoring liver function after surgery.
The presence of fatty liver disease and a state of malnutrition
following PD contribute to the patient’s morbidity and mor-
tality and are important factors to be considered in patient
follow-up.

Implications for surgery

The increasing number of patients with NAFLD affects both
liver and non-liver-specific surgery. Knowledge of NAFLD/
NASH is critical for assessing peri-/postoperative morbidity
and mortality during major surgery. For liver surgery, in par-
ticular, NAFLD/NASH is a serious precondition that must be
taken into account when planning treatment strategies. In cer-
tain cases, surgery may need to be adjusted based on the con-
dition of NAFLD and may differ from guidelines for patients
without NAFLD. Because NAFLD is primarily associated
with MS, patients with NAFLD typically have the general,
mainly cardiovascular, risk factors for surgery associated with
MS. However, even without MS, there is a higher periopera-
tive risk in patients with NAFLD. NAFLD per se is an inde-
pendent risk factor for cardiovascular disease, which is one of
the main comorbidities and the main cause of death in patients
with NAFLD. Since cardiovascular events are a common
complication after major surgery, the diagnosis of NAFLD
must be carefully considered, especially with regard to cardio-
vascular preoperative evaluation [55–59].

When performing a liver resection, NAFLD is a burden for
serious postoperative complications and liver failure [60–62].
After liver resection, the remaining liver volume must be

sufficient to ensure adequate liver function. Hereby, the liver’s
unique ability to regenerate plays an important role in this
[63]. In case of various surgical procedures, in particular in
case of oncological tumor resection, the remaining liver vol-
ume defines whether a patient can undergo a liver resection or
not. A pre-diseased liver affects the ability to regenerate.
Dysfunctional lipid metabolism, a characteristic in NAFLD,
hinders liver regeneration. Various in vivo studies of partial
hepatectomy and liver resection have shown that NAFLD
reduces liver regeneration capacity and proliferation [61, 62,
64–67]. It is, therefore, important to carefully assess NAFLD
in the preoperative setting. In the context of a pre-diseased
liver, this allows an accurate assessment of a suitable remain-
ing liver volume which ensures adequate hepatic function af-
ter liver resection.

Liver resection

Malignant tumors, mainly hepatocellular carcinoma (HCC),
are the main indication for liver resection. While alcoholic
liver disease and chronic hepatitis infection (hepatitis B-/C-
Virus (HBV/HCV)) have been the main risk factors for HCC
in recent decades, NAFLD/NASH is a major cause for HCC
worldwide today. Since the pathogenesis of HCC due to
NAFLD/NASH differs from hepatitis virus and alcohol-
associated HCC, a higher prevalence is observed in women
and patients that are older when diagnosed with NASH-
associated HCC compared with non-NAFLD related HCC
[68, 69]. Nevertheless, the risk of developing HCC in patients
with NAFLD is significantly higher in men compared with
women [70]. Interestingly, ethnicity is also associated with
the risk of developing HCC from NAFLD. In a retrospective
study in the USA among NAFLD patients, Hispanics showed
the highest incidence of HCC. Notably, 20% of HCC cases
arising from NAFLD showed no signs of cirrhosis [71]. The
increasing numbers of NAFLD-associated HCC and the com-
plexity of these patients raise doubts as to whether periopera-
tive morbidity, mortality, and overall survival vary depending
on the etiology of HCC. Studies have shown no difference in
reported perioperative morbidity and mortality between HCC
caused by either NAFLD, HBV, HCV, or MS [69, 72]. Other
studies have shown a higher peri-/postoperative complication
rate, including post-hepatectomy liver failure and 30-daymor-
tality, in NAFLD-associated HCC when compared with non-
NAFLD-related HCC [61, 73]. In contrast, resection of
NAFLD/MS-associated HCC showed favorable long-term
survival compared with non-NAFLD-associated HCC [61,
68, 73]. However, a study comparing NAFLD-associated
HCC and HBV-associated HCC showed no difference in sur-
vival [69]. Interestingly, cirrhotic NAFLD-associated HCC
has a similar mortality and survival rate as the non-cirrhotic
NAFLD-associated HCC [74]. The data underlines the
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importance of determining the etiology of HCC for each pa-
tient and show a potentially favorable overall survival of
NAFLD-associated HCC compared with non-NAFLD-
associated HCC after liver resection.

Liver transplantation

Liver transplantation (LT) is the ultimate treatment for severe
liver disease, mainly non-resectable HCC, cirrhosis, and liver
failure. In the past two decades, NAFLD has been the fastest
growing indication and a major cause of end stage liver dis-
ease (ESLD) requiring LT. In the USA, NAFLD is the second
leading cause of LT and is expected to be the most common
indication for LT in the next two decades. In women, NASH
already represents the main cause of LT. While the success of
antiviral therapy for HCV has reduced the need for HCV-
related LT, the rapidly growing prevalence of NAFLD world-
wide, along with the lack of effective therapies, has increased
the need for LT in patients with NAFLD [71, 75–78]. Due to
the etiology of NAFLD mentioned previously in this review,
the characteristics of patients on the waiting list for LT differ
from other chronic liver disease. Patients with ESLD related to
NAFLD are older, more often female, more obese, and have
significantly more metabolic comorbidities (hypertension, hy-
perlipidemia, type 2 diabetes mellitus) and chronic kidney
diseases [71, 75, 78]. The commonly used model for end-
stage liver disease (MELD) score indicating the severity of
liver disease and the urgency of LT differs between patients
with ESLD-related to NAFLD and non-NAFLD. In general,
theMELD score of patients on the waiting list due to NAFLD/
NASH-related ESLD is lower compared with non-NAFLD
ESLD. As a result, patients on the waiting list with NAFLD/
NASH-related ESLD have less chance of receiving LT. In
addition, while on the waiting list, patients with NASH/
NAFLD have a less dramatic deterioration of theMELD score
each year which reduces their likelihood of receiving a LT
when compared with HCV-related ESLD. In addition, due
to their comorbidities, these patients have a higher dropout
rate from the waiting list over time. In contrast, similar LT
rates were found in patients with a MELD score > 15 regard-
less of the underlying cause of ESLD (NAFLD or non-
NAFLD) [79, 80].

Impact of NAFLD/NASH on donor livers

The presence of NAFLD not only affects LT recipients but
also affects the availability of donor organs. The increasing
prevalence of NAFLD worldwide will lead to an increased
proportion of both deceased and living liver donors with
NAFLD. NAFLD in donors is a burden on the results after
LT and may affect donor eligibility. The increasing

numbers of potential donors with NAFLD are burdening
the already existing lack of liver donors. To date, there are
no detailed guidelines that determine whether and to what
stage donor livers with steatosis can be used for transplan-
tation. The presence of steatosis is associated with primary
non-function, postoperative complications, and a reduction
in 1-year graft survival. The current consensus recommends
the safe use of liver grafts with mild macrosteatosis (<
30%). The use of livers with moderate graft steatosis (30–
60%) is controversial. Traditionally, moderate graft
steatosis has been identified as an independent risk factor
for graft failure and perioperative morbidity. However, new
studies show a reasonable outcome for moderate graft
steatosis if the recipients are carefully selected and have
no other risk factors. The poor post-transplant outcome as-
sociated with severe macrosteatosis (> 60%) in graft livers
classified the presence of severe macrosteatosis as a contra-
indication to LT. However, data suggest that some patients
without risk factors and with strict selection criteria may
st i l l benef i t f rom a transplant l iver with severe
macrosteatosis. In general, microsteatosis of any severity
is not considered a contraindication to LT [59, 71, 78, 81,
82].

Identifying the grade of steatosis in donors prior to trans-
plantation is an important and challenging aspect. Commonly
used imaging modalities such as computed tomography, mag-
netic resonance imaging, and ultrasonography are not accurate
enough in and not sensitive enough to differentiate between
micro- and macrosteatosis when predicting steatosis. The gold
standard for the diagnosis of steatosis is liver biopsy.
However, in the setting of LT, the delay in receiving the result
of a liver biopsy extends the cold ischemia time and often
makes a liver biopsy an unsuitable tool for NAFLD diagnosis.
Newly developed techniques, including magnetic resonance
imaging proton density fat fraction (MRI-PDFF) and transient
elastography techniques, may overcome the disadvantage of
imaging techniques. Recent studies demonstrate that the use
of MRI-PDFF to quantify steatosis in living donors and
ex vivo on deceased donor livers is a potential alternative
and may replace liver biopsy as the golden standard in the
future [59, 71, 78, 81–84].

Given the vulnerability of donor organs with NAFLD,
there are several methods to preserve the liver during ex-
plantation/reimplantation. These methods include hypo-
thermic oxygenated and normothermic machine perfusion
as well as venous systemic oxygenated persufflation [71,
82].

Interestingly, steatosis can disappear at a high rate in LT
recipients. It has been shown that even recipients of donor
livers with a high degree of steatosis show complete resolution
within a few months after LT [85]. This supports the hypoth-
esis that graft livers with moderate and severe steatosis could
be considered as potential graft organs.
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Outcome of liver transplantation
in NAFLD/NASH patients

LT is often the ultimate treatment for patients with cirrho-
sis, HCC, and ESLD due to various primary liver disease.
The growing prevalence of NAFLD and the associated in-
creasing number of NAFLD-related LT raise the question
of the outcome of LT in these patients. As discussed in this
review, NAFLD patients on the waiting list for LT are more
likely to present with obesity, older age, higher cardiovas-
cular risk, and metabolic comorbidities. While the presence
of higher peri-/postoperative complication rates in NAFLD
patients, mainly cardiovascular events and mortality, re-
main controversial, long-term postoperative mortality
showed no difference between NAFLD/NASH and non-
NAFLD/NASH-related LT [57, 59, 78, 86–88]. The short-
and long-term results examined in various studies was sim-
ilar between NAFLD/NASH and non-NAFLD/NASH, in-
cluding alcoholic liver disease, HBV, cryptogenic cirrhosis,
and primary biliary cholangitis/primary sclerosing
cholangitis (PBC/PSC). Remarkably, overall survival
showed no significant difference [77, 78, 86–90].
Interestingly, post-transplant survival was shown to be
higher compared with HCV-associated LT whereas no dif-
ference was seen between NASH-associated and alcoholic
liver disease-related LT [90, 91]. When comparing the re-
sults of HCC related LT, no difference was found between
NASH- and non-NASH-associated HCC-related LT.
Rather, there was a trend towards a favorable outcome for
NASH-associated HCC-related LT [87, 89]. The preva-
lence of HCC in NASH-associated LT was higher com-
pared with non-NASH-associated LT [78, 87, 88].
Interestingly, when subclassifying non-NASH-associated
HCC on explant pathology, Agopian et al. showed a signif-
icantly higher prevalence of HCC in recipients with HCV
and HBV, a similar prevalence in recipients with alcoholic
liver disease and a lower prevalence in recipients with PBC/
PSC when comparing with recipients with NASH [90].
Cardio/cerebrovascular events and infections are the lead-
ing cause of post-LT mortality in patients without concom-
itant HCC in both NAFLD and non-NAFLD-associated LT.
Recurrent HCC is instead the most common cause of death
in patients diagnosed with concomitant HCC, regardless of
the cause of LT [77, 87]. The retransplantation rate was not
different when comparing NAFLD and non-NAFLD recip-
ients [90].

NAFLD/NASH following liver transplantation

The development of recurrent and de novo NAFLD after liver
transplantation is often diagnosed. Improvements in immuno-
suppressive therapies and surgical techniques in the past

decades have increased long-term survival rates in patients
receiving LT. As a result, chronic liver disease is more likely
to occur after LT. It must be considered that while LT cures
liver disease, it does not remove the risk factors for chronic
liver disease. In particular, recipients who underwent LT due
to NAFLD-associated HCC or ESLD still have the same risk
factors (obesity, insulin resistance, hypertension,
dyslipidaemia) that initially caused NAFLD before LT.
Moreover, regardless of the cause, patients after LT are more
susceptible to the development of MS, the main driver of
NAFLD. De novo MS and de novo NAFLD mainly result
from immunosuppressive therapy after LT. In addition to cor-
ticosteroids, calcineurin inhibitors and mammalian target of
rapamycin inhibitors have been shown to trigger MS. The
combination of pre-existing risk factors and immunosuppres-
sive therapy is associated with a high risk of recurrence of
NAFLD after LT. In addition, the genetic predisposition
makes patients more susceptible to recurrence of steatosis.
The presence of the allele rs738409-G of patatin-like phos-
pholipase domain-containing protein 3 correlates with the re-
currence of steatosis [59, 92–94].

The recurrence of NAFLD and NASH after LT is com-
mon; however, recurrence rates are controversial. Studies
have shown more than 80% of NAFLD recurrence and 70%
of NASH and fibrosis recurrence 5 years after LT. Recently,
Saeed et al. showed in a meta-analysis an incidence of 82%
of NAFLD recurrence and of 78% for de novo NAFLD 5
years after LT, respectively. Notably, the incidence of
NASH recurrence was considerably higher when compared
with de novo NASH 1 year after LT (53 vs 13%) [95]. In a
retrospective study, Bhati et al. showed that the recurrence
rates for NAFLD and NASH were 88.2% and 41.2%,
respectively, when diagnosed by a liver biopsy 47 months
median after LT [96]. Further studies have shown that
NAFLD recurrences are more common than de novo
NAFLD. In addition, the severity of steatosis and fibrosis
is higher in NAFLD recurrence compared with de novo
NAFLD [97–99]. Interestingly, Sourianarayanane et al.
found a lower rate of fibrosis progression in patients with
recurrent NASH compared with de novo NASH in patients
transplanted for alcoholic liver disease [100]. A prevalence
of de novo NAFLD ranging from 14.7 to 52% and of de
novo NASH from 0.96 to 32% was reported by Losurdo
et al. in a meta-analysis. Recipients with prior alcoholic
liver disease showed the highest prevalence of de novo
NAFLD [101]. The histologic recurrence pattern and de
novo NAFLD appear to be similar but sufficient evidence
is lacking [102]. Comparing the available data on the
prevalence of NAFLD post-LT requires caution as the
follow-up and NAFLD diagnostic methods are often differ-
ent between studies. Variations in the patient cohort must
also be taken into account when comparing different
studies.
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Bariatric surgery

For NAFLD/NASH, lifestyle changes, in particular weight
loss, are still the most important treatment strategies. No drug
is currently available that significantly improves the course of
the disease. However, patients do not always achieve suffi-
cient weight loss and significant lifestyle changes. As a result,
bariatric surgery has become an essential alternative for the
treatment of severe NAFLD. The link between being over-
weight and developing MS is well known, and weight loss
can be achieved through bariatric surgery. Weight loss im-
proves both glucose homeostasis and fat metabolism, modu-
lates intestinal hormones, reduces inflammatory activity, and
consequently improves NAFLD [103, 104]. The most com-
mon techniques for bariatric surgery are sleeve gastrectomy,
gastric bypass, and gastric banding. Several studies have
shown positive results for NAFLD after bariatric surgery.
Recently, von Schönfels et al. showed a significant
improvement in NAFLD activity scores after bariatric
surgery. Hereby, sleeve gastrectomy showed favorable
results compared with Roux-en-Y gastric bypass [105]. Still,
when sufficient weight loss was achieved, a reversal of NASH
after Roux-en-Y gastric bypass was shown [106, 107]. A
meta-analysis by Lee et al. investigating 32 cohort studies
showed biopsy-confirmed resolution of steatosis in 66%, in-
flammation in 50%, and degeneration of ballooning in 76% of
patients after bariatric surgery. The NAFLD activity score has
also been reduced as well. Interestingly, after bariatric surgery,
12% of the patients showed new onset or worsening of
NAFLD [108]. In addition, steatosis was resolved in 75%,
lobular inflammation in 75%, chronic portal inflammation in
49%, steatohepatitis in 90%, and fibrosis in 53%.
Remarkably, 2nd and 3rd degree fibrosis improved in 60%
[109]. A meta-analysis by Mummadi et al. showed an
improvement in steatosis in > 90%, steatohepatitis in > 80%,
and fibrosis in > 60%. Complete resolution of NASH occurred
in 69.5% [110]. In line with these results, Tan et al.
demonstrated a significant improvement of NASH following
bariatric surgery in a long-term study with a 10-year follow-
up. Gastric banding was shown to be inferior to other bariatric
techniques [111]. Supporting this, Lassailly et al. also showed
an advantage of gastric bypass procedures over laparoscopic
gastric banding. This study also found that in 85% of patients
after bariatric surgery, NASH has subsided, with a higher
proportion seen in patients with mild NASH compared with
patients with severe NASH [112]. In view of the constellation
of comorbidities in patients with NAFLD and the resulting
high perioperative risk, the surgical technique must be care-
fully selected to minimize perioperative complications. The
data indicate a more severe early deterioration of liver function
after Roux-en-Y gastric bypass compared with sleeve gastrec-
tomy [113]. Weingarten et al. showed that when laparoscopic
bariatric surgery was performed, neither the presence of

NASH nor its severity affected the complication rates [114].
Nevertheless, long-term survival was reduced in obese pa-
tients with NASH after bariatric surgery [115].

As can be seen, bariatric surgery has proven to be an im-
portant tool in achieving a successful treatment strategy for
patients with severe NAFLD/NASH. Once patients and an
appropriate surgical technique are carefully selected, bariatric
surgery is as a safe alternative that will significantly improve
NAFLD/NASH.

Bariatric surgery in combination with liver
transplantation

LT is often the only curative treatment for NAFLD/NASH
patients with cirrhosis, HCC, and ESLD. While LT resolves
the underlying liver disease, the associated risk factors are not
eliminated. Yet, to improve outcomes, it is essential to address
these risk factors. The method of treatment is primarily geared
to weight loss, and although lifestyle modifications are often
recommended, patients do not always achieve the desired
weight. In contrast, bariatric surgery has been shown to have
a significant impact on weight loss. In the last decades, a
combination therapy of LT and bariatric surgery has proven
to be a successful alternative for severe NAFLD. The optimal
timing of bariatric surgery is an important issue that must be
considered as this can be done before, during, or after LT.
Bariatric surgery prior to LT is associated with a reduction
of metabolic comorbidities at the time of LT. Nevertheless,
there is an increased risk for patients because their liver func-
tion continues to be impaired. A surgical history with a recent
major surgery such as bariatric surgery followed by LT is an
important burden for the patient and increases the surgical
risk. In addition, bariatric surgical complications can delay
the rescue of LT. Performing bariatric surgery and LT at the
same time lowers costs and reduces comorbidities after LT.
However, the complexity of this procedure has been associat-
ed with a potentially higher risk of perioperative sepsis.
Performing bariatric surgery after LT is a technically demand-
ing procedure. Furthermore, immunosuppressive therapy hin-
ders proper wound healing and increases the risk of infection
[59, 116]. Malabsorption is a common post-operative compli-
cation associated with bariatric surgery and varies, among
other factors, depending on the approach and the technique
used. This must be carefully considered as a dysfunctional and
altered intestinal absorption can impair the uptake of immu-
nosuppressive drugs and can lead to an endangered liver graft
[102].

A study by Lin et al. analyzing sleeve gastrectomy
approximately 6 years at median post-LT demonstrated the
safe feasibility of this procedure and a remarkable weight loss.
Graft function and immunosuppression were not affected. The
authors point out that complication rates due to more
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adhesions resulting from a prior LT operation can occur more
frequent [117]. The Roux-en-Y gastric bypass procedure after
LT has proven to be practical by Al-Nowaylati et al. and
improved metabolic parameters including weight loss, blood
sugar control, and high-density lipoprotein levels. In this
study, the Roux-en-Y gastric bypass was performed approxi-
mately 27 months post-LT in median [118]. Simultaneous LT
and gastric sleeve resection has shown favorable weight loss
results and lower risk of metabolic complications post-LT
compared with using non-invasive weight loss strategies be-
fore LT [119]. A study by Lin et al. investigating laparoscopic
sleeve gastrectomy prior to solid organ transplantation (ap-
proximately 17 months in median prior to transplantation)
showed an improvement of patient’s candidacy for subse-
quent organ transplantation [120].

Taken together, bariatric surgery is safe with favorable out-
come when selecting patients carefully. Further randomized
large cohort studies are still required to determine the optimal
time for bariatric surgery and long-term outcomes.

Conclusion

The global escalation of NAFLD prevalence is alarming and
has quickly emerged as the most common form of chronic
liver disease worldwide. The progression from steatosis to
more severe forms, such a steatohepatitis, fibrosis, cirrhosis,
and the development of HCC, correlates with liver and non-
liver-related life-threatening complication. The metabolic dis-
orders observed in patients with NAFLD are common in pa-
tients with cardiovascular disease and explain the patient’s
comorbidity and high mortality rates. Childhood obesity rates
have increased dramatically worldwide, as has the prevalence
of obesity-related liver disease in this population. Pediatric
NAFLD is a problem for the present because patient comor-
bidities are high, and for the future, as complications will
occur earlier.

New mechanistic insights into steatosis, inflammation, and
fibrosis in NAFLD have revolutionized the understanding that
leads to disease progression. NAFLD is a multifaceted disease
that involves the complex interaction between environmental
and non-environmental factors. Interesting scenarios, such as
those observed in patients after PD, have revealed in new
settings and conditions that promote NAFLD development.
This poses a new challenge for the health system: patient
follow-up after PD must be done long term, and the constel-
lation of metabolic comorbidities in post-PD/NAFLD patients
is a real burden for the patients and for medical decisions.

The increasing prevalence of NAFLD/NASH will have a
growing impact on surgery in the coming years. The presence
of NAFLD itself and the associated comorbidities burden the
pre-operative diagnostic and have a negative impact on the
peri- and post-operative results. In addition, surgical needs

are increasing exponentially in parallel with NAFLD/NASH
rates as the disease progresses to more severe stages requiring
surgery as the ultimate treatment. While weight loss is the
most acceptable treatment for NAFLD management, surgery
is an alternative for NAFLD/NASH patients who cannot
achieve this through conservative strategies or who suffer
from ESLD. The data has shown favorable results for
NAFLD/NASH patients undergoing surgery, including LT,
either for ESLD, HCC, or weight loss purposes. The dramatic
increase in LT demand and the growing prevalence of
NAFLD in the donor pool are imminent and threatening chal-
lenges in the near future. Prospective randomized multicenter
studies are required to further determine current guidelines for
the surgical treatment of severe NAFLD/NASH.
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