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Abstract
We study the problem of relating the spontaneous fluctuations of a stochastic integrate-and-fire (IF) model to the response of
the instantaneous firing rate to time-dependent stimulation if the IF model is endowed with a non-vanishing refractory period
and a finite (stereotypical) spike shape. This seemingly harmless addition to the model is shown to complicate the analysis
put forward by Lindner Phys. Rev. Lett. (2022), i.e., the incorporation of the reset into the model equation, the Rice-like
averaging of the stochastic differential equation, and the application of the Furutsu–Novikov theorem. We derive a still exact
(although more complicated) fluctuation–response relation (FRR) for an IF model with refractory state and a white Gaussian
background noise. We also briefly discuss an approximation for the case of a colored Gaussian noise and conclude with a
summary and outlook on open problems.
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1 Introduction

From a statistical physics point of view, neural systems
are non-equilibrium systems that, if left alone, display pro-
nounced fluctuations on all spatial scales and, if stimulated
with signals from the environment, process these signals and
respond to them. Two characteristic features of neural sys-
tems are thus the spontaneous activity under pure observation
of the system and its response to time-dependent stimulation.
Relations between the statistics of spontaneous fluctuations
and the systematic response to external perturbations are
known in statistical physics as fluctuation–dissipation the-
orems (Kubo 1966; Hänggi and Thomas 1982; Crisanti
and Ritort 2003; Marconi et al. 2008) or, alternatively, as
fluctuation–response relations (FRRs); their exploration for
neural systems is so far limited to surprisingly few studies.
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Starting at a strongly coarse-grained level, several groups
have explored the relation and interactions between resting
state activity and evoked brain activity in terms of elec-
troencephalogram (EEG) and functional magnetic resonance
imaging (fMRI) signals (He 2013; Huang et al. 2017) and
found it to be highly non-trivial. Deco et al. (2023) fitted a
stochasticmodel of coupled noisyHopf-normal forms to neu-
roimaging data, for which fluctuation–dissipation relations
are found to be obeyed if the model obeys detailed balance.
(The model is considered only in its linearized form and the
inherent nonlinearity of the noisy Andronov–Hopf-normal
form (Lindner et al. 2009) does not play a role here.) Viola-
tions of the relation (deviations from the theorem averaged
over all nodes of the network and perturbations) can be taken
as a measure for the distance from equilibrium; remarkably,
the authors find the strongest violation of the FDT if patients
are engaged in the most demanding (the social) tasks. Sarra-
cino et al. (2020) derived at a coarse-grained level a linearized
stochastic version of the Wilson–Cowan model for neural
populations and compare their results for the fluctuation
and the response of this model to experimental magnetoen-
cephalography recordings of resting activity and of activity
evoked by visual stimuli; a recent extension of this approach
(Nandi et al. 2023) is devoted to imbalanced networks of
the Wilson–Cowan type. Cessac et al. (2021) have recently
put forward a serious mathematical approach to the prob-
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lem in terms of the probability densities of spike times and
could derive approximate relations between spike response
functions for a discrete-time leaky integrate-and-fire model
neuron embedded in a network of similar units. Although this
is certainly an important contribution, the suggested method
seems hardly applicable to the standard multidimensional
IF models in continuous time (which are known to yield
the best performance in describing spiking of real cells in
vivo, as demonstrated in a model competition, see Jolivet
et al. (2008)). Finally, stochastic neural firing can be also
often regarded as a stochastic oscillator, corresponding to
a multidimensional nonlinear system of Langevin equations
(e.g., for the Hodgkin–Huxley model with channel noise, see
Fox (1997); Pu and Thomas (2020, 2021)), and in this inter-
pretation it is interesting to note that a simple FRR can be
obtained by a mapping those systems to a complex-valued
variable related to eigenfunctions expansion for the associ-
ated probability density (Pérez-Cervera et al. 2023); with the
new abstract variable, it is, however, not evident how to find
direct connections to the response and fluctuation statistics of
the spike train and the membrane voltage, i.e., to the observ-
ables which are directly accessible in experiment.

For an important class of stochastic neuron models, so-
called integrate-and-fire (IF) models with Gaussian noise
(see Burkitt (2006a, b) for reviews), one of us derived rela-
tions between the susceptibility of the firing rate and the
spontaneous spike statistics (Lindner 2022a, b) based on
a novel combination of methods. For the standard leaky
integrate-and-fire (LIF) model with white Gaussian noise,
described by the stochastic differential equation

dv

dt
= −v + μ + s(t) + √

2Dξ(t), (1)

complemented by the fire-and-reset rule that if v(t) ≥ vT
we register a spike at time t = ti and reset the voltage to
v(t) = vR , the susceptibility χ(ω) of the spike train x(t) =
∑

δ(t− ti )with respect to the weak current signal s(t) in the
above equation can be related the cross- and power spectra of
the spike train and the subthreshold voltage v(t) as follows:

χx (ω) = (vT − vR)Sxx (ω) + (1 + iω)Sxv(ω)

2D
. (2)

On the left-hand side, we have a statistics of the time-
dependent mean value in response to a weak signal. On the
right-hand side, we have statistics of the spontaneous fluctua-
tions; hence, the relation constitutes a FRR. Lindner (2022a)
confirmed the relation by numerical simulations; it was also
exploited to derive an analytical expression for the cross-
spectrumof the subthresholdmembrane voltage and the spike
train. Moreover, another exact FRRwas derived for the more
realistic and dynamically rich adaptive exponential integrate-

and-fire model with colored Gaussian noise and confirmed
by numerical simulation results.

The derivations by Lindner (2022a) became possible by
the combination of two new ideas: (i) the reset of the volt-
age was formally incorporated into the voltage dynamics
by adding a term involving the neuron’s spike train; (ii)
an emerging noise-spike-train cross-correlation function was
expressed by the susceptibility by virtue of the Furutsu–
Novikov theorem (Furutsu 1963; Novikov 1965).

One weakness of the models studied by Lindner (2022a)
is that they did not include an absolute refractory period.
Integrate-and-firemodels donot describe explicitly the action
potential itself (Izhikevich 2007), so a minimal dead time for
the generation of the next spike time should be the width of
the spike itself (at least one millisecond and in many neu-
rons substantially bigger than that). Although the addition
of an absolute refractory period is often regarded as some-
thing trivial, it is not in the context of the FRRs (as will be
revealed below). Related to this problem is that in experi-
ments the subdivision of spike and subthreshold membrane
voltage appears to be a rather artificial one—itwould bemuch
better to include a finite shape of the action potential into the
voltage trace (even if this is only a stereotypical shape) when
computing correlation functions of voltage and spike train.

In this paper wewould like to generalize the FRRs derived
by Lindner (2022a) to IF models with an absolute refractory
period and a stereotypical spike shape. We achieve our goal
for IF models driven by white Gaussian noise, for which
an exact FRR can be derived. We also discuss the problems
encountered when a colored noise is used and present an idea
to come up with an approximate FRR for this case.

Our paper is organized as follows. In the next section we
introduce the integrate-and-fire model that includes an abso-
lute refractory period during which the voltage undergoes
a prescribed stereotypical pulse shape; here we also derive
some general relations for an IF model with an absolute
refractory period and colored noise. In Sec. 3 we consider
the simple example of an IF model driven by white noise for
which we can derive an exact FRR. In Sec. 4 we turn to the
case of a temporally correlated noise and derive an approx-
imate FRR under the assumption that the noise correlation
time is shorter than the mean interspike interval (ISI). We
conclude in Sec. 5 with a short summary and a discussion of
open problems.

2 General model and preliminary
calculations

We consider an IF model that is complemented by an abso-
lute refractory period during which the voltage follows a
stereotypical pulse shape vspike(t). Put differently, we let the
subthreshold voltage evolve according to the usual integrator
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dynamics until it reaches the threshold vT at the firing time ti .
The set of these spike times S defines the main output of the
neuron, the spike train x(t) = ∑

ti∈S δ(t − ti ); differences
between subsequent spike times ti − ti−1 are the interspike
intervals (ISIs).

After each threshold crossing, we prescribe the spike
shape during [ti , ti + τref] by setting the time derivative as
follows:

v̇=
{

v̇spike(t − ti ), if ∃ ti ∈ S with ti ≤ t < ti + τref

f (v)+η(t)+εs(t), otherwise.

(3)

The voltage variable v represents the membrane voltage of
the neuron, which includes now also (different to the usual
modeling by integrate-and-fire neurons) the action potential.
The process η(t) is a Gaussian noise representing mainly
the random synaptic input received by the neuron. The gen-
eral function f (v) captures the deterministic aspects of the
dynamics of v.

The function εs(t) is a weak time-dependent signal. For
ε = 0 (no signal) we talk about the spontaneous activity of
the neuron, which can be characterized by the steady-state
firing rate r0 = 〈x〉 (the index 0 indicates vanishing signal
strength), the power spectrum of the spike train x(t),

Sxx = lim
T→∞

〈x̃ x̃∗〉
T

, x̃ =
T∫

0

dteiωt x(t), (4)

and other spectral measures such as the cross-spectrum
between voltage and spike train

Svx = lim
T→∞

〈ṽ x̃∗〉
T

, ṽ =
T∫

0

dteiωtv(t). (5)

For a weak signal with 0 < ε � 1, we can consider how the
instantaneous firing rate follows it in linear response

r(t) = 〈x(t)〉 = r0 +
t∫

−∞
dt ′Kxs(t − t ′)s(t ′) (6)

or in Fourier domain

r̃ = χx (ω)s̃, χx (ω) =
∞∫

0

dt Kxs(t) (7)

with the susceptibility χx (ω) being the Fourier transform
of the linear response function Kxs(t). Our overall aim is to
relate the statistics of spontaneous firing (no signal, ε = 0) to

the response properties, specifically the susceptibility χ(ω),
in a FRR.

We have to discuss the spike shape vspike(t). Generally,
it has to obey the boundary conditions vspike(0) = vT and
vspike(τref) = vR , thus resetting the voltage from the thresh-
old value vT to the reset value vR within the duration of the
refractory period τref. Apart from these constraints, our the-
ory does not make any further assumptions on vspike(t). One
option to choose the spike shape, if we are interested in mod-
eling a specific cell for which voltage traces are available,
would be to use an average over all action potentials in the
voltage time series. A second option would be to use an ana-
lytically simple expression that still reflects themain features
of the action potential, e.g., a simple alpha-type function

vspike(t) = κ(t + t0)e
−βt − �v, (8)

see Fig. 1 for a stochastic simulation of the IF model
with exponentially correlated Gaussian noise and this action
potential shape. The parameters κ, β, t0,�v can be related
to the parameters τref, vR and vT (see appendix Sec. 1) and
also determine the height of the pulse. A third option is to
ignore the specific shape of the action potential and to clamp
the voltage to the reset potential for the duration of the refrac-
tory period, which can be written as follows

vspike(t) = vT − (vT − vR)�(t), 0 ≤ t ≤ τref. (9)

This formulation in terms of the Heaviside function might
seemcumbersome. (After all, it simplymeans thatvspike(t) ≡
vR during the refractory state.) However, the incorporation
of the Heaviside function leads to the reset of the voltage tra-
jectory via the term v̇spike(t), corresponding to the reset term
−(vT − vR)

∑
i δ(t − ti ) that we would have in the previ-

ously studied case of an IF model without refractory period
(Lindner 2022a). If we want to compare to the latter case,
Eq. (9) is also more appropriate then having a non-vanishing
pulse on top of the subthreshold voltage because the addition
of a finite spike shape changes the cross-spectrum Svx (ω)

drastically. (It is no longer the cross-spectrum between the
subthreshold voltage and the spike train but rather that of the
full membrane voltage and the spike train.)We note that if we
have experimental data in the form of a voltage time series
v(t), it is always possible to create a purely subthreshold ver-
sion of it, vsub(t) by setting the voltage to a fixed value during
the refractory state. In this sense, the cross-spectrum Svx (ω)

calculated by Lindner (2022a) is a cross-spectrum between
vsub(t) and the spike train. Whenever we contrast our new
FRRswith the known one for τref = 0, we will use a clamped
voltage, Eq. (9), for better comparability.

In order to derive an FRR for the IF model with refractory
period, we consider the dynamics in the absence of stimula-
tion and, in analogy to the presentation in Lindner (2022a),
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Fig. 1 Time course of voltage (A) and Gaussian exponentially corre-
lated noise (B) for a leaky IF model ( f (v) = μ − v) with an abstract
spike shapevspike(t) = κ(t+t0)e−βt−�v andno signal present (ε = 0).
Parameters: refractory period τref = 0.3, noise variance σ 2 = 1, cor-
relation time τc = 1 (see Eq. (28)); spike parameters κ = 800 and
�v = 0.01 (dependent parameters t0 ≈ 12.6 × 10−4 and β ≈ 33.6,
see appendix Sec. 1)

we formally incorporate the reset of the trajectory into the
voltage dynamics in a first step by means of the spike train
x(t). Specifically, we introduce the refractory period indica-
tor function

Iref(t) =
τref∫

0

dτ ′x(t − τ ′) =
∞∫

−∞
dτ ′Bτre f (τ

′)x(t − τ ′)

= Bτre f ∗ x(t)

=
{
1 if ∃ ti ∈ S with ti ≤ t < ti + τref

0 otherwise
(10)

Here the asterisk denotes a convolution, and we have intro-
duced the box-car function Bτref given byHeaviside functions
as Bτref(t) = �(t)�(τref − t). This function is used to sub-
tract the regular dynamics f (v) + η(t) during the refractory
period. Furthermore, we add the prescribed dynamics during
the refractory period, using

τref∫

0

dτ ′x(t − τ ′)v̇spike(τ ′)

=
{

v̇spike(t − ti ) if ∃ ti ∈ S with ti ≤ t < ti + τref

0 otherwise
(11)

Finally, we use that during the refractory period after a spike
at ti we have f (v(t)) = f (vspike(t − ti )), because of the
prescribed dynamics. Hence,

f (v(t))Iref(t)

=
{
f (vspike(t − ti )) if ∃ ti ∈ S with ti ≤ t < ti + τref

0 otherwise

=
τref∫

0

dτ ′x(t − τ ′) f (vspike(τ ′)) (12)

Fig. 2 Illustration of auxiliary functions ηeff(t) and Ieff(t). Voltage time
course (A) as in Fig. 1(A); effective noise seen outside the refractory
periods (B) and the term enforcing the stereotypical spike shape (C).
Leaky IFmodelwith the abstract spike shape vspike(t) = κ(t+t0)e−βt−
�v and exponentially correlated Gaussian noise (see Eq. (28)). The
parameters are the same as in Fig. 1

in analogy toEq. (11), leading to the following formal expres-
sion for the voltage dynamics

v̇ = f (v) + η(t) − η(t)Iref(t)

+
τref∫

0

dτ ′x(t − τ ′)[v̇spike(τ ′) − f (vspike(τ
′))]. (13)

This can be interpreted as a voltage dynamics resulting from
an effective noise ηeff, which is turned off during the refrac-
tory period

ηeff(t) = η(t)[1 − Iref(t)], (14)

and an effective input current Ieff (second line of Eq. (13))
that implements the stereotypical spike shape vspike(t) and
subtracts the deterministic part of the dynamics. Figure 2
illustrates these auxiliary functions of the system with a
refractory state and a stereotypical spike shape.

In analogy to the procedure by Lindner (2022a) (see in
particular the preprint version by Lindner (2022b)), we use a
time-domain version of theRicemethod (seeRice (1944) and
(Risken 1984), Sec. 3.2.3 for a simple exposition) to establish
a relation among certain correlation functions. Specifically,
we take Eq. (13) at a lagged time argument t + τ , multiply
with the spike train x(t) and average, yielding

dCxv

dτ
= Cx f (v)(τ ) − Ispike ∗ Cxx (τ )

+ Cxη(τ ) −
τref∫

0

dτ ′〈x(0)x(τ − τ ′)η(τ )〉 + C1.

(15)
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where we used that

τref∫

0

dτ ′x(t − τ ′)[v̇spike(τ ′) − f (vspike(τ
′))]

= Ispike ∗ x(t) (16)

with the effective input current associated to an individual
spike Ispike(t) = Bτref(t)[v̇spike(t) − f (vspike(t))]. The con-
stant C1 is given by

C1 = r0

⎡

⎣〈 f (v)〉 − r0

τref∫

0

dτ ′v̇spike(τ ′) − f (vspike(τ
′))

⎤

⎦ .

(17)

In order to arrive at the desired relation between spontaneous
statistics and response statistics (similar to Eq. (2)), we next
Fourier transform Eq. (15), crossing over from (auto- and
cross-)correlation functions to (power and cross-)spectra.We
then use for the cross-spectrum between the Gaussian input
noise and the output spike train (which is a functional of
the former) the Furutsu–Novikov theorem (Furutsu 1963;
Novikov 1965)

Sηx (ω) = χx (ω)Sηη(ω), (18)

according to the argument presented by Lindner (2022a).
This brings the susceptibility into the relation.However, there
is now a novel problem, in the form of the triple correlation
in 〈x(0)x(τ − τ ′)η(τ )〉, which cannot be easily simplified.
The relation that we obtain so far by the steps outlined above
reads for ω > 0

χx = iωSxv − Sx f (v) + F(Ispike))Sxx
Sηη

+ 1

Sηη

∞∫

−∞
dτeiωτ

τref∫

0

dτ ′〈x(0)x(τ − τ ′)η(τ )〉 (19)

Unfortunately, we have not been able to derive an explicit
expression for the last term in this preliminary relation in the
general case. However, before proceeding to special cases,
we can recast the triple correlation using the identity

〈x(0)x(τ − τ ′)η(τ )〉 =
[
Cxx (τ − τ ′) + r20

]
〈η(τ)〉0,τ−τ ′

(20)

which is derived in the appendix, Sec. 3. Here 〈·〉t1,t2 denotes
the average conditioned on the certain occurrence of spike
times at t1 and t2.

We next consider in Sec. 3 the case of uncorrelated (white)
noise, for which the term in question can be shown to van-
ish identically, leading to an exact FRR. In Sec. 4 we then
develop an approximation for the case of a temporally cor-
related (colored) noise.

3 IF model with white Gaussian noise

Weconsider the special case of awhiteGaussian noiseη(t) =√
2Dξ(t) with Cξξ (t) = δ(t) (and thus Sηη = 2D). In this

scenario, the triple correlation 〈x(0)x(τ − τ ′)η(τ )〉 vanishes
because in the equivalent expression Eq. (20)

〈ξ(τ )〉0,τ−τ ′ = 〈ξ 〉 = 0, 0 < τ ′ < τref (21)

This, fortunately, implies that the problematic contribution
(the second line in Eq. (19)) vanishes. To see why Eq. (21)
holds true, note that this equation contains the conditional
average of the white Gaussian noise 〈ξ(τ )〉0,τ−τ ′ given spik-
ing at t = 0 and t = τ − τ ′. In the context of the IF
model, specific spike times are caused by the specific noise
realization, and we can use Bayes’ theorem to evaluate the
conditional mean value by means of the conditional proba-
bility density of the spike times given the noise realization:

〈ξ(τ )〉0,τ−τ ′ =
∫

d ξ̂ ξ̂ P(ξ̂ , τ |ti = 0, t j = τ − τ ′)

=
∫

d ξ̂ ξ̂
P(ti = 0, t j = τ − τ ′|ξ̂ , τ )P(ξ̂ , τ )

P(ti = 0, t j = τ − τ ′)

=
∫

d ξ̂ ξ̂
P(ti = 0, t j = τ − τ ′)P(ξ̂ , τ )

P(ti = 0, t j = τ − τ ′)

=
∫

d ξ̂ ξ̂ P(ξ̂ , τ ) = 〈ξ 〉 = 0 (22)

In the third line we used that, for our specific construc-
tion, the probability for a spike at ti = 0 and another one at
t j = τ −τ ′ is independent of the noise value ξ̂ at τ because (i)
the time argument τ falls into a refractory period and thus ξ̂

does not affect the voltage dynamics and (ii) it is also uncor-
related to noise values outside the refractory state that do
affect the voltage dynamics and the spike timing. Hence, the
conditional mean value is equal to the unconditional mean
value over the white noise, which vanishes. In consequence,
Eq. (19) becomes an exact FRR

χx (ω) = 1

2D

[
iωSxv(ω) − Sx f (v)(ω) + F (

Ispike
)
Sxx (ω)

]

(23)

Specifically for a white noise-driven leaky IF (LIF) model
with f (v) = μ − v, (for which then Sx f (v)(ω) = −Sxv(ω)),
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Fig. 3 Susceptibility χx can be computed from the spontaneous
statistics via the new FRR but not when the refractory period is
neglected. Analytical expression for the susceptibility χx (Lindner and
Schimansky-Geier 2001) (solid black lines) compared to the prediction
of the new FRR Eq. (24) (dark blue) and the previously known FRR for
the non-refractory case (Lindner 2022a) (light blue) based on numerical
results from a simulation of N = 103 realizations of the LIFmodel with
time step�t = 10−5 and time window T = 224�t ≈ 167. Parameters:
μ = 0.8, τref = 0.1 � 1/r0 ≈ 2.8 (A) and τref = 0.5 < 1/r0 ≈ 3.2
(B)

the FRR reads

χx (ω) =
[1 + iω]Sxv + F

(
ILIFMspike

)
Sxx

2D
(24)

where I L I FM
spike = Bτref [μ − vspike − v̇spike]. We note that for

the abstract spike shape, Eq. (8), illustrated in Fig. 1, the
Fourier transform can be analytically calculated and is given
in the appendix [see Sec. 2, Eqs. (42) and (44)] together with
relations between the parameters κ, β, t0 and �v to ensure
that vspike(0) = vT and vspike(τref) = vR . Alternatively, as
discussed in Sec. 2 wemay ignore the effect of the stereotyp-
ical spike shape by clamping the voltage to the reset value
according to Eq. (9). In this case, the Fourier transform of
the refractory term reads

F
(
ILIFMspike

)
(ω) = μ − vR

iω

[
eiωτref − 1

]
+ vR − vT (25)

For the LIFmodel with an absolute refractory period, ana-
lytical expressions for the susceptibility χx and the spike
train power spectrum Sxx have been derived (Lindner and
Schimansky-Geier 2001; Lindner et al. 2002). We can now
test Eq. (24) in two ways. First of all, we can measure the
spontaneous statistics for an LIF model with clamped poten-
tial during the refractory state, i.e., we apply Eq. (9) and just

Fig. 4 The new FRR makes an accurate prediction of the cross-
spectrum Sxv . Comparison of the prediction of the cross-spectrum Sxv
of the new FRR (solid black line) with numerical results (blue and
green dots) for the LIF model with Gaussian uncorrelated noise and an
abstract spike shape vspike(t) = κ(t+ t0)e−βt −�v. Simulation param-
eters: time step �t = 10−4, time window T = 100; model parameters:
μ = 0.8, τref = 0.1 � 1/r0 ≈ 2.8; spike parameters: κ = 2500 and
�v = 0.01 (dependent parameters t0 ≈ 4 × 10−4 and β ≈ 101.3, see
appendix Sec. 1)

take into account the subthreshold voltage. From the spon-
taneous spectra Sxx (ω) and Sxv(ω), we may then predict the
susceptibility via Eq. (24) and compare it to the analytically
known expression. This is illustrated in Fig. 3 and confirms
the relation for two different values of τref. We note that
increasing the refractory period is generally detrimental to
the signal transmission: The overall magnitude of the sus-
ceptibility goes down by increasing the dead time after each
spike during which the neuron ’does not see’ the stimulus.
Because a large value of the refractory periodmakes the spik-
ing more regular, the reduced susceptibility may develop a
peak around the firing rate (here around ω ≈ 2πr0), which
becomes apparent in Fig. 3B where τref = 0.5.

However, what is really the role of the finite refractory
period in the new FRR Eq. (23). In order to access the effect
of the refractory period, we use the relation for a neuron with
vanishing τref derived by Lindner (2022a) [or, equivalently,
Eq. (24) for τref = 0] to extract the susceptibility from the
spontaneous activity in the presence of a refractory period
(cyan lines in Fig. 3); this procedure leads to a small but sig-
nificant error when the refractory period is small (τref = 0.1
accounting for 3.5% of themean ISI; cyan lines in Fig. 3(A)),
but it results in a strongly erroneous estimation of the suscep-
tibility when the refractory period has an intermediate value
(τref = 0.5 accounting for 16% of the mean ISI; cyan lines
in Fig. 3(B)).

We can validate Eq. (24) in a second way. All spectral
statistics in the equation are analytically known except for
the cross-spectrum of spike train and voltage Sxv . We can
easily solve for this function and obtain

Sxv(ω) =
2Dχx (ω) − F

(
ILIFMspike

)
Sxx (ω)

1 + iω
(26)
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Wemeasure the cross-spectrum in the stochastic simulations
in the version with a finite spike shape, Eq. (8), and com-
pare its real (blue) and imaginary (green) parts in Fig. 4 to
the analytical expression in Eq. (26) (solid black lines). The
agreement is excellent and can be regarded as another con-
firmation of the FRR, especially in the version with a finite
stereotypical pulse shape.

In the form of Eq. (26) the FRR can be intuitively
interpreted. Its r.h.s. reflects that there are two sources of cor-
relation between voltage v(t) and spike train x(t). For once,
both voltage and spike train respond to the noise

√
2Dξ(t)

and are correlated because of this common drive, which leads
to the first contribution, 2Dχx (ω), in the numerator of the
fraction. Secondly, the voltage is subject to a stereotypical
input Ispike after each threshold crossing recorded in the spike
train. Hence, the voltage is in part correlated to the spike train
x(t) as x(t) is correlated to itself, which is reflected in the

second contribution in the numerator, F
(
ILIFMspike

)
Sxx (ω).

4 IF model with colored Gaussian noise

We can generate a low-pass-filtered (colored) noise by sim-
ulating an additional stochastic differential equation, the
Ornstein–Uhlenbeck process

τcη̇ = −η +
√
2σ 2τcξ(t), (27)

where τc and σ 2 are the correlation time and variance of the
noise, respectively. The stationary process has a Lorentzian
power spectrum and an exponential correlation function:

Sηη(ω) = 2σ 2τc

1 + (τcω)2
, Cηη(t) = σ 2e−|t |/τc . (28)

The incorporation of a colored noise by an additional stochas-
tic differential equation is called Markovian embedding
(Hänggi and Jung1995) [other,more general examples of that
are discussed, for instance by Vellmer and Lindner (2019)].
We emphasize that the following derivation does not rely on
the specific form of the colored noise given by the Ornstein–
Uhlenbeck process Eq. (27) but only on its Gaussianity and
conditions for the correlation time (see below).

The temporal correlations of the noise complicate the cal-
culation of the triple correlation, i.e., of Eq. (20) thatwe quote
here again

〈x(0)x(τ − τ ′)η(τ )〉 =
[
Cxx (τ − τ ′) + r20

]
〈η(τ)〉0,τ−τ ′

(29)

to discuss an approximation for the r.h.s. For large τ and short
refractory period durations τref

〈η(τ)〉0,τ−τ ′ ≈ 〈η(τ)〉τ−τ ′ , 0 < τ ′ < τref. (30)

Plausibly, τ has to be large compared to the characteristic
correlation time τc of the noise process for this approximation
to hold. To justify the use of Eq. (30) in Eq. (29), we note
that the other factor in the product, Cxx (τ − τ ′)+ r20 is close
to zero if |τ − τ ′| � 1/r0 – the probability of two spikes in
short succession vanishes or is rather low because of absolute
and relative refractoriness. We insert Eq. (30) into Eq. (29),
yielding

〈x(0)x(τ − τ ′)η(τ )〉 ≈
[
Cxx (τ − τ ′) + r20

]
〈η(τ)〉τ−τ ′ ,

0 < τ ′ < τref (31)

As shown in the Appendix, Sec. 4, the last factor can be
further approximated by

〈η(τ)〉τ−τ ′ =〈η(0)〉−τ ′ ≈ 1

τref

τref∫

0

dτ ′′〈η(0)〉−τ ′′ =〈η〉ref,

0 < τ ′ < τref (32)

for short refractory periods. In the last step we defined the
average value of the noise during the refractory period, 〈η〉ref.

By a stationary average of the IF dynamics Eq. (13) with
d〈v〉/dt = 0 and use of 〈x(−τ ′)η(0)〉 = r0〈η(0)〉−τ ′ (see
Appendix Sec. 3, Eq. (49)), we find

〈η〉ref = 1

τref

⎡

⎣ 〈 f (v)〉
r0

−
τref∫

0

dτ ′ f (vspike(τ ′)) − v̇spike(τ
′)

⎤

⎦ .

(33)

Using this expression in Eq. (32) and Eq. (31) culminates in
the following approximate expression for the triple correla-
tion

〈x(0)x(τ − τ ′)η(τ )〉 ≈
[
Cxx (τ − τ ′) + r20

]
×

1

τref

⎡

⎣ 〈 f (v)〉
r0

−
τref∫

0

dτ ′ f (vspike(τ ′)) − v̇spike(τ
′)

⎤

⎦ . (34)

If we insert this expression into Eq. (19), we obtain the
approximate FRR

χx (ω) ≈ 1

Sηη(ω)

[

iωSxv(ω) − Sx f (v)(ω)

+ F(Ispike)(ω)Sxx (ω) + 1

τref

{ 〈 f (v)〉
r0
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−
τref∫

0

dτ ′ f (vspike(τ ′)) − v̇spike(τ
′)

⎫
⎬

⎭
B̃τref(ω)Sxx (ω)

]

,

(35)

where B̃τref(ω) = F(Bτref)(ω) = 1
iω

[
eiωτref − 1

]
. Again,

this relation connects the response statistics in the case of
stimulation to the statistics of spontaneous firing and the
noise spectrum Sηη. Note that the dependence of the sus-
ceptibility on the refractory period is more complicated than
may appear at the first glance: For instance, all fluctuation
spectra, Sxx , Sxv and Sx f (v), depend on τref. As in the case
of white noise (see the discussion of Fig. 3), we expect that
the overall susceptibility is reduced by increasing τref, simply
because we increase the period of time in which the stimu-
lus cannot affect the neural dynamics. (The detailed effects
of the refractory period on the spectral structure of the sus-
ceptibility for a colored noise-driven IF neuron are certainly
worth an additional study.)

One way to test this FRR is to measure both the response
and the spontaneous power and cross-spectra and to solve
the above relation for the noise spectrum. In the special case
of an LIF neuron, the resulting estimate of the intrinsic noise
spectrum reads

Sηη(ω) ≈ 1

χx (ω)

[

(1 + iω)Sxv(ω)+

F
(
ILIFMspike

)
(ω)Sxx (ω) + 1

τref

{
μ − 〈v〉

r0

−
τref∫

0

dτ ′[μ − vspike(τ
′) − v̇spike(τ

′)]
⎫
⎬

⎭
B̃τref(ω)Sxx (ω)

]

.

(36)

We check this for an LIF model with a clamped voltage dur-
ing the refractory period (according to Eq. (9)) subject to an
Ornstein–Uhlenbeck noise with the prescribed power spec-
trum Eq. (28); indeed, Eq. (36) (dark blue dots in Fig. 5) is
for all frequencies on top of the exact result (solid black line)
both for short (A) and intermediate (B) correlation time τc.
More examples are discussed by Puttkammer (2023).

We can further access the validity of our approximation
by comparing to two more naive approximations. First of all,
we can compare to the prediction from the exact FRR for
the case of a colored noise-driven LIF model with vanishing
refractory period [this corresponds to the second model con-
sidered by Lindner (2022a) with the nonlinear function of an
LIF neuron and vanishing adaptation, i.e., f (v) = μ−v and
�a = 0 in Eq. (10) by Lindner (2022a)]:

Sηη(ω) ≈ [1 + iω]Sxv(ω) + [vT − vR]Sxx (ω)

χx (ω)
. (37)

Fig. 5 Approximate FRR for LIF model with colored noise predicts
the intrinsic noise spectrum correctly. We compare the prediction of
the new approximate FRR Eq. (36) (dark blue dots) to the exact theory
Eq. (28). LIF neuron with μ = 0.8 driven by an Ornstein–Uhlenbeck
noise with variance σ 2 = 1 and a correlation time of τc = 0.1 (short
compared to the mean ISI τc ≈ 1/(40r0)) in (A) and τc = 1 (a third of
the mean ISI) in (B). In both cases we adapt the refractory period to be
much smaller than the correlation time by setting τref = τc/10

This approximation is shown by gray dots in the two pan-
els of Fig. 5 and shows systematic deviations from the true
spectrum: for short correlation times, deviations are limited
to high frequencies; for a ’more colored’ noise, we observe
stronger deviations also at low frequencies and also oscilla-
tions and unphysical negative values at higher frequencies.

Alternatively, we can take the formula from the previous
section for a white noise-driven LIF neuron, Eq. (24), replace
ad hoc the white noise spectrum 2D by the colored-noise
spectrum Sηη(ω), and solve the resulting equation for the
latter function, yielding

Sηη(ω) ≈ (1 + iω)Sxv+F(I L I Fspike)Sxx

χx
. (38)

This approximation is closer to the true spectrum but also
shows systematic deviations (see light blue dots in Fig. 5).
Hence, our approximate FRR Eq. (35), specifically as recast
in Eq. (36), is more appropriate for estimating the intrinsic
noise spectrum than the two naive approximations that either
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neglect the effects of the refractory period (i.e., Eq. (37)) or
the non-vanishing correlation timeof the noise (i.e., Eq. (38)).

To interpret Eq. (36), we solve for the cross-spectrum Sxv
and reintroduce the average value of the noise during the
refractory period 〈η〉ref according to Eq. (33)

Sxv(ω) = 1

1 + iω

[
χx (ω)Sηη(ω) − F

(
ILIFMspike

)
Sxx (ω)

− 〈η〉ref B̃τref(ω)Sxx (ω)
]

(39)

The r.h.s. captures once again the different sources of corre-
lation between voltage v(t) and spike train x(t). Comparing
Eq. (39) with the white noise equivalent Eq. (26), we can tell
that the two sources of correlation discussed at the end of
Sec. 3 are still present. However, Eq. (39) includes a third
contribution (second line), that is due to the non-vanishing
mean value 〈η〉ref of the noise during the refractory period
when the noise is temporally correlated.

5 Summary and open problems

We have extended the FRRs developed by Lindner (2022a)
for integrate-and-firemodels with a non-vanishing refractory
period and afinite pulse shape. Formany standard statistics of
interest, taking into account an absolute refractory period is
straightforward. For instance, if we are interested in themean
ISI, we would have to add τref to the mean ISI in the absence
of a refractory period to obtain its correct value—a quite
trivial operation! Also for more complicated statistics, as for
instance the spike train power spectrum and the susceptibil-
ity of the rate modulation, the incorporation of the refractory
period is not difficult [see, e.g., Lindner (2002) and, for
colored noise, Vellmer and Lindner (2019)]. However, if
it comes to deriving an FRR for an IF model, significant
efforts are needed to incorporate the absolute refractory state
and a finite pulse shape in the IF model’s equation. Here we
achieved this incorporation and computed new terms arising
from the refractory state and the pulse shape (i) exactly in
the case of a white Gaussian intrinsic noise and (ii) approxi-
mately in the case of a shortly correlated (colored) Gaussian
noise.

Our results show that the incorporation of a non-vanishing
value of τref makes a big difference if we want to apply the
FRR. In case of a white-noise-driven leaky IF model, for
instance, we saw that the susceptibility of the neuron (its
response to an external stimulus) can be very accurately pre-
dicted from the spontaneous activity and its spectral statistics
alone. In contrast, using the FRR for τref = 0 by Lindner
(2022a) will not provide a good estimate of the susceptibil-
ity in this case, even if the refractory period is small compared
to the mean ISI.

Intracellular recordings of a neuron’s voltage will not
be limited to subthreshold values but will also include the
action potentials. We showed that we can also include a
(stereotypical) action potential in the voltage time series and
demonstrated how this would change the FRR. We tested
this for an alpha-function-shaped action potential added to
the subthreshold voltage trace during the refractory period
following each spike. We found again excellent agreement
in the case of a white-noise driven IF model, in which our
FRR is exact.

We also developed an approximate FRR for an IF neu-
ron with correlated intrinsic noise. The approximation works
well if the correlation time of the noise is significantly smaller
than the mean ISI. In this case, we could use the FRR to esti-
mate the intrinsic noise spectrum; again as a test, using here
other versions of the FRR led to inaccurate estimates of this
noise spectrum.

As an open problem remains to develop methods for the
derivation of FRRs for the case of a slow background noise
(as it may emerge in recurrent networks with synapses of
intermediate strength (Ostojic 2014; Wieland et al. 2015)) or
a narrow-band noise (Bauermeister et al. 2013), for which
the correlation time might be equal or larger than the mean
ISI. Another possible extension is to take into account spike-
frequency adaptation (Benda and Herz 2003) and to derive
an FRR for an IF model with an absolute and an additional
variable for a spike-triggered adaptation (Brette and Gerst-
ner 2005)—this kind of model has been very successful in
reproducing and predicting spike trains of pyramidal cells for
a given in vivo like noisy input current (Jolivet et al. 2008).
Finally, because noise is not always Gaussian and additive
but comes as a shot noise (Hohn and Burkitt 2001; Richard-
son and Swarbrick 2010; Droste and Lindner 2017) and,
as a conductance modulation, has a substantial multiplica-
tive component (Richardson and Gerstner 2005; Lindner
and Longtin 2006; Wolff and Lindner 2008), it would be
worth to explore how FRRs could be derived in this case.
For the incorporation of shot noise a generalization of the
Furutsu–Novikov theorem for such a non-Gaussian noise
case is needed; the case ofmultiplicative noise in turn leads to
higher-order correlation functions similar to those explored
above.

Generally, it is interesting to note that the IF model has
most recently also found application as a model of calcium
spiking in non-neuronal cells (Ramlow et al. 2023a, b) and
hence our results might also find applications to the problem
of calcium signaling in cells. Calcium spikes encode signals
(concentration variations of extracellular agonists binding
to receptors in the cell membrane) with different timescales
than typical neuronal signals (Friedhoff et al. 2021). How-
ever, relations between the spontaneous fluctuations and the
response to stimuli are here of interest for the very same
reasons as they are for neurons.
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We would like to highlight the usefulness of the FRR
by summarizing once more its possible applications. First
of all, as in traditional statistical physics applications, we
may use the spontaneous activity of the system to predict
how it will respond to a time-dependent current stimulus—
a characteristics that is of particular importance for signal
encoders like neurons. Second, we may be able to derive
novel analytical expressions for certain statistics such as the
cross-spectrum between membrane voltage and spike train.
Thirdly, in the case of colored noise, as we demonstrated
in Fig. 5, we may be able to extract otherwise inaccessible
statistics of the system such as the power spectrum of the
intrinsic noise from accessible power and cross-spectra in
absence and presence of a stimulus. Fourthly, given a cer-
tain neuron that we may assume to behave like an IF model,
imposing the validity of the FRR gives us an independent cri-
terion to fit model parameters (such that the FRR is, at least
approximately, satisfied). Last but not least, the FRR imposes
constraints on the neural information transfer because one
of its characteristics, the signal-to-noise ratio for a weak
stimulus signal has the susceptibility in the numerator and
the spontaneous power spectrum of the spike train in the
denominator—two quantities that are related via the FRR.
The implications of this constraint are far from clear but
potentially highly relevant to better understand limitations of
neural signal transmission. In conclusion, there is plenty of
motivation to further explore relations between spontaneous
fluctuations and response characteristics of neurons.
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Fig. 6 Spike shape with illustration of some parameters. We highlight
the interval of the function [0, τref], which is used in the IF model
(dashed parts outside this range will be irrelevant to the model). For
better visibility we choose parameters of the spike shape that are dif-
ferent to those in the first two figures in the main text: κ = 100,�v =
1, t0 = 0.02, β = 11.552; here t0 and β were determined via the above
formulas and the standard parameters vT = 1, vR = 0 and τref = 0.3

6 Appendix

6.1 Parameters for the abstract spike shape

We recall that any spike shape vspike(t) has to obey the bound-
ary conditions vspike(0) = vT and vspike(τref) = vR . For our
abstract example vspike(t) = κ(t + t0)e−βt − �v, this con-
ditions two of the parameters

t0 = (vT + �v)

κ
(40)

β = 1

τref
ln

(
κτref + vT + �v

vR + �v

)

(41)

Furthermore, �v has to be selected such that vR + �v > 0
and the dependent parameters are well defined. The other
parameter κ can then be chosen freely to define the peak
height (largerwith increasing κ) and peak timing (earlierwith
increasing κ). An example of the function with an illustration
of some parameters is given in Fig. 6.

6.2 Evaluating the exact FRR for the LIF model with
an abstract spike shape

The only remaining unknown in Eq. (24) is

F
(
ILIFMspike

)
(ω) = F(Bτref[μ − vspike − v̇spike])(ω)

= μB̃τref(ω) + vT − vRe
iωτref

− [1 − iω]F(Bτrefvspike)(ω) (42)
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where again

B̃τref(ω) = F(Bτref)(ω) = 1

iω

[
eiωτref − 1

]
. (43)

For the abstract spike shape vspike(t), Eq. (8), we obtain

F(Bτrefvspike)(ω) = κ

[ [
1

(β + iω)2
− t0

β + iω

]

−
[

1

(β + iω)2
+ τref − t0

β + iω

]

e−(β+iω)τref

]

− �v B̃τref(ω).

(44)

6.3 Rewriting averages involving the spike train x

In this section,we derive two identities for averages involving
the spike train x . We employ the following regularization of
the involved delta distributions

x(t) := lim
�t→0

n(t)

�t
(45)

where n(t) is the spike indicator function, which depicts
whether there is at least one spike within a time bin of size
�t centered around t

n(t) =
{
1, if ∃ i ε Is with ti ε [t − �t

2 , t + �t
2 ]

0, otherwise.
(46)

Here Is is the index set of spike times.
We start with the identity for the triple correlation,

Eq. (20), first mentioned in Sec. 2 that we restate here

〈x(t1)x(t2)η(t3)〉 = [Cxx (t1 − t2) + r20 ]〈η(t3)〉t1,t2 (47)

We rewrite this average as follows:

〈x(t1)x(t2)η(t3)〉
= lim

N→∞
1

N

∑

� ∈ I

x�(t1)x�(t2)η�(t3)

= lim
N→∞ lim

�t→0

1

N

∑

� ∈ I

n�(t1)

�t

n�(t2)

�t
η�(t3)

= lim
N→∞ lim

�t→0

1

N

1

�t2
∑

� ∈ It1,t2

η�(t3)

= lim
N→∞ lim

�t→0

1

N

1

�t2
Nt1,t2

1

Nt1,t2

∑

� ∈ It1,t2

η�(t3)

= lim
N→∞ lim

�t→0

1

N

∑

� ∈ I

n�(t1)

�t

n�(t2)

�t

1

Nt1,t2

∑

� ∈ It1,t2

η�(t3)

=〈x(t1)x(t2)〉〈η(t3)〉t1,t2
=[Cxx (t1 − t2) + r20 ]〈η(t3)〉t1,t2 . (48)

where we used It1,t2 and Nt1,t2 to denote the index set and
number of realizations with spike times in time bins around
t1 and t2 whereas I and N indicate the index set and number
of all realizations.

Now, we derive the identity (used in the derivation of
Eq. (33))

〈η(t2)〉t1 = 1

r0
〈x(t1)η(t2)〉 (49)

Let It1 and Nt1 denote the index set andnumber of realizations
with spikes within a time bin of size �t centered in t1 (both
possess an implicit dependence on �t). Then

〈η(t2)〉t1
= lim

Nt1→∞ lim
�t→0

1

Nt1

∑

r ε It1

ηr (t2)

= lim
Nt1→∞ lim

�t→0

1

Nt1

∑

r ε It1

nr (t1)ηr (t2)

= lim
N→∞ lim

�t→0

N�t

Nt1

1

N

∑

r ε I

nr (t1)

�t
ηr (t2)

= lim
N→∞ lim

�t→0

N�t
∑

r ′ ε I nr ′(t1)

1

N

∑

r ε I

nr (t1)

�t
ηr (t2)

= lim
N→∞ lim

�t→0

1
1
N

∑
r ′ ε I

nr ′ (t1)
�t

1

N

∑

r ε I

nr (t1)

�t
ηr (t2)

= 1

〈x(t1)〉 〈x(t1)η(t2)〉 = 1

r0
〈x(t1)η(t2)〉 (50)

wherewe used again in the last line that the unperturbed spike
train is stationary.

6.4 The conditional noise average for small
refractory periods

We show that

〈η〉−τ ′ ≈ 〈η〉0, 0 < τ ′ < τref (51)

as long as

Cηη(τ + τ ′) ≈ Cηη(τ ), τ > 0 (52)

for any τ ′ ε [0, τref]. This then implies

〈η〉ref := 1

τref

τref∫

0

dτ ′′〈η〉−τ ′′ ≈ 〈η〉τ ′ , 0 < τ ′ < τref (53)

as claimed in Sec. 4.

〈η〉−τ ′ = 1

r0
〈x(−τ ′)η(0)〉
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= 1

r0

∞∫

−∞
dτ Cηη(τ + τ ′)Kx (τ )

= 1

r0

∞∫

0

dτ Cηη(τ + τ ′)Kx (τ )

≈ 1

r0

∞∫

0

dτ Cηη(τ )Kx (τ ) = 〈η〉0 (54)

whereweused theFurutsu–Novikov theorem (line two to line
three) and the assumption on the autocorrelation function of
the noise process, Eq. (52) (line three to line four).
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