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Abstract

Introduction Preoperative chemoradiotherapy represents the
standard treatment for patients with locally advanced rectal
cancer. Unfortunately, the response of individual tumors to
multimodal treatment is not uniform and ranges from com-
plete response to complete resistance. This poses a particular
problem for patients with a priori resistant tumors because
they may be exposed to irradiation and chemotherapy, treat-
ment regimens that are both expensive and at times toxic,
without benefit. Accordingly, there is a strong need to estab-
lish molecular biomarkers that predict the response of an
individual patient’s tumor to multimodal treatment and that
indicate treatment-associated toxicities prior to therapy. Such
biomarkers may guide clinicians in choosing the best possible
treatment for each individual patient. In addition, these bio-
markers could be used to identify novel molecular targets and
thereby assist in implementing novel strategies to sensitize a
priori resistant tumors to multimodal treatment regimens.
Objective The aim of this review is to summarize recent
findings about the molecular basis of treatment resistance
and treatment toxicity in patients with rectal cancer. Whole-
genome, as well as single-biomarker or multibiomarker,
analyses and their potential implications will be highlighted.
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At the end, we will outline a future vision of rectal cancer
treatment in the era of personalized medicine.
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Introduction

For rectal cancers, both surgical and nonsurgical treatment
concepts have been improved considerably over the last
decades. In this respect, the surgical concept of total meso-
rectal excision (TME) [1] and the implementation of preoper-
ative treatment regimens can be considered as cornerstones of
modern and optimized treatment for locally advanced rectal
cancer. Randomized multicenter trials independently demon-
strated that preoperative application of radiotherapy, either as
short-term radiotherapy or as long-term irradiation accompa-
nied by infusional 5-fluorouracil (5-FU), significantly
decreases the rate of local recurrence [2, 3]. Consequently,
preoperative (chemo)radiotherapy now represents the stan-
dard treatment for patients with locally advanced rectal cancer
in Europe and the USA [4].

With respect to long-term preoperative chemoradiother-
apy, it was soon realized that the histopathological response
to chemoradiotherapy varied tremendously from one patient
to another, ranging from complete regression to complete
resistance, and that, for many patients, the extent of regres-
sion was correlated to clinical outcome [5]. In order to
increase the response rates to preoperative chemoradiother-
apy, agents such as oxaliplatin and antibody-based regimens
have been incorporated into multimodal treatment concepts,
and these strategies are currently under extensive evaluation
[4]. However, at the same time, the inclusion of more toxic
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agents increased the acute toxicity and long-term side effects
of these treatments [4]. In some cases, acute organ toxicity
necessitates a dose reduction or even termination of therapy.
Furthermore, any higher grade of acute toxicity impairs the
quality of life of the individual patient.

While the variability of both treatment-associated tumor
regression and toxicity from one patient to another remains a
major clinical problem, it obviously draws attention to the
important possibility to individualize rectal cancer treat-
ment. In this respect, some patients may require an intensi-
fied regimen to increase tumor response, whereas standard
5-FU-based chemoradiotherapy may be sufficient for others.
However, advancing accurate stratification is strongly de-
pendent on the identification of reliable clinical parameters
and molecular biomarkers that allow pretherapeutic stratifi-
cation with high certainty. The aim of this review is to
briefly summarize the general principles of chemoradiosen-
sitivity and to highlight recent findings about the molecular
basis of treatment response and toxicity in patients with
rectal cancer. At the end, we will discuss potential implica-
tions of these findings for an individualized treatment of
rectal cancer patients.

General principles of chemoradiosensitivity

The predominant local effects of chemoradiotherapy,
which is designed to achieve tumor cell damage, are
primarily elicited by irradiation, whereas concomitant
chemotherapy may serve as a radiosensitizer, most often
without or with only small direct effects on tumor cell
killing. The effects of chemoradiotherapy are largely the
result of DNA damage, which either occurs directly
through ionization within the DNA molecule or indirectly
from the action of chemical radicals, which are also
formed during irradiation [6, 7]. Through these mecha-
nisms, several alterations, like base damage, DNA-protein
cross-links, and single-strand or double-strand breaks, are
generated and contribute to the antitumor effects and side
effects [8].

However, as already discussed above, response to che-
moradiotherapy differs widely. In general, four major
explanations for these different sensitivities of solid tumors
have been invoked, which could be causative alone or in
combination:

1. Tumors with poor response to chemoradiotherapy often
show a high content of hypoxic cells and/or fail to
reoxygenate during fractionated multimodal treatments.
For this reason, the necessary DNA damage caused by
chemical radicals formed as a result of local ionization
is not sufficient to kill all tumor cells. In general, this
fact prevails with increasing tumor sizes including
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larger hypoxic and necrotic areas with lower oxygen
pressure [9, 10].

2. It is well known that cells located in proliferating cell
cycle segments are more sensitive to chemoradiotherapy
compared to cells resting or degenerating. Therefore,
the extent of tumor regression during treatment may
be explained in part by the proportion of proliferating
cells. A higher growth fraction in solid tumors might
lead to a larger turnover rate with a higher proportion of
cell loss in comparison to normal tissues [11].

3. Varying levels of repair capacity of DNA damage
caused by chemoradiotherapy have been specified in
almost all tumor cell lines and found to correlate with
the clinical radiocurability. In other words, less curable
tumors often show a strong potential for DNA damage
recovery. A confirmation of this fact in larger clinical
trials, which could justify its use as predictive marker
for tumor response and outcome, has not been achieved
so far. This might in part be due to the fact that any
given tumor always harbors a mixed cell population,
with mitotic or resting cells and stem cells with differing
sensitivity to antineoplastic agents and irradiation-induced
damage [12].

4. There seems to be an inherent chemoradiosensitivity,
which is associated with the individual genetic sensitiv-
ity of every single patient. Assuming that all malignant
cells arise from formerly normal tissue cells, it should
thus be possible to determine the individual response to
multimodal therapies via the patient’s individual genetic
profile [13]. This fact is underlined by recent literature
clearly showing a correlation between acute organ tox-
icity, which is a measure of inherent chemoradiosensi-
tivity, and outcome for different tumor entities. For
example, overall survival in patients with inoperable
head and neck cancer was significantly associated with
treatment-related high-grade acute organ toxicity [14].

Molecular basis of chemoradiosensitivity in rectal cancer

Despite the clinical importance of preoperative chemoradio-
therapy in multimodal treatment concepts for patients with
rectal cancer, our understanding of both the genetic basis of
chemoradiosensitivity and the molecular events leading to
chemoradioresistance remains relatively sparse. Relevant
investigations that have been performed to identify molecular
biomarkers differentiating responsive and resistant tumors
will be discussed below. From a systematic point of view,
high-throughput analyses (aim: whole-genome analysis) can
be distinguished from low-throughput analyses (aim: single-
biomarker or multibiomarker analysis).

Since complex phenotypes, such as tumor responsiveness
to chemoradiotherapy, likely do not depend on the alteration
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or deregulated expression of single genes, high-throughput
technologies have emerged as a central tool in deciphering
the molecular basis of this clinically important phenotype
because they offer the possibility to identify genomic differ-
ences between two groups of patients. However, due to the
high number of observed genomic features, it represents a
nontrivial task to determine which of these features are
actually relevant, and this kind of analysis generally requires
a high number of patients. Therefore, in situations where
there is already prior biological knowledge pointing to a
certain biomarker of interest or when preliminary evidence
suggests the involvement of certain pathways, it can be
advantageous to focus on a single or few selected bio-
markers. Such studies, with a limited number of biomarkers
of interest, require lower case numbers in order to reach
statistical significance since correction for multiple testing,
which is mandatory for high-throughput analyses, can be
omitted [15].

Whole-genome analyses
Gene expression profiling

Expression microarrays are commonly used to comprehen-
sively interrogate complex genetic pathways and networks
[16, 17]. Consequently, several investigators have used gene
expression profiling to analyze the genetics of (colo)rectal
cancer response to chemoradiotherapy (recently reviewed by
Kuremsky et al. [18], Nannini et al. [19], and Brettingham-
Moore et al. [20]). From a systematic point of view, in
vivo studies (profiling of primary rectal cancers) need to
be examined separately from in vitro studies (profiling of
cancer cell lines).

In vivo studies In a first published report, pretherapeutic
biopsies from 30 patients with locally advanced rectal car-
cinomas were profiled using a cDNA microarray [21]. All
patients participated in the CAO/ARO/AIO-94 trial of the
German Rectal Cancer Study Group (GRCSG) [3]. Tumor
response was defined as T-level downsizing, and a set of 54
genes was found to be differentially expressed between
responsive and resistant tumors. Using a leave-one-out
cross-validation strategy, response was correctly predicted in
83% of patients. A follow-up study indicated that these genes
could also assist in predicting local recurrence and disease-
free survival [22]. These data are currently being validated in a
much larger set of patients (»>200) who participated in the
CAO/ARO/AIO-04 trial of the GRCSG, treated within differ-
ent institutions. Preliminary analyses of this cohort confirm
the effectiveness of expression profiling for predicting out-
come (Gaedcke and Ghadimi, unpublished data).

Shortly thereafter, a Japanese group published a gene
expression analysis of 52 rectal cancer patients treated with

preoperative radiotherapy [23]. They reported that 33 genes
were differentially expressed between responders and non-
responders (based on histopathological regression grading
of surgically resected specimens), with a class prediction
accuracy of 88.6%.

Kim and colleagues described the identification of
261 genes that were differentially expressed between
20 partial responders to preoperative chemoradiotherapy,
based on tumor regression grading, and 11 complete
responders (defined as the training set). This set was
validated in a test set of 15 patients. The authors reported
class prediction accuracies of 84% (training set) and 87% (test
set), respectively [24].

Similarly, Rimkus and colleagues profiled pretherapeutic
biopsies from 43 patients with locally advanced rectal can-
cers. Using histopathologic response as endpoint for com-
parison with gene expression, they identified a 42-gene
signature [25]. In the most recent study, Brettingham-
Moore and colleagues analyzed pretherapeutic biopsies
from 51 locally advanced rectal cancers and generated gene
expression classifiers based on tumor regression grade, met-
abolic response, and UICC downstaging [26]. The sensitiv-
ity and specificity of these classifiers to predict outcome
after preoperative chemoradiotherapy centered around 82%
and 89%, respectively. Interestingly, the authors also tested
the effectiveness of previously published gene expression
signatures to predict outcome in their data set, but the results
were rather unfruitful.

It is important to note that there was only a very limited
overlap of genes from within these signatures. This could be
due to several reasons: First, there are many different ways
of defining “response” and “resistance.” Second, case
numbers were different. Third, there are differences in the
number and identity of spotted genes on the respective
microarrays. Fourth, there is the problem of high dimen-
sionality of the data. In most settings, the number of patients
is naturally limited (i.e., in the order of tens or hundreds),
while the number of measured features, i.e., gene tran-
scripts, is usually very high (in the order of thousands or
tens of thousands). It is, therefore, very likely that several
gene expression signatures exist that are able to accurately
predict the clinical outcome. This may be particularly true
since genes are often highly interrelated, and homologs or
isotypes may serve similar functions in different pathways.
In the process of selecting a gene expression signature, it is,
therefore, sometimes a matter of random choice which
genes will end up in the classification signature and which
genes will not. In the past, this has lead to enormous con-
fusion and debate in the field [27-29]. Some more recent
methods actually try to avoid this problem by guiding the
gene selection process using prior knowledge, based, for
example, on pathway and functional network databases
[30, 31].
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Despite these limitations, gene expression analyses hold
considerable promise to unveil the underlying complex ge-
netics of chemoradioresistance and to play a future role in
stratifying rectal cancer patients. In this respect, breast can-
cer constitutes a prominent biological precedent to demon-
strate the feasibility of using expression signatures in
clinical decision-making (proof-of-principle). For this dis-
ease entity, a prognostic signature, consisting of 70 genes,
has been established [32, 33] and subsequently extensively
validated [34, 35], resulting in the initiation of a multicenter
trial confirming the clinical effectiveness of this gene set
(“Microarray in Node-Negative Disease May Avoid Che-
motherapy” [MINDACT] trial).

In vitro studies Cancer cell lines are widely used as model
systems for target screening, drug discovery, and functional
analyses because many features of primary tumors are reca-
pitulated in derived cell lines [36—39]. Eschrich and col-
leagues were the first to report a gene expression-based
model for in vitro sensitivity of colorectal cancer cell lines
to irradiation, although their analysis only included seven
colorectal cancer cell lines [40, 41]. The remaining 41 cell
lines were derived from different entities, including breast,
ovarian, renal, prostate, and non-small cell lung cancers,
leukemia, melanoma, and tumors of the central nervous
system. Building on their own earlier work [42], the authors
integrated the respective surviving fractions of these 48 cell
lines after irradiation at 2 Gy by pretreatment gene expres-
sion profiles, KRAS and TP53 mutation status, and tissue of
origin and extracted a network of 10 signature genes. This
expression model of intrinsic radiosensitivity, which includ-
ed prominent target genes such as JUN, STATI, and CDK1,
was subsequently validated in three cohorts of patients with
rectal, esophageal, and head and neck cancer [41].

In a similar study, Spitzner and colleagues reported the
identification of a gene expression signature for sensitivity
of colorectal cancer cell lines to chemoradiotherapy [43]. A
panel of 12 cell lines was exposed to doses of both 5-FU and
radiation that were similar to the ones used in the clinic, i.e.,
3 uM of 5-FU and 2 Gy of radiation, and the respective
surviving fractions were correlated with pretreatment gene
expression profiles. Analysis of this chemoradiosensitivity
signature revealed many genes involved in mitogen-
activated protein kinase (MAPK), insulin, and Wnt signal-
ing, cell cycle genes, and novel potential target genes such
as STAT3 or ERBB2 [43].

As already pointed out for primary tumors (see the “In
vivo studies” section), there is only a very limited overlap
between the respective in vitro sensitivity signatures. In
addition to the reasons discussed above, there are other
potential explanations. First, Spitzner and colleagues corre-
lated gene expression and sensitivity to both chemotherapy
and irradiation, while Eschrich and colleagues established a

@ Springer

signature of radiosensitivity. Second, Eschrich and col-
leagues included cell lines that were mismatch repair
(MMR) proficient as well as cell lines that were MMR
deficient, although these pathways are genetically different
[44, 45]. Third, Eschrich and colleagues analyzed a panel of
cell lines from various tumor entities.

Chromosomal aberrations

Chromosomal aneuploidy is a defining feature of colorectal
carcinomas [46, 47]. This is reflected by tumor- and stage-
specific genomic copy number aberrations [48], which are
virtually identical in colon and rectal cancers [49, 50].
Accordingly, it may be speculated that differences in treat-
ment responses can be correlated with differences on the
DNA level.

In one of the first studies to address this question, pre-
therapeutic biopsies from 42 patients with locally advanced
rectal cancers were analyzed using metaphase comparative
genomic hybridization (CGH). Based on downsizing of the
T-category, chromosomal gains of 7q32—q36 and 7q11—q31
as well as amplifications of 20q11—q13 were associated with
responsiveness to preoperative chemoradiotherapy [51].
However, the authors reported a high probability that these
genomic copy number changes were detected by chance,
therefore requiring independent validation in a larger patient
population and with a higher resolution. In a more recent
study, Chen and colleagues used oligonucleotide array-
based CGH to screen for chromosomal copy number alter-
ations correlated with pathologic complete response (pCR).
Analyzing DNA from 95 rectal cancers, the authors ob-
served that chromosomal loss of 15q11.1-q26.3 was asso-
ciated with non-pCR, while loss of 12p13.31 was associated
with pCR [52].

Single-biomarker and multibiomarker analyses
DNA mutations in the RAS—-MAPK pathway

The v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog
(KRAS), a member of a large family of GTP-binding pro-
teins involved in signal transduction [53, 54], plays an
important role in colorectal carcinogenesis because a high
percentage of colorectal carcinomas are characterized by
activating mutations of this oncogene [45]. These mutations
result in the constitutive activation of the MAPK pathway.
Because preliminary evidence indicated an ability of the
RAS oncogene to enhance radioresistance in vitro [55-58],
several studies investigated the potential relevance of the
RAS-MAPK pathway for the response of primary rectal
cancers to irradiation.

Luna-Perez and colleagues correlated the response of 37
rectal cancers to preoperative chemoradiotherapy with
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KRAS mutation status [59]. Analyzing codons 12, 13, and
61, they could show that tumors with wild-type KRAS were
more likely to be responsive than tumors with mutant KRAS.
It should be noted that the authors used irradiated tumor
tissue for their analysis, although recent evidence suggests
that preoperative multimodal treatment does not alter KRAS
mutation status [60]. In contrast, Zauber and colleagues
screened pretherapeutic biopsies from 53 patients with stage
I-III rectal cancers and detected KRAS mutations in 18
patients (34%). The presence of a KRAS mutation, however,
was not indicative of tumor regression after preoperative
chemoradiotherapy [61].

Shortly thereafter, Gaedcke and colleagues observed a
KRAS mutation frequency of 48% (n=45) in pretherapeu-
tic biopsies of 94 patients with locally advanced rectal
cancers [62]. In contrast to Zauber and colleagues, these
authors specifically reported the affected codons: Twenty-
nine mutations (64%) were located in codon 12, 10 muta-
tions (22%) in codon 13, and 3 mutations (7%) each in
codons 61 and 146. The presence of none of these muta-
tions was correlated with response to preoperative chemo-
radiotherapy. However, Gaedcke et al. detected differential
sensitivities when the mutations were grouped based on
the respective amino acid exchange; G12V mutations
appeared to be associated with higher rates of tumor
regression than G13D mutations (p=0.012). Most recent-
ly, Garcia-Aguilar and colleagues published their analysis
of pretherapeutic biopsies from 132 patients with locally
advanced rectal cancers and reported that KRAS mutations
were more likely in tumors from patients without pCR,
i.e., resistant tumors [63].

These conflicting data indicate that it may not be suffi-
cient to solely determine the mutation status of KRAS, but
rather to group patients according to the respective
nucleotide-specific amino acid exchange. This interpreta-
tion is supported by previous investigations suggesting
that the level of aggressiveness depends on the mutation
form [64, 65] and that these specific mutation forms may
activate distinct downstream targets and different onco-
genic pathways [66]. Furthermore, De Roock and col-
leagues recently reported that chemotherapy-refractory
metastatic colorectal cancers harboring a G13D KRAS
mutation were more sensitive to treatment with the epi-
dermal growth factor receptor (EGFR) inhibitor cetuximab
compared to tumors with other KRAS mutations [67]. This
was confirmed in vitro, and G12V-mutated cancer cells
were resistant to cetuximab, whereas G13D-mutated and
KRAS wild-type cancer cells were sensitive. Whether the
KRAS mutation status also influences the response of
rectal cancers to multimodal treatment concepts that in-
clude EGFR inhibitors remains elusive, particularly as the
clinical relevance of these combinations remains to be
determined [68, 69].

Single-nucleotide polymorphisms

Single-nucleotide polymorphisms (SNPs) are sites in the
genome sequence where individuals differ by a single
base [70]. The total number of these sites in the human
genome is estimated to be roughly 10 million, and these
SNPs are distributed at an overall frequency of 1 in every
300 to 1,000 base pairs [71]. Importantly, it has been demon-
strated that specific haplotypes and genetic polymorphisms
are associated with clinical phenotypes. For instance, the
presence of a G allele within the SNP rs6983267, located on
chromosome 8q24, confers an increased risk for the develop-
ment of colorectal cancer [72—74]. Due to the growing body of
evidence suggesting that genetic variation between individu-
als can account for differences in drug response [75, 76], it has
been speculated that genetic polymorphisms in genes encod-
ing drug- or radiation-related responses may influence the
individual’s response to chemoradiotherapy [77].

Most prominently, thymidylate synthase (TS) has been
analyzed in this respect, but the results are conflicting. Villa-
franca and colleagues were the first to correlate polymorphisms
in the 7S promoter and tumor response to preoperative chemo-
radiotherapy. Analyzing tumor DNA from pretreatment biop-
sies of 65 patients, the authors observed that the 7S genotype
was predictive for tumor downstaging following preoperative
chemoradiotherapy [78].

Terrazzino and colleagues, as well as the other investi-
gators mentioned within this section, analyzed germline
(blood) DNA from rectal cancer patients. However, there
was no correlation with histopathological tumor regression
[79]. This result has recently been confirmed by Conradi
and colleagues who also failed to demonstrate any associa-
tion between TS genotype and relevant clinical parameters
such as local response, tumor regression grading, or disease-
free and overall survival [80].

In contrast, Spindler and colleagues demonstrated that
the 7S genotype had a significant impact on the rate of
complete pathological response following preoperative che-
moradiotherapy [81]. Similar results were subsequently
published by Stoehlmacher and colleagues who also
reported a correlation between 7S genotype and histopatho-
logical tumor regression [82]. Data from Hur and colleagues
confirm the interpretation that SNPs within the 7S enhancer
region affect the response of rectal cancers to preoperative
chemoradiotherapy [83]. Very recently, Tan and colleagues
reported the prospective use of 7S genotyping to direct
preoperative chemoradiotherapy in a single-institution phase
II study [84].

As a second example, recent data indicated that germline
polymorphisms in the TGFBI gene are associated with
quality of life-impairing acute organ toxicity in patients with
locally advanced rectal cancer. Analyzing DNA from two
independent cohorts of patients participating in the CAO/
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ARO/AIO-94 and -04 trials (n=88 and n=75), Schirmer and
colleagues demonstrated that all patients carrying the TGFB1
Pro25 variant developed high-grade acute organ toxicity dur-
ing preoperative 5-FU-based chemoradiotherapy [85]. The
positive predictive value for acute toxicity in the presence of
this SNP is 100%, which highlights the potential clinical
importance of this observation.

Immunohistochemistry

A plethora of studies has been published which focused on a
single immunohistochemical marker or a combination of a
few. A comprehensive summary of these studies would
extend beyond the scope of this review, and we refer the
reader to recent comprehensive reviews [18, 86, 87]. Very
briefly, primary focus was the analysis of proteins involved
in DNA damage repair, proliferation, angiogenesis, and
apoptosis, including Ki-67, cyclin E, p21, p53, survivin,
Bcl-2, BAX, EGFR, VEGF, PCNA, XIAP, PTGS2 (COX-
2), HIF-1«, TS, and PROM1 (CD133). However, for most
marker studies, the results are conflicting and still remain
inconclusive.

Novel molecular targets for chemoradiosensitization

As discussed above, there is a clinical need to establish
molecular biomarkers that differentiate responsive and re-
sistant tumors because such biomarkers could be used pre-
therapeutically to predict the response of an individual
patient’s tumor to multimodal treatment (diagnostic ap-
proach). In addition, genes that are differentially expressed
between resistant and responsive tumors could be used to
identify novel therapeutic targets and thereby assist in
implementing novel therapeutic strategies (therapeutic ap-
proach). For instance, genes that are overexpressed in resis-
tant tumors could be repressed via RNA interference
(RNAIi)-based approaches [88, 89] or using chemical/small
molecule inhibitors, potentially leading to sensitization to
chemoradiotherapy. In this context, both survivin and T cell-
specific factor 4 (TCF4) represent two prominent and prom-
ising examples.

Survivin

The baculoviral inhibitor of apoptosis repeat-containing 5
(BIRCS), more commonly referred to as survivin, encodes
for the smallest and structurally unique member of the
inhibitors of apoptosis family of proteins [90]. Survivin is
overexpressed in a variety of human tumors, and it plays a
prominent role in regulating apoptosis, during cell division,
and during adaptation to stress.
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Following up on the observation that the expression
of survivin was inversely correlated with spontaneous
and radiation-induced apoptosis [91], Rodel and col-
leagues used siRNA-mediated gene silencing to demon-
strate that inhibition of survivin sensitizes colorectal
cancer cells to radiation therapy, accompanied by in-
creased levels of G2/M phase arrest and increased levels
of DNA double-strand breaks after irradiation [92]. Very
recently, the same authors could show that survivin
rapidly accumulates in the nucleus following irradiation
where it subsequently interacts with members of the
DNA double-strand break repair machinery in order to
regulate the activity of DNA-dependent protein kinase
[93]. Because survivin inhibitors are currently being
investigated in clinical trials, future studies will ulti-
mately demonstrate whether its inhibition represents an
effective strategy for (chemo)radiosensitization [94]. In
this respect, the potential relevance of survivin for mon-
itoring response to preoperative chemoradiotherapy has
recently been confirmed by Sprenger and colleagues
who could show that high survivin expression in pre-
treatment biopsies correlated with advanced postthera-
peutical tumor and UICC stage and decreased disease-free
survival [95].

TCF4

As discussed above, Ghadimi and colleagues reported
the identification of a 54-gene signature that differenti-
ated resistant and responsive rectal cancers from patients
who had been treated with preoperative chemoradiother-
apy [21]. Interestingly, within this signature, the tran-
scription factor TCF4 was found to be significantly
overexpressed in resistant tumors. TCF4, also known
as TCF7L2, represents a key downstream effector that
mediates canonical Wnt signaling, a pathway that plays
a central role in colorectal tumorigenesis and tumor
progression [96, 97].

In order to explore the functional relevance of this over-
expression for mediating treatment resistance, Kendziorra
and colleagues recently silenced TCF4 in resistant colorectal
cancer cell lines and could show that RNAi-mediated inhi-
bition of TCF4 caused a significant radiosensitization of
colorectal cancer cells with high TCF reporter activity
(Fig. 1). Follow-up experiments revealed that the effect of
radiosensitization was associated with a G2/M phase arrest,
an impaired ability to adequately halt cell cycle progression
after irradiation, and a compromised DNA double-strand
break repair [98]. These data indicate a novel role of the
Wnt transcription factor 7CF4 in mediating radioresistance
and, if further validated, suggest that 7CF4 is a promising
therapeutic target.
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Fig. 1 RNAi-mediated
silencing of TCF4 results in
radiosensitization. 7CF4 was
silenced in SW837 and SW480
cells using shRNA constructs,
and stable single-cell clones
were subsequently established.
A standard colony-forming as-
say demonstrated that silencing
of TCF4 significantly increased
the sensitivity of SW480 and
SW837 cells to clinically rele-
vant doses of X-rays
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Conclusions and future perspective

The genetic diversity of rectal cancer is associated with
varying responses to chemoradiotherapy, and varying toxic-
ity rates. This offers a wide range of options to pretherapeuti-
cally assess both response and toxicity for the individual
patient. Consequently, a plethora of potential biomarkers has
already been evaluated using whole-genome and single-
marker or multimarker analyses, some of which have great
potential to stratify rectal cancer patients for multimodal treat-
ment regimens and to implement targeted therapeutics

(Fig. 2).
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However, there are several drawbacks of these findings
that still impede transition to routine clinical practice: First,
conflicting results were obtained by different investigators.
Second, virtually all biomarkers described to date have been
identified in retrospective studies and lack independent val-
idation in a prospective setting using standardized analytical
procedures. This represents the most challenging hurdle to
the implementation of these biomarkers, once further vali-
dated, into a clinical setting.

In this respect, the TransValid-KFO179/GRCSG-Trials
(TransValid A, TransValid B) are the first biomarker-
driven clinical trials for patients with rectal cancer (Fig. 3).

Fig. 2 Potential pathways and
proteins regulating and
mediating resistance of rectal
cancer cells to
chemoradiotherapy
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Fig. 3 Outline of the TransValid-KFO179/GRCSG-Trials (TransValid
A, TransValid B). TransValid A (validation study): 200 patients will be
treated with 5-FU-based (1,000 mg/m?, 120 h continuous i.v. on
days 1-5 and 29-33) chemoradiotherapy (radiation, 28 x1.8 Gy) fol-
lowed by radical surgery. Adjuvant therapy consists of either four
cycles of 5-FU (500 mg/m?, bolus i.v. on days 1-5, repeat on
day 29) or, in selected cases based on the clinicians’ discretion, six
applications of a shortened FOLFOX regimen (folinic acid 400 mg/m?,

2 h continuous i.v.; oxaliplatin 100 mg/mz, 2 h continuous i.v.; 5-FU
2,400 mg/mz, 46 h continuous i.v.; on days 1, 15, 30, 45, 60, and 75).
TransValid B (feasibility study, phase I/Il): 50 patients will be treated
with chemoradiotherapy (radiation, 28x1.8 Gy; 5-FU 250 mg/mz,
continuous i.v. on days 1-14 and 22-35; oxaliplatin, 50 mg/m?, 2 h
continuous i.v. on days 1, 8, 22, and 29), followed by three applications
of a shortened FOLFOX regimen on days 1, 15, and 30 and radical
surgery

DNA mutations,
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SNPs modifications

Altered mRNA
expression
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expression
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Altered protein
expression
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Treatment
stratification
Primary RT/CT Intensified, .
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Fig. 4 Future vision for the treatment of patients with locally ad-
vanced rectal cancers. Pretherapeutic patient material (tumor and nor-
mal tissue) will be subjected to multilayer genomic analyses. Based on
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Funded by the Deutsche Forschungsgemeinschaft and initi-
ated and promoted by the institutions of the GRCSG as well
as the Clinical Research Unit 179 (Klinische Forschergruppe,
KFO179), the aim of these multicenter studies is to prospec-
tively implement the validation of previously identified mo-
lecular and clinical biomarkers into a highly standardized
clinical setting. To achieve this goal, patients with locally
advanced (cUICC II/IIT) cancers of the lower two thirds of
the rectum as well as patients with resectable synchronous
liver metastases (UICC IV) can be enrolled into one of these
trials based on the responsible clinicians’ discretion. In Trans-
Valid A (“validation study”), patients are treated with
standard 5-FU-based chemoradiotherapy followed by stan-
dardized TME surgery according to the German S3 Guideline
(Fig. 3). Adjuvant chemotherapy consists of either 5-FU
monotherapy or, in selected cases based on the clinicians’
assessment, a shortened FOLFOX regimen. The aim of Trans-
Valid B (“feasibility study,” phase I/Il) is to establish the
feasibility of an intensified preoperative chemoradiotherapy
regimen (radiation, 5-FU, and oxaliplatin) combined with a
shortened FOLFOX regimen prior to standardized TME sur-
gery (Fig. 3). One rationale for this approach is the fact that
today many patients do not receive, or receive limited doses
of, adjuvant chemotherapy. Ascertainment of biomaterial at
various time points is a major inclusion criterion for the
TransValid trials (Fig. 3). This biomaterial will be processed
according to previously established strict standard operating
procedures, which includes performing these experiments on
a week-by-week basis (prospective data generation).

From a personal perspective, we strongly believe that
molecular biomarkers will be implemented into clinical
decision-making in the near future. In a potential scenario,
pretherapeutic patient material from both tumor and normal
tissue will be ascertained at the initial diagnosis and sub-
jected to multilayer genomic analyses (Fig. 4). Based on the
results of these analyses (aim: prediction of both response
and toxicity), the individual patient will be stratified into
different alternative treatment concepts (personalized medi-
cine). In this setting, patients with a biomarker profile indi-
cating “responder to standard treatment” are subjected to a
low-toxicity preoperative regimen. In contrast, for patients
with a biomarker profile indicating “nonresponder to stan-
dard treatment,” a more aggressive approach is needed. For
instance, an intensified regimen could be pursued, including
the application of more effective systemic agents such as
oxaliplatin. An induction combination chemotherapy (pre-
operative chemoradiotherapy followed by chemotherapy
with sufficient dose and intensity prior to surgery) would
be another interesting option because many patients do not
receive adjuvant chemotherapy after preoperative chemo-
radiotherapy and surgical resection (either due to surgical
complications, patients’ refusal, or investigators’ discretion).
For patients predicted to be “nonresponder to standard

treatment” and to develop high acute organ toxicity, primary
surgery may be an option. With respect to novel therapeutic
target genes, there are examples of molecular targets such as
survivin and TCF4 that have the potential to be incorporated
into treatment concepts, although this requires extensive val-
idation and testing.

In any case, rectal cancer represents a prominent example
on how to individualize multimodal treatment regimens.
Once demonstrated that predictive biomarkers can be exam-
ined in a week-by-week setting with high quality and repro-
ducibility and in a cost-effective manner, and once these
biomarkers have been prospectively validated utilizing suf-
ficient patient numbers, a personalized medicine is within
reach. This holds considerable promise to improve the out-
come of patients with this disease.

Acknowledgements The authors thank Dr. Melanie Spitzner, Birte
Roesler, and Emil Kendziorra for the editorial assistance, Dr. Tim
Beissbarth for the helpful discussions, and Dr. Reinhard Ebner for
critically reading the manuscript. The work of the authors is supported
by the Deutsche Forschungsgemeinschaft (KFO179).

Conflicts of interest None.

Open Access This article is distributed under the terms of the Crea-
tive Commons Attribution License which permits any use, distribution,
and reproduction in any medium, provided the original author(s) and
the source are credited.

References

1. Heald RJ, Husband EM, Ryall RD (1982) The mesorectum in
rectal cancer surgery—the clue to pelvic recurrence? Br J Surg
69(10):613-616

2. Kapiteijn E, Marijnen CA, Nagtegaal ID, Putter H, Steup WH,
Wiggers T, Rutten HJ, Pahlman L, Glimelius B, van Krieken JH,
Leer JW, van de Velde CJ (2001) Preoperative radiotherapy com-
bined with total mesorectal excision for resectable rectal cancer. N
Engl J Med 345(9):638-646. doi:10.1056/NEJMo0a010580

3. Sauer R, Becker H, Hohenberger W, Rodel C, Wittekind C, Fietkau
R, Martus P, Tschmelitsch J, Hager E, Hess CF, Karstens JH, Liersch
T, Schmidberger H, Raab R (2004) Preoperative versus postoperative
chemoradiotherapy for rectal cancer. N Engl J Med 351(17):1731—
1740. doi:10.1056/NEJM0a040694

4. Cunningham D, Atkin W, Lenz HJ, Lynch HT, Minsky B, Nordlinger
B, Starling N (2010) Colorectal cancer. Lancet 375(9719):1030—
1047. doi:10.1016/S0140-6736(10)60353-4

5. Rodel C, Martus P, Papadoupolos T, Fuzesi L, Klimpfinger M,
Fietkau R, Liersch T, Hohenberger W, Raab R, Sauer R, Wittekind
C (2005) Prognostic significance of tumor regression after preoper-
ative chemoradiotherapy for rectal cancer. J Clin Oncol 23(34):8688—
8696. doi:10.1200/JC0O.2005.02.1329

6. Seiwert TY, Salama JK, Vokes EE (2007) The concurrent chemo-
radiation paradigm—general principles. Nat Clin Pract Oncol 4(2):86—
100. doi:10.1038/ncponc0714

7. Katz D, Ito E, Liu FF (2009) On the path to seeking novel
radiosensitizers. Int J Radiat Oncol Biol Phys 73(4):988-996.
doi:10.1016/j.ijrobp.2008.12.002

@ Springer


http://dx.doi.org/10.1056/NEJMoa010580
http://dx.doi.org/10.1056/NEJMoa040694
http://dx.doi.org/10.1016/S0140-6736(10)60353-4
http://dx.doi.org/10.1200/JCO.2005.02.1329
http://dx.doi.org/10.1038/ncponc0714
http://dx.doi.org/10.1016/j.ijrobp.2008.12.002

552

Langenbecks Arch Surg (2012) 397:543-555

8.

10.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Begg AC, Stewart FA, Vens C (2011) Strategies to improve radio-
therapy with targeted drugs. Nat Rev Cancer 11(4):239-253.
doi:10.1038/nrc3007

. Vaupel P, Schlenger K, Knoop C, Hockel M (1991) Oxygenation

of human tumors: evaluation of tissue oxygen distribution in breast
cancers by computerized O, tension measurements. Cancer Res 51
(12):3316-3322

Steel GG, Peacock JH (1989) Why are some human tumours more
radiosensitive than others? Radiother Oncol 15(1):63-72

. Zaider M, Hanin L (2011) Tumor control probability in radiation

treatment. Med Phys 38(2):574-583

Weichselbaum RR, Little JB (1982) Radioresistance in some human
tumor cells conferred in vitro by repair of potentially lethal X-ray
damage. Radiology 145(2):511-513

Steel GG, Peckham MJ (1979) Exploitable mechanisms in com-
bined radiotherapy-chemotherapy: the concept of additivity. Int J
Radiat Oncol Biol Phys 5(1):85-91

Wolff HA, Daldrup B, Jung K, Overbeck T, Hennies S, Matthias C,
Hess CF, Roedel RM, Christiansen H (2011) High-grade acute
organ toxicity as positive prognostic factor in adjuvant radiation
and chemotherapy for locally advanced head and neck cancer.
Radiology 258(3):864-871. doi:10.1148/radiol. 10100705

Cheng C, Pounds S (2007) False discovery rate paradigms for statis-
tical analyses of microarray gene expression data. Bioinformation 1
(10):436-446

Quackenbush J (2006) Microarray analysis and tumor classi-
fication. N Engl J Med 354(23):2463-2472. doi:10.1056/
NEJMra042342

van’t Veer LJ, Bernards R (2008) Enabling personalized cancer
medicine through analysis of gene-expression patterns. Nature 452
(7187):564-570. doi:10.1038/nature06915

Kuremsky JG, Tepper JE, McLeod HL (2009) Biomarkers for
response to neoadjuvant chemoradiation for rectal cancer. Int
J Radiat Oncol Biol Phys 74(3):673—688. doi:10.1016/j.
ijrobp.2009.03.003

Nannini M, Pantaleo MA, Maleddu A, Astolfi A, Formica S,
Biasco G (2009) Gene expression profiling in colorectal cancer
using microarray technologies: results and perspectives. Cancer
Treat Rev 35(3):201-209. doi:10.1016/j.ctrv.2008.10.006
Brettingham-Moore KH, Duong CP, Heriot AG, Thomas RJ, Phillips
WA (2011) Using gene expression profiling to predict response and
prognosis in gastrointestinal cancers—the promise and the perils.
Ann Surg Oncol 18(5):1484-1491. doi:10.1245/s10434-010-1433-1
Ghadimi BM, Grade M, Difilippantonio MJ, Varma S, Simon R,
Montagna C, Fuzesi L, Langer C, Becker H, Liersch T, Ried T
(2005) Effectiveness of gene expression profiling for response
prediction of rectal adenocarcinomas to preoperative chemoradio-
therapy. J Clin Oncol 23(9):1826-1838

Liersch T, Grade M, Gaedcke J, Varma S, Difilippantonio MJ,
Langer C, Hess CF, Becker H, Ried T, Ghadimi BM (2009)
Preoperative chemoradiotherapy in locally advanced rectal cancer:
correlation of a gene expression-based response signature with
recurrence. Cancer Genet Cytogenet 190(2):57-65. doi:10.1016/.
cancergencyto.2008.11.011

Watanabe T, Komuro Y, Kiyomatsu T, Kanazawa T, Kazama Y,
Tanaka J, Tanaka T, Yamamoto Y, Shirane M, Muto T, Nagawa H
(2006) Prediction of sensitivity of rectal cancer cells in response to
preoperative radiotherapy by DNA microarray analysis of gene
expression profiles. Cancer Res 66(7):3370-3374. doi:10.1158/
0008-5472.CAN-05-3834

Kim 1J, Lim SB, Kang HC, Chang HJ, Ahn SA, Park HW, Jang
SG, Park JH, Kim DY, Jung KH, Choi HS, Jeong SY, Sohn DK,
Kim DW, Park JG (2007) Microarray gene expression profiling for
predicting complete response to preoperative chemoradiotherapy
in patients with advanced rectal cancer. Dis Colon Rectum 50
(9):1342-1353. doi:10.1007/s10350-007-277-7

@ Springer

25.

26.

27.

28.

29.

30.

31

32.

33.

34.

35.

36.

37.

Rimkus C, Friederichs J, Boulesteix AL, Theisen J, Mages J,
Becker K, Nekarda H, Rosenberg R, Janssen KP, Siewert JR
(2008) Microarray-based prediction of tumor response to neoadju-
vant radiochemotherapy of patients with locally advanced rectal
cancer. Clin Gastroenterol Hepatol 6(1):53-61. doi:10.1016/].
¢gh.2007.10.022

Brettingham-Moore KH, Duong CP, Greenawalt DM, Heriot AG,
Ellul J, Dow CA, Murray WK, Hicks RJ, Tjandra J, Chao M, Bui
A, Joon DL, Thomas RJ, Phillips WA (2011) Pretreatment tran-
scriptional profiling for predicting response to neoadjuvant chemo-
radiotherapy in rectal adenocarcinoma. Clin Cancer Res 17
(9):3039-3047. doi:10.1158/1078-0432.CCR-10-2915

Borst P, Wessels L (2010) Do predictive signatures really predict
response to cancer chemotherapy? Cell Cycle 9(24):4836-4840
Koscielny S (2010) Why most gene expression signatures of
tumors have not been useful in the clinic. Sci Transl Med 2
(14):14ps12. doi:10.1126/scitranslmed.3000313

Gonen M (2009) Statistical aspects of gene signatures and molec-
ular targets. Gastrointest Cancer Res 3(2 Suppl):S19-S21
Johannes M, Brase JC, Frohlich H, Gade S, Gehrmann M, Falth M,
Sultmann H, Beissbarth T (2010) Integration of pathway knowl-
edge into a reweighted recursive feature elimination approach for
risk stratification of cancer patients. Bioinformatics 26(17):2136—
2144. doi:10.1093/bioinformatics/btq345

Porzelius C, Johannes M, Binder H, Beissbarth T (2011) Leverag-
ing external knowledge on molecular interactions in classification
methods for risk prediction of patients. Biom J 53(2):190-201.
doi:10.1002/bimj.201000155

van de Vijver MJ, He YD, van’t Veer LJ, Dai H, Hart AA, Voskuil
DW, Schreiber GJ, Peterse JL, Roberts C, Marton MJ, Parrish M,
Atsma D, Witteveen A, Glas A, Delahaye L, van der Velde T,
Bartelink H, Rodenhuis S, Rutgers ET, Friend SH, Bernards R
(2002) A gene-expression signature as a predictor of survival in
breast cancer. N Engl J Med 347(25):1999-2009. doi:10.1056/
NEJMo0a021967

van’t Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AA, Mao M,
Peterse HL, van der Kooy K, Marton MJ, Witteveen AT, Schreiber
GJ, Kerkhoven RM, Roberts C, Linsley PS, Bernards R, Friend SH
(2002) Gene expression profiling predicts clinical outcome of
breast cancer. Nature 415(6871):530-536. doi:10.1038/415530a
Buyse M, Loi S, Veer L van’t, Viale G, Delorenzi M, Glas AM,
d’Assignies MS, Bergh J, Lidereau R, Ellis P, Harris A, Bogaerts J,
Therasse P, Floore A, Amakrane M, Piette F, Rutgers E, Sotiriou C,
Cardoso F, Piccart MJ (2006) Validation and clinical utility of'a 70-
gene prognostic signature for women with node-negative breast
cancer. J Natl Cancer Inst 98(17):1183-1192. doi:10.1093/jnci/
djj329

Bueno-de-Mesquita JM, van Harten WH, Retel VP, van’t Veer LJ,
van Dam FS, Karsenberg K, Douma KF, van Tinteren H, Peterse
JL, Wesseling J, Wu TS, Atsma D, Rutgers EJ, Brink G, Floore AN,
Glas AM, Roumen RM, Bellot FE, van Krimpen C, Rodenhuis S,
van de Vijver MJ, Linn SC (2007) Use of 70-gene signature to predict
prognosis of patients with node-negative breast cancer: a prospective
community-based feasibility study (RASTER). Lancet Oncol 8
(12):1079-1087. doi:10.1016/S1470-2045(07)70346-7

Shoemaker RH (2006) The NCI60 human tumour cell line anti-
cancer drug screen. Nat Rev Cancer 6(10):813-823. doi:10.1038/
nrcl1951

Neve RM, Chin K, Fridlyand J, Yeh J, Bachner FL, Fevr T,
Clark L, Bayani N, Coppe JP, Tong F, Speed T, Spellman PT,
DeVries S, Lapuk A, Wang NJ, Kuo WL, Stilwell JL, Pinkel
D, Albertson DG, Waldman FM, McCormick F, Dickson RB,
Johnson MD, Lippman M, Ethier S, Gazdar A, Gray JW (2006) A
collection of breast cancer cell lines for the study of functionally
distinct cancer subtypes. Cancer Cell 10(6):515-527. doi:10.1016/j.
¢cr.2006.10.008


http://dx.doi.org/10.1038/nrc3007
http://dx.doi.org/10.1148/radiol.10100705
http://dx.doi.org/10.1056/NEJMra042342
http://dx.doi.org/10.1056/NEJMra042342
http://dx.doi.org/10.1038/nature06915
http://dx.doi.org/10.1016/j.ijrobp.2009.03.003
http://dx.doi.org/10.1016/j.ijrobp.2009.03.003
http://dx.doi.org/10.1016/j.ctrv.2008.10.006
http://dx.doi.org/10.1245/s10434-010-1433-1
http://dx.doi.org/10.1016/j.cancergencyto.2008.11.011
http://dx.doi.org/10.1016/j.cancergencyto.2008.11.011
http://dx.doi.org/10.1158/0008-5472.CAN-05-3834
http://dx.doi.org/10.1158/0008-5472.CAN-05-3834
http://dx.doi.org/10.1007/s10350-007-277-7
http://dx.doi.org/10.1016/j.cgh.2007.10.022
http://dx.doi.org/10.1016/j.cgh.2007.10.022
http://dx.doi.org/10.1158/1078-0432.CCR-10-2915
http://dx.doi.org/10.1126/scitranslmed.3000313
http://dx.doi.org/10.1093/bioinformatics/btq345
http://dx.doi.org/10.1002/bimj.201000155
http://dx.doi.org/10.1056/NEJMoa021967
http://dx.doi.org/10.1056/NEJMoa021967
http://dx.doi.org/10.1038/415530a
http://dx.doi.org/10.1093/jnci/djj329
http://dx.doi.org/10.1093/jnci/djj329
http://dx.doi.org/10.1016/S1470-2045(07)70346-7
http://dx.doi.org/10.1038/nrc1951
http://dx.doi.org/10.1038/nrc1951
http://dx.doi.org/10.1016/j.ccr.2006.10.008
http://dx.doi.org/10.1016/j.ccr.2006.10.008

Langenbecks Arch Surg (2012) 397:543-555

553

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

Benson JD, Chen YN, Cornell-Kennon SA, Dorsch M, Kim S,
Leszczyniecka M, Sellers WR, Lengauer C (2006) Validating cancer
drug targets. Nature 441(7092):451-456. doi:10.1038/nature04873
Solomon DA, Kim JS, Ressom HW, Sibenaller Z, Ryken T, Jean
W, Bigner D, Yan H, Waldman T (2009) Sample type bias in the
analysis of cancer genomes. Cancer Res 69(14):5630-5633.
doi:10.1158/0008-5472.CAN-09-1055

Eschrich S, Zhang H, Zhao H, Boulware D, Lee JH, Bloom
G, Torres-Roca JF (2009) Systems biology modeling of the
radiation sensitivity network: a biomarker discovery platform.
Int J Radiat Oncol Biol Phys 75(2):497-505. doi:10.1016/j.
ijrobp.2009.05.056

Eschrich SA, Pramana J, Zhang H, Zhao H, Boulware D, Lee JH,
Bloom G, Rocha-Lima C, Kelley S, Calvin DP, Yeatman TJ, Begg
AC, Torres-Roca JF (2009) A gene expression model of intrinsic
tumor radiosensitivity: prediction of response and prognosis after
chemoradiation. Int J Radiat Oncol Biol Phys 75(2):489-496.
doi:10.1016/}.ijrobp.2009.06.014

Torres-Roca JF, Eschrich S, Zhao H, Bloom G, Sung J, McCarthy
S, Cantor AB, Scuto A, Li C, Zhang S, Jove R, Yeatman T (2005)
Prediction of radiation sensitivity using a gene expression classi-
fier. Cancer Res 65(16):7169-7176. doi:10.1158/0008-5472.CAN-
05-0656

Spitzner M, Emons G, Kramer F, Gaedcke J, Rave-Frank M,
Scharf JG, Burfeind P, Becker H, Beissbarth T, Ghadimi BM, Ried
T, Grade M (2010) A gene expression signature for chemoradio-
sensitivity of colorectal cancer cells. Int J Radiat Oncol Biol Phys
78(4):1184-1192. doi:10.1016/j.ijrobp.2010.06.023

Walther A, Johnstone E, Swanton C, Midgley R, Tomlinson I, Kerr
D (2009) Genetic prognostic and predictive markers in colorectal
cancer. Nat Rev Cancer 9(7):489—499. doi:10.1038/nrc2645
Markowitz SD, Bertagnolli MM (2009) Molecular origins of can-
cer: molecular basis of colorectal cancer. N Engl J Med 361
(25):2449-2460. doi:10.1056/NEJMra0804588

Albertson DG, Collins C, McCormick F, Gray JW (2003) Chro-
mosome aberrations in solid tumors. Nat Genet 34(4):369-376.
doi:10.1038/ngl215

Grade M, Becker H, Liersch T, Ried T, Ghadimi BM (2006)
Molecular cytogenetics: genomic imbalances in colorectal cancer
and their clinical impact. Cell Oncol 28(3):71-84

Ried T, Knutzen R, Steinbeck R, Blegen H, Schrock E, Heselmeyer
K, du Manoir S, Auer G (1996) Comparative genomic hybridization
reveals a specific pattern of chromosomal gains and losses during the
genesis of colorectal tumors. Genes Chromosomes Cancer 15
(4):234-245. doi:10.1002/(SICI)1098-2264(199604)15:4<234::
AID-GCC5>3.0.CO;2-2

Grade M, Ghadimi BM, Varma S, Simon R, Wangsa D,
Barenboim-Stapleton L, Liersch T, Becker H, Ried T, Difilippan-
tonio MJ (2006) Aneuploidy-dependent massive deregulation of
the cellular transcriptome and apparent divergence of the Wnt/
beta-catenin signaling pathway in human rectal carcinomas. Cancer
Res 66(1):267-282

Grade M, Hormann P, Becker S, Hummon AB, Wangsa D, Varma
S, Simon R, Liersch T, Becker H, Difilippantonio MJ, Ghadimi
BM, Ried T (2007) Gene expression profiling reveals a massive,
aneuploidy-dependent transcriptional deregulation and distinct dif-
ferences between lymph node-negative and lymph node-positive
colon carcinomas. Cancer Res 67(1):41-56

Grade M, Gaedcke J, Wangsa D, Varma S, Beckmann J, Liersch T,
Hess C, Becker H, Difilippantonio MJ, Ried T, Ghadimi BM
(2009) Chromosomal copy number changes of locally ad-
vanced rectal cancers treated with preoperative chemoradio-
therapy. Cancer Genet Cytogenet 193(1):19-28. doi:10.1016/j.
cancergencyto.2009.03.016

Chen Z, Liu Z, Li W, Qu K, Deng X, Varma MG, Fichera A,
Pigazzi A, Garcia-Aguilar J (2011) Chromosomal copy number

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

alterations are associated with tumor response to chemoradiation in
locally advanced rectal cancer. Genes Chromosomes Cancer 50
(9):689-699. doi:10.1002/gcc.20891

Malumbres M, Barbacid M (2003) RAS oncogenes: the first
30 years. Nat Rev Cancer 3(6):459—465. doi:10.1038/nrc1097
Pylayeva-Gupta Y, Grabocka E, Bar-Sagi D (2011) RAS onco-
genes: weaving a tumorigenic web. Nat Rev Cancer 11(11):761—
774. doi:10.1038/nrc3106

McKenna WG, Weiss MC, Bakanauskas VJ, Sandler H, Kelsten
ML, Biaglow J, Tuttle SW, Endlich B, Ling CC, Muschel RJ
(1990) The role of the H-ras oncogene in radiation resistance and
metastasis. Int J Radiat Oncol Biol Phys 18(4):849-859

Miller AC, Kariko K, Myers CE, Clark EP, Samid D (1993)
Increased radioresistance of EJras-transformed human osteosarco-
ma cells and its modulation by lovastatin, an inhibitor of p2lras
isoprenylation. Int J Cancer 53(2):302-307

Bernhard EJ, McKenna WG, Hamilton AD, Sebti SM, Qian Y, Wu
IJM, Muschel RJ (1998) Inhibiting Ras prenylation increases the
radiosensitivity of human tumor cell lines with activating muta-
tions of ras oncogenes. Cancer Res 58(8):1754-1761

Gupta AK, Bakanauskas VJ, Cerniglia GJ, Cheng Y, Bernhard EJ,
Muschel RJ, McKenna WG (2001) The Ras radiation resistance
pathway. Cancer Res 61(10):4278-4282

Luna-Perez P, Segura J, Alvarado I, Labastida S, Santiago-Payan
H, Quintero A (2000) Specific c-K-ras gene mutations as a tumor-
response marker in locally advanced rectal cancer treated with
preoperative chemoradiotherapy. Ann Surg Oncol 7(10):727-731
Ondrejka SL, Schaeffer DF, Jakubowski MA, Owen DA, Bronner
MP (2011) Does neoadjuvant therapy alter KRAS and/or MSI
results in rectal adenocarcinoma testing? Am J Surg Pathol 35
(9):1327-1330. doi:10.1097/PAS.0b013e3182253800

Zauber NP, Marotta SP, Berman E, Grann A, Rao M, Komati
N, Ribiero K, Bishop DT (2009) Molecular genetic changes
associated with colorectal carcinogenesis are not prognostic
for tumor regression following preoperative chemoradiation of
rectal carcinoma. Int J Radiat Oncol Biol Phys. doi:10.1016/].
1jrobp.2008.08.020

Gaedcke J, Grade M, Jung K, Schirmer M, Jo P, Obermeyer C, Wolff
HA, Herrmann MK, Beissbarth T, Becker H, Ried T, Ghadimi M
(2010) KRAS and BRAF mutations in patients with rectal cancer
treated with preoperative chemoradiotherapy. Radiother Oncol 94
(1):76-81. doi:10.1016/j.radonc.2009.10.001

Garcia-Aguilar J, Chen Z, Smith DD, Li W, Madoff RD,
Cataldo P, Marcet J, Pastor C (2011) Identification of a
biomarker profile associated with resistance to neoadjuvant
chemoradiation therapy in rectal cancer. Ann Surg 254(3):486-492.
doi:10.1097/SLA.0b013e31822b8cfa, discussion 492483

Guerrero S, Casanova I, Farre L, Mazo A, Capella G, Mangues R
(2000) K-ras codon 12 mutation induces higher level of resistance
to apoptosis and predisposition to anchorage-independent growth
than codon 13 mutation or proto-oncogene overexpression. Cancer
Res 60(23):6750-6756

Bazan V, Migliavacca M, Zanna I, Tubiolo C, Grassi N, Latteri MA,
La Farina M, Albanese I, Dardanoni G, Salerno S, Tomasino RM,
Labianca R, Gebbia N, Russo A (2002) Specific codon 13 K-ras
mutations are predictive of clinical outcome in colorectal cancer
patients, whereas codon 12 K-ras mutations are associated with
mucinous histotype. Ann Oncol 13(9):1438-1446

Horsch M, Recktenwald CV, Schadler S, Hrabe de Angelis M,
Seliger B, Beckers J (2009) Overexpressed vs mutated Kras in
murine fibroblasts: a molecular phenotyping study. Br J Cancer
100(4):656—662. doi:10.1038/sj.bjc.6604882

De Roock W, Jonker DJ, Di Nicolantonio F, Sartore-Bianchi A, Tu
D, Siena S, Lamba S, Arena S, Frattini M, Piessevaux H, Van
Cutsem E, O’Callaghan CJ, Khambata-Ford S, Zalcberg JR, Simes
J, Karapetis CS, Bardelli A, Tejpar S (2010) Association of KRAS

@ Springer


http://dx.doi.org/10.1038/nature04873
http://dx.doi.org/10.1158/0008-5472.CAN-09-1055
http://dx.doi.org/10.1016/j.ijrobp.2009.05.056
http://dx.doi.org/10.1016/j.ijrobp.2009.05.056
http://dx.doi.org/10.1016/j.ijrobp.2009.06.014
http://dx.doi.org/10.1158/0008-5472.CAN-05-0656
http://dx.doi.org/10.1158/0008-5472.CAN-05-0656
http://dx.doi.org/10.1016/j.ijrobp.2010.06.023
http://dx.doi.org/10.1038/nrc2645
http://dx.doi.org/10.1056/NEJMra0804588
http://dx.doi.org/10.1038/ng1215
http://dx.doi.org/10.1002/(SICI)1098-2264(199604)15:4<234::AID-GCC5>3.0.CO;2-2
http://dx.doi.org/10.1002/(SICI)1098-2264(199604)15:4<234::AID-GCC5>3.0.CO;2-2
http://dx.doi.org/10.1016/j.cancergencyto.2009.03.016
http://dx.doi.org/10.1016/j.cancergencyto.2009.03.016
http://dx.doi.org/10.1002/gcc.20891
http://dx.doi.org/10.1038/nrc1097
http://dx.doi.org/10.1038/nrc3106
http://dx.doi.org/10.1097/PAS.0b013e3182253800
http://dx.doi.org/10.1016/j.ijrobp.2008.08.020
http://dx.doi.org/10.1016/j.ijrobp.2008.08.020
http://dx.doi.org/10.1016/j.radonc.2009.10.001
http://dx.doi.org/10.1097/SLA.0b013e31822b8cfa
http://dx.doi.org/10.1038/sj.bjc.6604882

554

Langenbecks Arch Surg (2012) 397:543-555

68.

69.

70.

71.

72.

73.

74.

75.

76.

71.

78.

79.

p.G13D mutation with outcome in patients with chemotherapy-
refractory metastatic colorectal cancer treated with cetuximab.
JAMA 304(16):1812-1820. doi:10.1001/jama.2010.1535

Weiss C, Arnold D, Dellas K, Liersch T, Hipp M, Fietkau R, Sauer
R, Hinke A, Rodel C (2010) Preoperative radiotherapy of ad-
vanced rectal cancer with capecitabine and oxaliplatin with or
without cetuximab: a pooled analysis of three prospective phase
I-II trials. Int J Radiat Oncol Biol Phys 78(2):472—478.
doi:10.1016/j.ijrobp.2009.07.1718

Debucquoy A, Machiels JP, McBride WH, Haustermans K (2010)
Integration of epidermal growth factor receptor inhibitors with
preoperative chemoradiation. Clin Cancer Res 16(10):2709—
2714. doi:10.1158/1078-0432.CCR-09-1622

Manolio TA, Brooks LD, Collins FS (2008) A HapMap harvest of
insights into the genetics of common disease. J Clin Invest 118
(5):1590-1605. doi:10.1172/JCI34772

Botstein D, Risch N (2003) Discovering genotypes underlying
human phenotypes: past successes for mendelian disease, future
approaches for complex disease. Nat Genet 33(Suppl):228-237.
doi:10.1038/ng1090

Tomlinson I, Webb E, Carvajal-Carmona L, Broderick P, Kemp Z,
Spain S, Penegar S, Chandler I, Gorman M, Wood W, Barclay E,
Lubbe S, Martin L, Sellick G, Jaeger E, Hubner R, Wild R, Rowan
A, Fielding S, Howarth K, Silver A, Atkin W, Muir K, Logan R,
Kerr D, Johnstone E, Sieber O, Gray R, Thomas H, Peto J, Cazier
JB, Houlston R (2007) A genome-wide association scan of tag
SNPs identifies a susceptibility variant for colorectal cancer at
8g24.21. Nat Genet 39(8):984-988. doi:10.1038/ng2085

Zanke BW, Greenwood CM, Rangrej J, Kustra R, Tenesa A,
Farrington SM, Prendergast J, Olschwang S, Chiang T, Crowdy
E, Ferretti V, Laflamme P, Sundararajan S, Roumy S, Olivier JF,
Robidoux F, Sladek R, Montpetit A, Campbell P, Bezieau S,
O’Shea AM, Zogopoulos G, Cotterchio M, Newcomb P,
McLaughlin J, Younghusband B, Green R, Green J, Porteous
ME, Campbell H, Blanche H, Sahbatou M, Tubacher E, Bonaiti-
Pellie C, Buecher B, Riboli E, Kury S, Chanock SJ, Potter J,
Thomas G, Gallinger S, Hudson TJ, Dunlop MG (2007)
Genome-wide association scan identifies a colorectal cancer sus-
ceptibility locus on chromosome 8q24. Nat Genet 39(8):989-994.
doi:10.1038/ng2089

Haiman CA, Le Marchand L, Yamamato J, Stram DO, Sheng X,
Kolonel LN, Wu AH, Reich D, Henderson BE (2007) A common
genetic risk factor for colorectal and prostate cancer. Nat Genet 39
(8):954-956. doi:10.1038/ng2098

Weinshilboum R (2003) Inheritance and drug response. N Engl J
Med 348(6):529-537. doi:10.1056/NEJMra020021

Evans WE, McLeod HL (2003) Pharmacogenomics—drug dispo-
sition, drug targets, and side effects. N Engl J Med 348(6):538—
549. doi:10.1056/NEJMra020526

Barnett GC, Coles CE, Elliott RM, Baynes C, Luccarini C, Conroy
D, Wilkinson JS, Tyrer J, Misra V, Platte R, Gulliford SL, Sydes
MR, Hall E, Bentzen SM, Dearnaley DP, Burnet NG, Pharoah PD,
Dunning AM, West CM (2012) Independent validation of genes
and polymorphisms reported to be associated with radiation toxic-
ity: a prospective analysis study. Lancet Oncol 13(1):65-77.
doi:10.1016/S1470-2045(11)70302-3

Villafranca E, Okruzhnov Y, Dominguez MA, Garcia-Foncillas J,
Azinovic I, Martinez E, Illarramendi JJ, Arias F, Martinez Monge
R, Salgado E, Angeletti S, Brugarolas A (2001) Polymorphisms of
the repeated sequences in the enhancer region of the thymidylate
synthase gene promoter may predict downstaging after preopera-
tive chemoradiation in rectal cancer. J Clin Oncol 19(6):1779—
1786

Terrazzino S, Agostini M, Pucciarelli S, Pasetto LM, Friso ML,
Ambrosi A, Lisi V, Leon A, Lise M, Nitti D (2006) A haplotype of
the methylenetetrahydrofolate reductase gene predicts poor tumor

@ Springer

80.

81.

82.

83.

84.

8s.

86.

87.

88.

89.

90.

91.

92.

93.

response in rectal cancer patients receiving preoperative chemo-
radiation. Pharmacogenet Genomics 16(11):817-824. doi:10.1097/
01.fpc.0000230412.89973.¢0

Conradi LC, Bleckmann A, Schirmer M, Sprenger T, Jo P,
Homayounfar K, Wolff HA, Rothe H, Middel P, Becker H, Gha-
dimi MB, Beissbarth T, Liersch T (2011) Thymidylate synthase as
a prognostic biomarker for locally advanced rectal cancer after
multimodal treatment. Ann Surg Oncol 18(9):2442-2452.
doi:10.1245/s10434-011-1608-4

Spindler KL, Nielsen JN, Lindebjerg J, Jakobsen A (2007) Germline
polymorphisms may act as predictors of response to preoperative
chemoradiation in locally advanced T3 rectal tumors. Dis Colon
Rectum 50(9):1363-1369. doi:10.1007/s10350-007-0264-z
Stoehlmacher J, Goekkurt E, Mogck U, Aust DE, Kramer M,
Baretton GB, Liersch T, Ehninger G, Jakob C (2008) Thymi-
dylate synthase genotypes and tumour regression in stage II/
III rectal cancer patients after neoadjuvant fluorouracil-based
chemoradiation. Cancer Lett 272(2):221-225. doi:10.1016/j.
canlet.2008.07.008

Hur H, Kang J, Kim NK, Min BS, Lee KY, Shin SJ, Keum KC,
Choi J, Kim H, Choi SH, Lee MY (2011) Thymidylate synthase
gene polymorphism affects the response to preoperative 5-
fluorouracil chemoradiation therapy in patients with rectal cancer.
Int J Radiat Oncol Biol Phys 81(3):669-676. doi:10.1016/].
ijrobp.2010.06.049

Tan BR, Thomas F, Myerson RJ, Zehnbauer B, Trinkaus K,
Malyapa RS, Mutch MG, Abbey EE, Alyasiry A, Fleshman JW,
McLeod HL (2011) Thymidylate synthase genotype-directed neo-
adjuvant chemoradiation for patients with rectal adenocarcinoma. J
Clin Oncol 29(7):875-883. doi:10.1200/JC0.2010.32.3212
Schirmer MA, Nadine Mergler CP, Rave-Frank M, Herrmann
MK, Hennies S, Gaedcke J, Conradi LC, Jo P, Beissbarth T,
Hess CF, Becker H, Ghadimi M, Brockmoller J, Christiansen
H, Wolff HA (2011) Acute toxicity of radiochemotherapy in
rectal cancer patients: a risk particularly for carriers of the
TGFB1 Pro25 variant. Int J Radiat Oncol Biol Phys. doi:10.1016/.
ijrobp.2011.05.063

Berardi R, Maccaroni E, Onofri A, Giampieri R, Pistelli M, Bittoni
A, Scartozzi M, Pierantoni C, Mandolesi A, Bearzi I, Cascinu S
(2009) Locally advanced rectal cancer: from molecular profiling to
clinical practice. A literature review: part 2. Expert Opin Pharmac-
other 10(15):2467-2478. doi:10.1517/14656560903143784
Kapur P (2011) Tailoring treatment of rectal adenocarcinoma:
immunohistochemistry for predictive biomarkers. Anticancer
Drugs 22(4):362-370. doi:10.1097/CAD.0b013¢3283433764
Petrocca F, Lieberman J (2011) Promise and challenge of RNA
interference-based therapy for cancer. J Clin Oncol 29(6):747-754.
doi:10.1200/JC0O.2009.27.6287

Pecot CV, Calin GA, Coleman RL, Lopez-Berestein G, Sood AK
(2011) RNA interference in the clinic: challenges and future direc-
tions. Nat Rev Cancer 11(1):59-67. doi:10.1038/nrc2966

Altieri DC (2008) Survivin, cancer networks and pathway-directed
drug discovery. Nat Rev Cancer 8(1):61-70. doi:10.1038/nrc2293
Rodel C, Haas J, Groth A, Grabenbauer GG, Sauer R, Rodel F (2003)
Spontaneous and radiation-induced apoptosis in colorectal carcinoma
cells with different intrinsic radiosensitivities: survivin as a radio-
resistance factor. Int J Radiat Oncol Biol Phys 55(5):1341-1347
Rodel F, Hoffmann J, Distel L, Herrmann M, Noisternig T, Papa-
dopoulos T, Sauer R, Rodel C (2005) Survivin as a radioresistance
factor, and prognostic and therapeutic target for radiotherapy in
rectal cancer. Cancer Res 65(11):4881—4887. doi:10.1158/0008-
5472.CAN-04-3028

Capalbo G, Dittmann K, Weiss C, Reichert S, Hausmann E, Rodel
C, Rodel F (2010) Radiation-induced survivin nuclear accumula-
tion is linked to DNA damage repair. Int J Radiat Oncol Biol Phys
77(1):226-234. doi:10.1016/].ijrobp.2009.12.001


http://dx.doi.org/10.1001/jama.2010.1535
http://dx.doi.org/10.1016/j.ijrobp.2009.07.1718
http://dx.doi.org/10.1158/1078-0432.CCR-09-1622
http://dx.doi.org/10.1172/JCI34772
http://dx.doi.org/10.1038/ng1090
http://dx.doi.org/10.1038/ng2085
http://dx.doi.org/10.1038/ng2089
http://dx.doi.org/10.1038/ng2098
http://dx.doi.org/10.1056/NEJMra020021
http://dx.doi.org/10.1056/NEJMra020526
http://dx.doi.org/10.1016/S1470-2045(11)70302-3
http://dx.doi.org/10.1097/01.fpc.0000230412.89973.c0
http://dx.doi.org/10.1097/01.fpc.0000230412.89973.c0
http://dx.doi.org/10.1245/s10434-011-1608-4
http://dx.doi.org/10.1007/s10350-007-0264-z
http://dx.doi.org/10.1016/j.canlet.2008.07.008
http://dx.doi.org/10.1016/j.canlet.2008.07.008
http://dx.doi.org/10.1016/j.ijrobp.2010.06.049
http://dx.doi.org/10.1016/j.ijrobp.2010.06.049
http://dx.doi.org/10.1200/JCO.2010.32.3212
http://dx.doi.org/10.1016/j.ijrobp.2011.05.063
http://dx.doi.org/10.1016/j.ijrobp.2011.05.063
http://dx.doi.org/10.1517/14656560903143784
http://dx.doi.org/10.1097/CAD.0b013e3283433764
http://dx.doi.org/10.1200/JCO.2009.27.6287
http://dx.doi.org/10.1038/nrc2966
http://dx.doi.org/10.1038/nrc2293
http://dx.doi.org/10.1158/0008-5472.CAN-04-3028
http://dx.doi.org/10.1158/0008-5472.CAN-04-3028
http://dx.doi.org/10.1016/j.ijrobp.2009.12.001

Langenbecks Arch Surg (2012) 397:543-555

555

94. Rodel F, Reichert S, Sprenger T, Gaipl US, Mirsch J, Liersch T,

9s.

Fulda S, Rodel C (2011) The role of survivin for radiation oncol-
ogy: moving beyond apoptosis inhibition. Curr Med Chem 18
(2):191-199

Sprenger T, Rodel F, Beissbarth T, Conradi LC, Rothe H,
Homayounfar K, Wolff HA, Ghadimi BM, Yildrim M, Becker
H, Rodel C, Liersch T (2011) Failure of down-regulation of
survivin following neoadjuvant radiochemotherapy in rectal
cancer is associated with distant metastases and shortened
survival. Clin Cancer Res. doi:10.1158/1078-0432.CCR-10-
2592

96.

97.

98.

Moon RT, Kohn AD, De Ferrari GV, Kaykas A (2004) WNT and
beta-catenin signalling: diseases and therapies. Nat Rev Genet 5
(9):691-701. doi:10.1038/nrg1427

Clevers H (2006) Wnt/beta-catenin signaling in development and
disease. Cell 127(3):469-480. doi:10.1016/j.cell.2006.10.018
Kendziorra E, Ahlborn K, Spitzner M, Rave-Frank M, Emons G,
Gaedcke J, Kramer F, Wolff HA, Becker H, Beissbarth T, Ebner R,
Ghadimi BM, Pukrop T, Ried T, Grade M (2011) Silencing of the
Whnt transcription factor TCF4 sensitizes colorectal cancer cells to
(chemo-) radiotherapy. Carcinogenesis 32(12):1824-1831.
doi:10.1093/carcin/bgr222

@ Springer


http://dx.doi.org/10.1158/1078-0432.CCR-10-2592
http://dx.doi.org/10.1158/1078-0432.CCR-10-2592
http://dx.doi.org/10.1038/nrg1427
http://dx.doi.org/10.1016/j.cell.2006.10.018
http://dx.doi.org/10.1093/carcin/bgr222

	The molecular basis of chemoradiosensitivity in rectal cancer:implications for personalized therapies
	Abstract
	Abstract
	Abstract
	Introduction
	General principles of chemoradiosensitivity
	Molecular basis of chemoradiosensitivity in rectal cancer
	Whole-genome analyses
	Gene expression profiling
	Chromosomal aberrations

	Single-biomarker and multibiomarker analyses
	DNA mutations in the RAS–MAPK pathway
	Single-nucleotide polymorphisms
	Immunohistochemistry


	Novel molecular targets for chemoradiosensitization
	Survivin
	TCF4

	Conclusions and future perspective
	References




