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Abstract
This article presents an overview of a theory for performing temporal smoothing of temporal signals in such a way that:
(i) temporally smoothed signals at coarser temporal scales are guaranteed to constitute simplifications of corresponding
temporally smoothed signals at any finer temporal scale (including the original signal) and (ii) the temporal smoothing
process is both time-causal and time-recursive, in the sense that it does not require access to future information and can be
performed with no other temporal memory buffer of the past than the resulting smoothed temporal scale-space representations
themselves. For specific subsets of parameter settings for the classes of linear and shift-invariant temporal smoothing operators
that obey this property, it is shownhow temporal scale covariance can be additionally obtained, guaranteeing that if the temporal
input signal is rescaled by a uniform temporal scaling factor, then also the resulting temporal scale-space representations of
the rescaled temporal signal will constitute mere rescalings of the temporal scale-space representations of the original input
signal, complemented by a shift along the temporal scale dimension. The resulting time-causal limit kernel that obeys this
property constitutes a canonical temporal kernel for processing temporal signals in real-time scenarios when the regular
Gaussian kernel cannot be used, because of its non-causal access to information from the future, and we cannot additionally
require the temporal smoothing process to comprise a complementary memory of the past beyond the information contained
in the temporal smoothing process itself, which in this way also serves as a multi-scale temporal memory of the past. We
describe how the time-causal limit kernel relates to previously used temporal models, such as Koenderink’s scale-time kernels
and the ex-Gaussian kernel. We do also give an overview of how the time-causal limit kernel can be used for modelling
the temporal processing in models for spatio-temporal and spectro-temporal receptive fields, and how it more generally has
a high potential for modelling neural temporal response functions in a purely time-causal and time-recursive way, that can
also handle phenomena at multiple temporal scales in a theoretically well-founded manner. We detail how this theory can
be efficiently implemented for discrete data, in terms of a set of recursive filters coupled in cascade. Hence, the theory is
generally applicable for both: (i) modelling continuous temporal phenomena over multiple temporal scales and (ii) digital
processing of measured temporal signals in real time. We conclude by stating implications of the theory for modelling
temporal phenomena in biological, perceptual, neural and memory processes by mathematical models, as well as implications
regarding the philosophy of time and perceptual agents. Specifically, we propose that for A-type theories of time, as well as
for perceptual agents, the notion of a non-infinitesimal inner temporal scale of the temporal receptive fields has to be included
in representations of the present, where the inherent nonzero temporal delay of such time-causal receptive fields implies a
need for incorporating predictions from the actual time-delayed present in the layers of a perceptual hierarchy, to make it
possible for a representation of the perceptual present to constitute a representation of the environment with timing properties
closer to the actual present.
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1 Introduction

Whenprocessing time-dependentmeasurement signals, there
is often a need to perform temporal smoothing prior to more
refined data analysis. A commonly stated general motivation
for this need is to suppress measurement noise, often based
on the assumption that there is a well-defined underlying
noise free signal that has been corrupted with some amount
of measurement noise.

A more fundamental approach to take on the need for per-
forming temporal smoothing of temporal signals is to follow
a multi-scale approach, based on the observation that mea-
surements performed on real-world datamay reflect different
types of temporal structures at different temporal scales. In
other words, even for the underlying noise free signal in the
above signal+noise model, it may hold that the data reflect
different types of underlying physical or biological processes
at different temporal scales. The measurement process itself,
by which a non-infinitesimal amount of energy needs to be
integrated over some non-infinitesimal temporal duration on
the physical sensor, does in this respect define an inner tem-
poral scale of the measurements, beyond which there is no
way to resolve temporal phenomena that occur faster than this
inner temporal scale. Any real-world physical measurement
does in this respect involve an inherent notion of temporal
scale.1

Specifically, in the areas of image processing, computer
vision, machine listening2 and computational modelling of
visual and auditory perception, this need is well understood,
and has led to multi-scale approaches for spatial, spatio-
temporal and spectro-temporal receptive fields expressed in
terms of multi-scale representations over the spatial, spec-
tral and temporal domains, where specifically the theoretical
framework known as scale-space theory is based upon solid
theory in terms of axiomatic derivations concerning how
the multi-scale processing operations should be performed
(Iijima 1962; Witkin 1983; Koenderink 1984; Koenderink
and van Doorn 1987, 1992; Lindeberg 1993b, 1994, 2011,
2013b; Florack 1997; Sporring et al. 1997; Weickert et al.
1999; ter Haar Romeny 2003). It has also been found that
biological perception, memory and cognition has developed

1 For a popular overview over the wide range of temporal scales in
physics and how the choice of temporal scale of observation thus will
influence our modelling and understanding of the world, see ’t Hooft
and Vandoren (2014).
2 Other names for this field, which develops methods for audio under-
standing by machines, are machine hearing (Lyon 2010, 2017) and
computer audition.

biological processes at multiple temporal scales (DeAngelis
et al. 1995; DeAngelis andAnzai 2004; Gütig and Sompolin-
sky 2006; Gentner 2008; Holcombe 2009; Goldman 2009;
Gauthier et al. 2012; Atencio and Schreiner 2012; Chait et al.
2015; Teng et al. 2016; Buzsáki and Llinás 2017; Tsao et al.
2018; Osman et al. 2018; Latimer et al. 2019; Bright et al.
2020; Cavanagh et al. 2020; Monsa et al. 2020; Spitmaan
et al. 2020; Howard and Hasselmo 2020; Howard 2021; Guo
et al. 2021; Miri et al. 2022); see Sect. 7.3 for a more detailed
retrospective review.

The subject of this article is to describe a theoretical frame-
work for representing temporal signals at multiple temporal
scales, intended for a more general audience without back-
ground in these areas and with the focus on the temporal
domain only, thuswithout the complementary spatial or spec-
tral domains that this theory has previously been combined
with for expressing spatio-temporal and spectro-temporal
receptive fields (Lindeberg and Fagerström 1996; Lindeberg
1997a, 2016, 2017, 2018a, b, 2021b; Lindeberg and Friberg
2015b, a). This theoretical framework, referred to as temporal
scale-space theory, guarantees non-creation of the temporal
structures with increasing temporal scales, in the sense that it
ensures that a temporal representation at any coarser temporal
scale constitutes a simplification of a temporal representation
at any finer temporal scale, in the respect that the number of
local temporal extrema, alternatively the number of tempo-
ral zero-crossings, is guaranteed to not increase from finer to
coarser temporal scales.

Additionally, these temporal scale-space representations
are time-causal, in the sense that they do not require access
to future data, and are time-recursive, in the respect that the
temporal representation at the next temporal moment can
be computed with no other additional memory of the past
than the temporal scale-space representation itself. For a spe-
cific choice of temporal scale-space kernel, referred to as
the time-causal limit kernel, the temporal scale-space repre-
sentations are also scale covariant, meaning that the set of
temporal scale-space representations is closed under tempo-
ral rescalings of the input. A rescaling of the input signal by
a uniform scaling factor merely corresponds to a rescaling
of the temporal scale-space representations complemented
by a shift of the temporal scale levels in the temporal scale-
space representation. In this way, the temporal scale-space
representation ensures an internally consistent way of pro-
cessing temporal signals that may be subject to temporal
scaling transformations, by phenomena or events that may
occur faster or slower in the world.
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A main purpose of this article is to describe this theory in
a self-containedmanner, without need for the reader to digest
the original references, where the information is distributed
over several papers, and may require a substantial effort for
a reader not previously familiar with this framework, to get
an updated view of the latest version of this theory.3 Further-
more, we will describe explicit relations to other previously
used temporal models, such as Koenderink’s scale-time ker-
nels (Koenderink 1988) and the ex-Gaussianmodel (Grushka
1972; Bright et al. 2020), making it possible to transfer mod-
elling results from those temporal models to the time-causal
limit kernel described in this article.

Wewill also relate the presented temporal scale-space the-
ory to other approaches for processing signals at multiple
temporal scales, such as wavelet analysis and time-frequency
analysis. Specifically, we will outline how the temporal
derivatives of the proposed time-causal limit kernel described
and analyzed in this article allow for fully time-causal and
time-recursive wavelet analysis methods, without need for
additional temporal buffering, and thus enabling minimal
temporal response times in a time-critical context. We will
also outline how a complex-valued extension of the proposed
time-causal limit kernel can be seen as a time-causal analogue
of Gabor functions, thus allowing for capturing essentially
similar transformations of temporal signals as for the family
of Gabor functions, and thereby providing a way to define
a scale-covariant time-frequency representation over a time-
causal temporal domain, which by a slight modification can
also be extended to additionally being implemented in terms
strictly time-recursive operations.

Additionally, we will describe implications of using this
theory for modelling perceptual, neural and memory pro-
cesses in biological systems by mathematical models, as
well as implications of the theory with regard to the phi-
losophy of time and perceptual agents. Specifically, we will
argue that when modelling a perceptual representation of the
present, it is essential to include the inner temporal scales
of the perceptual processes that lead to any percept, where
the inherent temporal delays of such time-causal operations
imply that a representation of the present will de facto consti-
tute a representation of some temporal intervals in the past,
unless complemented by prediction processes to enable bet-
ter timing properties of a perceptual agent that interacts with
a dynamic world.

3 For the reader interested in an overview of the developments of the
different parts of temporal scale-space theory that this paper is based
on, follows and extends, see the treatment in Sect. 9.

1.1 Structure of this article

This paper is organized as follows: Sect. 2 introduces the
problem of constructing a temporal scale-space representa-
tion, as constituting a multi-scale representation of temporal
signals, with the property that a measure of the amount of
structure in the signal, quantified as the number of local
extrema over time, must not increase from any finer to any
coarser temporal scale. A complete classification of the time-
causal convolution kernels that enable this property is given,
and it is shown that the only possible time-causal scale-space
kernels over a continuous temporal domain consist of trun-
cated exponential kernels coupled in cascade.

Section 3 then adds a complementary condition on this
structure, in terms of temporal scale covariance, and mean-
ing that if the temporal input signal is rescaled by a uniform
temporal scaling factor, then the result of temporal scale-
space filtering of this kernel should also be a mere rescaling
of the result of performing temporal scale-space filtering on
the input signal, complemented by a shift in along the tem-
poral scale axis and a possibly complementary shift in the
magnitude of the signal. It is shown that a specific kernel,
the time-causal limit kernel, defined from an infinite con-
volution of truncated exponential kernels in cascade, with
specially chosen time constants, obeys temporal scale covari-
ance. We do also show how this time-causal limit kernel
relates to previously used temporal models, such as Koen-
derink’s scale-time kernels and the ex-Gaussian kernel.

In Sect. 4, we complement the above treatment for contin-
uous signals with a corresponding discrete theory, ensuring
that the number of local extrema in a discrete signal is also
guaranteed to not increase from any finer to any coarser
temporal scale. The discrete analogue of the truncated expo-
nential kernels are first-order recursive filters coupled in
cascade. Section 5 furthermore generalizes the above the-
ory from temporal smoothing of a raw temporal signal, to
the computation of temporal scale-space derivatives, which
measure the amount of change in the signal with respect to
any level of temporal scale. Section 6 outlines how the pro-
posed temporal scale-space representation is related to other
approaches for handling temporal signals at multiple tempo-
ral scales, specifically wavelet analysis and time-frequency
analysis, with conceptual extensions of these notions with
respect to strictly time-causal and time-recursive operations
for real-time applications.

Section 7 describes how this general theory can be used
for modelling time-dependent processes and mechanisms in
perceptual and neural systems, with emphasis on spatio-
temporal and spectro-temporal receptive fields as well as
temporal memory processes. Section 8 outlines more general
implications of the theory with regard to the philosophy of
time and how time is handled by a perceptual agent. Specif-
ically, we develop how the inner temporal scale associated
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Fig. 1 The main idea of a scale-space representation is to, given any
input signal f (t), create a set of derived signals L(t; τ) intended to rep-
resent the information in the original signal at a set of coarser levels of
scale τ , with L(t; 0) = f (t). These derived signals should preferably
constitute true simplifications of each other, in such away that the signal
at a coarser level of scale does not containmore structures or information
than any signal at any finer level of scale. Over spatial image domains,
the notion of scale-space representation has been extensively studied,
where several axiomatic derivations have shown that the Gaussian ker-
nel and its corresponding Gaussian derivatives constitute a canonical
class of convolution kernels for generating a spatial scale-space rep-
resentation and have also been demonstrated to constitute a suitable
basis of image primitives for computing different types of features from
spatial image data. In this paper, we develop the associated notion of
temporal scale-space theory, based on the additional constraints that
(i) the temporal scale-space kernels are not allowed to access informa-
tion from the future in relation to any time moment and that (ii) the
computations should be possible to perform in a purely time-recursive
manner, implying no other need for a temporal memory of the past than
the temporal scale-space representation itself. Furthermore, we add a
complementary requirement of (iii) temporal scale covariance, meaning
that under temporal scaling variations of the input, the temporal scale-
space representations should also constitute mere temporal rescalings
of the temporal scale-space representation computed from the original
temporal signal before the temporal rescaling operation, complemented
by a shift along the temporal scale axis

with any biophysical measurement of time-dependent phe-
nomena implies that a non-infinitesimal inner temporal scale
needs to be included in a representation of the perceptual
present, and also that the nonzero temporal delay of such
time-causal kernels implies that a biophysical representation
of the present will de facto constitute a representation ofwhat
has occurred over some temporal intervals in the past, in turn
implying a need for prediction mechanisms to extrapolate
the de facto time-delayed representation of the present into
a better predicted representation of the actual present.

Section 9 gives a retrospective historic overview of the
different parts of temporal scale-space theory that this paper
is based on, follows and extends, as well as a conceptual
overview of some of the main contributions to temporal
scale-space theory made in this article. Finally, Sect. 10 sum-
marizes some of the main results.

2 Time-causal and time-recursive
scale-spacemodel for temporal signals

The problem that we consider is that we are given a temporal
signal f (t) and want to define a set of successively smoothed
temporal scale-space representations L(t; τ) for different
values of a temporal scale parameter τ ≥ 0, as schemati-
cally illustrated in Fig. 1. We will throughout this treatment
assume linearity and translational shift covariance, implying
that the transformation from the original signal f : R → R

to the temporal scale-space representation L : R×R+ → R

is given by convolution with some one-parameter family of
scale-dependent convolution kernels h : R × R+ → R

L(t; τ) = (h(·; τ)∗ f (·))(t; τ) =
∫

ξ∈R
h(ξ ; τ) f (t−ξ) dξ.

(1)

A crucial condition on this family of temporal scale-space
representations is that the temporal scale-space represen-
tation L(t; τ2) at any coarser temporal scale t2 should
correspond to a simplification of the temporal scale-space
representation L(t; τ1) at any finer temporal scale t1.

Following (Lindeberg 1990), we shall measure this sim-
plification property in terms of the number of local extrema
in the signal at any temporal scale, and define a scale-space
kernel as a kernel that obeys the property that the number
of local extrema in the signal after convolution is guaran-
teed to not exceed the number of local extrema prior to the
convolution operation, with the important qualifier that this
property should hold for any input signal. Equivalently, this
property can also be expressed by measuring the number of
zero-crossings before and after the convolution operation.
A scale-space kernel h(t; τ) is referred to as a temporal
scale-space kernel (Lindeberg and Fagerström 1996) if it
additionally satisfies h(t; τ) = 0 for t < 0, meaning that
it does not require access to the future relative to any time
moment.

To make the scale simplification property from finer to
coarser temporal scales hold, we will assume that the fam-
ily of temporal smoothing kernels h(u; τ) should obey the
following cascade smoothing property4

h(·; τ2) = (Δh)(·; τ1 �→ τ2) ∗ h(·; τ1) (2)

4 Note that in contrast to some other temporal scale-space formula-
tions (Lindeberg 1997a, 2011; Fagerström 2005, 2007), we do not
here assume a semi-group property over temporal scales, since such
an assumption leads to poor temporal dynamics, e.g., longer temporal
delays given a variance-based measure of the temporal duration of the
kernel, as explained in more detail in (Lindeberg 2017, Appendix 1).
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for any pair of temporal scales (τ1, τ2) with τ2 > τ1 and for
some family of transformation kernels (Δh)(t; τ1 �→ τ2).
We can then obtain a temporal scale-space representation if
and only if the transformation kernel (Δh)(t; τ1 �→ τ2)

between adjacent temporal scale levels t1 and t2 is always a
temporal scale-space kernel.

2.1 Classification of scale-space kernels for
continuous signals

A fundamental question with regard to smoothing of tem-
poral signals concerns what convolution kernels satisfy the
conditions of being scale-space kernels.

2.1.1 Complete classification of continuous scale-space
kernels

Interestingly, the class of one-dimensional scale-space ker-
nels can be completely classified based on classical results by
Schoenberg (1930, 1946, 1947, 1948, 1950, 1953, 1988),
see also the excellent monograph by Karlin (1968). Summa-
rizing the treatment in (Lindeberg 1993b, Sect. 3.5; 2016,
Sect. 3.2), a continuous smoothing kernel is a scale-space
kernel if and only if it has a bilateral Laplace-Stieltjes trans-
form of the form (Schoenberg 1950)

∞∫

ξ=−∞
e−sξ h(ξ) dξ = C eγ s2+δs

∞∏
i=1

eai s

1 + ai s
(3)

for −c < Re(s) < c and some c > 0, where C �= 0, γ ≥ 0,
δ and ai are real and

∑∞
i=1 a

2
i is convergent.

2.1.2 Basic classes of primitive scale-space kernels over a
continuous signal domain

Interpreted over the temporal domain,5 this result means that
there, beyond trivial rescaling and translation, are two main
classes of one-dimensional scale-space kernels:

– convolution with Gaussian kernels

h(ξ) = e−γ ξ2 , (4)

5 In the general expression (3) for the bilateral Laplace-Stieltjes
transform of a continuous scale-space kernel, the factor eγ s2 is the
Laplace-Stieltjes transform of the Gaussian kernel e−γ ξ2 , the factor
1/(1 + ai s) is the Laplace-Stieltjes transform of a truncated exponen-
tial function e−ai ξ /ai with time constant ai , whereas the factors eδs and
eai s correspond to translations in the temporal domain. Furthermore, the
general product form of this expression in the Laplace-Stieltjes domain
corresponds to a convolution of the corresponding primitives over the
original temporal domain.

– convolution with truncated exponential functions

h(ξ) =
{
e−|λ|ξ ξ ≥ 0,
0 ξ < 0,

h(ξ) =
{
e|λ|ξ ξ ≤ 0,
0 ξ > 0,

(5)

for some strictly positive |λ|.

Moreover, the result means that a continuous smoothing ker-
nel is a scale-space kernel if and only if it can be decomposed
into a cascaded convolution of these primitives.

2.2 Time-causal temporal scale-space kernels over
continuous temporal domain

Among the above primitive smoothing kernels, we recognize
the Gaussian kernel, which is a good and natural temporal
smoothing kernel to usewhen analysing pre-recorded signals
in offline scenarios. When analysing temporal signals in a
real-time situation, or when modelling biological processes
that operate in real time, we cannot, however, use a temporal
smoothing kernel that requires access to information in the
future relative to any time moment.

For building a time-causal temporal scale-space represen-
tation, the truncated exponential kernels are therefore the
only possible primitive time-causal temporal smoothing ker-
nels (Lindeberg and Fagerström 1996)

hexp(t; μk) =
{ 1

μk
e−t/μk t ≥ 0,

0 t < 0,
(6)

wherewewill throughout this treatment adopt the convention
of normalizing these kernels to unit L1-norm. The Laplace
transform of such a kernel is given by

Hexp(q; μk) =
∞∫

t=−∞
hexp(t; μk) e

−qt dt = 1

1 + μkq
. (7)

Coupling K such kernels in cascade leads to a composed
kernel

hcomposed(·; μ) = ∗K
k=1hexp(·; μk) (8)

having a Laplace transform of the form

Hcomposed(q; μ) =
∞∫

t=−∞
∗K
k=1hexp(·; μk)(t) e

−qt dt

=
K∏

k=1

1

1 + μkq
. (9)
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Fig. 2 Electricwiring diagram consisting of a set of resistors and capac-
itors that emulate a series of first-order integrators coupled in cascade, if
we regard the time-varying voltage fin as representing the time varying
input signal and the resulting output voltage and fout as representing the
time varying output signal at a coarser temporal scale. Such first-order
temporal integration can be used as a straightforward computational
model for temporal processing in biological neurons; see also Koch
(1999, Chapters 11–12) regarding physical modelling of the informa-
tion transfer in the dendrites of neurons

The temporal mean and variance of the composed kernel is

mK =
K∑

k=1

μk, τK =
K∑

k=1

μ2
k . (10)

The temporal mean mK is a coarse measure of the temporal
delay of the time-causal temporal scale-space kernel, and the
temporal variance τK is a measure of the temporal duration,
also referred to as the temporal scale.

In terms of physical models, repeated convolution with
this class of temporal scale-space kernels corresponds to cou-
pling a series of first-order integrators with time constants
μk in cascade

∂t L(t; τk) = 1

μk
(L(t; τk−1) − L(t; τk)) (11)

with L(t; 0) = f (t), where the temporal scale-space
representations for larger values of the scale parameter tk
constitute successively temporally smoothed representations
of each other. An important property of this type of tempo-
ral scale-space representation is that it is also time-recursive.
The temporal scale-space representations L(t; τk) consti-
tute a sufficient temporal memory of the past to compute the
temporal scale-space representation and the next temporal
moment, given a new input in the input signal f (t).

An important consequence of the above necessity result,
is that this type of scale-space representation constitutes the
onlyway to compute a time-causal temporal scale-space rep-
resentation, given the requirement that the number of local
extrema, or equivalently the number of zero-crossings, in the
signalmust not increase fromfiner to coarser temporal scales.
In this respect, the temporal scale-space representations can
be seen as gradual simplifications of each other from finer to
coarser temporal scales.

Figure 2 shows an illustration of this model in terms of an
electric wiring diagram for transforming an input signal fin
to an output signal fout using a set of first-order integrators
coupled in cascade.

2.3 Logarithmic distribution of the temporal scale
levels

When implementing this temporal scale-space concept in
practice, a set of intermediate temporal scale levels τk has to
be distributed between some minimum and maximum tem-
poral scale levels τmin = τ1 and τmax = τK . Then, it is natural
to choose these temporal scale levels according to a geomet-
ric series, corresponding to a uniform distribution in units of
effective temporal scale τeff = log τ (Lindeberg 1993a).

If we have a free choice of what minimum temporal scale
level τmin to use, a natural way of parameterizing these tem-
poral scale levels is by using a distribution parameter c > 1
such that

τk = c2(k−K )τmax (1 ≤ k ≤ K ), (12)

which by Eq. (10) implies that the time constants of the indi-
vidual first-order integrators should be given by (Lindeberg
2016, Eqs. (19)–(20))

μ1 = c1−K√
τmax (13)

μk = √
τk − τk−1 = ck−K−1

√
c2 − 1

√
τmax (2 ≤ k ≤ K ).

(14)

If the temporal signal is on the other hand given at some
minimum temporal scale τmin, corresponding to an a priori
given inner temporal scale of the measurement device, we
can instead determine

c =
(

τmax

τmin

) 1
2(K−1)

(15)

in (12) such that τ1 = τmin and add K − 1 temporal scales
with μk according to (14).

Temporal smoothing kernels of this form, combined with
temporal differentiation for different orders of differentia-
tion, to obtain ripples of opposite contrast in the resulting
temporal receptive fields, have been used for modelling the
temporal part of the processing inmodels for spatio-temporal
receptive fields (Lindeberg and Fagerström 1996; Lindeberg
2015, 2016, 2021b) and spectro-temporal receptive fields
(Lindeberg and Friberg 2015a, b).

2.4 Logarithmic memory of the past

When using a logarithmic distribution of the temporal scale
levels according to either of these methods, the different lev-
els in the temporal scale-space representation at increasing
temporal scales will serve as a logarithmic memory of the
past, with qualitative similarity to the mapping of the past
onto a logarithmic time axis in the scale-timemodel byKoen-
derink (1988). Such a logarithmic memory of the past can
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also be extended to later stages in a visual, auditory or other
form of neural hierarchy.

An alternative type of temporal memory structure can be
obtained if the different truncated exponential kernels are
applied, not in a cascade as above, but instead in parallel with
a single temporal time constant for each temporal memory
channel,

hcomposed(·; τk) = hexp(·; μk) (16)

for μk = √
τk , again with a logarithmic distribution of

the temporal scale levels τk . Such a model for temporal
memory has been studied by Howard and his co-workers
(Howard 2021; Bright et al. 2020). Then, each temporal
memory channel is also a simplification of the input signal
f (t), and a record of the past with a given temporal delay
and temporal duration. Inversion from the temporal mem-
ory channels to the input signal is also more straightforward,
from the conceptual similarity to a real-valued Laplace trans-
form (Howard et al. 2018; Howard and Hasselmo 2020). The
different temporal memory channels are, however, not guar-
anteed to constitute formal simplifications of each other, as
they are for the cascade model.

The theoretical framework for time-causal and time-recur-
sive temporal scale-space representations presented earlier in
(Lindeberg and Fagerström 1996; Lindeberg 2016) and here
can be seen as providing a theoretical foundation for such
time-recursive temporal memory models.

2.5 Uniform distribution of the temporal scale levels

An alternative approach to distributing the temporal scale
levels is to use a uniform distribution of the intermediate
temporal scales

τk = k

K
τmax, (17)

implying that the time constants in the individual smoothing
steps are given by

μk = μ =
√

τmax

K
. (18)

Then, a compact expression can be easily obtained for the
composed convolution kernel corresponding to a cascade of
K such kernels

hcomposed(t; μ, K ) = t K−1 e−t/μ

μK Γ (K )
. (19)

Such kernels have also been used in memory models (Gold-
man 2009). The temporal Poisson model studied in more
detail in (Lindeberg 1997a) can be seen as the limit case of

such a uniform distribution of the temporal scale levels in
the time-discrete case, when the difference between adjacent
temporal scales tends to zero, a limit case that, however, only
exists for discrete temporal signals (Lindeberg and Fager-
ström 1996), and which also serves as a multi-scale temporal
memory of the past (see the illustrations of how the temporal
scale-space representation evolves over time and temporal
scales in the time-scale diagrams in Figs. 3–5 in (Lindeberg
1997a), which demonstrate the temporal memory properties
of such a temporal scale-space representation— specifically
observe the property that an event that occurs at a certain
temporal moment first appears in the temporal scale-space
representation at the finest temporal scale, and then moves
to gradually coarser temporal scales as time passes by, and
is thus also after some short times gradually forgotten at the
finer temporal scales, being taken over temporal structures
that appear after the initial temporal event).

For constructing temporal memory processes that are to
operate over wide ranges of temporal scales, such models
based on a uniform sampling of the temporal scale levels
do, however, require a larger number of primitive temporal
integrators, and thusmore hardware orwetware, compared to
a temporalmemorymodel basedon a logarithmic distribution
of the temporal scale levels.

Combined with temporal differentiation of the smoothing
kernel, such temporal kernels have been used for modelling
the temporal response properties of neurons in the visual
system (den Brinker and Roufs 1992) and for computing
spatio-temporal image features in computer vision (Rivero-
Moreno and Bres 2004; van der Berg et al. 2014).

For a given value of the temporal scale (the temporal vari-
ance) of such time-causal kernels, the temporal delay for a
temporal kernel based on a uniform distribution of the tem-
poral scale levels will, however, also be longer than for a
temporal kernel constructed from a logarithmic distribution
of the intermediate temporal scale levels. Thus, for formu-
lating computational algorithms for expressing time-critical
decision processes in computer vision or machine listening,
as well as for modelling time-critical decision processes in
biological perception or cognition, we argue that a logarith-
mic distribution of the temporal scale levels should be amuch
better choice.

For these reasons, we will henceforth in this treatment
focus solely on models based on a logarithmic distribution
of the temporal scale levels.

3 Time-causal temporal scale-space
representations that also obey temporal
scale covariance

Beyond the task of representing temporal signals at multiple
temporal scales, a main requirement on a temporal scale-
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Fig. 3 Commutative diagram for temporal receptive field responses
under temporal scaling transformations of the temporal domain. Such
transformations describe the effect of events occurring slower or faster
in the world. (The commutative diagram should be read from the lower
left corner to the upper right corner, and means that irrespective of
whether the image is first convolved with a temporal smoothing kernel
and then subject to temporal scaling transformation, or whether the
temporal signal is first subject to a temporal scaling transformation and
then convolved with a temporal smoothing kernel, we should get the
same result provided that the temporal scale parameters τ and τ ′ are
properly matched to the relative temporal scaling factor S between the
two temporal patterns)

space representation should also be the notion of temporal
scale covariance,6 so as to be able to consistently handle
temporal phenomena and events that occur faster or slower
in theworld. Temporal scale covariancemeans that if a signal
f (t) is subject to a temporal scaling transformation

f ′(t ′) = f (t) for t ′ = St (20)

and then processed, here with a temporal convolution kernel
T (t ′; τ ′) that depends on a temporal scale parameter τ ′,

L ′(t ′; τ ′) = (T (·; τ ′) ∗ f ′(·))(t ′; τ ′), (21)

the result should be essentially similar to the result of apply-
ing the same type of processing to the original signal

L(t; τ) = (T (·; τ) ∗ f (·))(t; τ) (22)

and then rescaling the processed original signal

L ′(t ′; τ ′) = L(t; τ) (23)

(for other types of processes possibly also complemented
with some minor modification, such as a correction of the
magnitude of the response). For the task of temporal filter-
ing in a temporal scale-space representation, this implies that
the temporal scale-space kernel should commutewith tempo-
ral scaling transformations, as illustrated in the commutative
diagram in Fig. 3.

6 In certain literature, the property that we refer to as “covariance” is
instead referred to as “equivariance”. In this paper, we throughout use
the terminology “covariance”, to maintain consistency with the scale-
space literature (Lindeberg 2013b).

This algebraic closedness property under temporal scaling
transformations will imply that similar temporal phenomena
that occur faster or slower in the world will be treated in
a conceptually similar manner. Under variations caused by
scaling transformations in the input, the output of applying
scale-covariant processing to such temporally rescaled data
will be mere temporal rescalings of each other, thus without
bias to any particular scales, which would otherwise be a
severe shortcoming, if the computational model is not well-
behaved under temporal scaling transformations.

In this section, we will describe a theory for how to obtain
time-causal temporal scale-space representations that also
obey such temporal scale covariance, which in turn makes it
possible to construct provably scale-invariant temporal repre-
sentations at higher levels in a temporal processing hierarchy.
The way that we will reach this goal is by constructing a limit
kernel that is the convolution of an infinite number of trun-
cated exponential kernels in cascade, with specially chosen
time constants that correspond to a geometric distribution of
the intermediate temporal scale levels.

Unfortunately, there is no known simple compact explicit
expression for this limit kernel in the temporal domain,
implying that some of the closed-form calculations using
the limit kernel may be interpreted as somewhat techni-
cal at the first encounter with this function. Once these
algebraic transformation properties have been established
for the limit kernel, however, this function can be handled
and used in a similar way as other standard functions in
mathematics.

For practical implementations, the limit kernel can fur-
thermore for the purpose of computing the representation
at a single temporal scale often be very well approximated
by a moderate finite number of truncated exponential ker-
nels coupled in cascade, usually between 4 and 8 in our
implementations of this concept, because of its rapid conver-
gence properties for suitable values of its internal distribution
parameter. In turn, for the purpose of computing another tem-
poral scale-space representation at the next coarser temporal
scale, applying a single truncated exponential kernel to the
nearest finer temporal scale is sufficient.

In this section, we will first define the limit kernel and
derive its transformation properties. Then, we will turn to
relating and comparing the limit kernel to two other models
used for expressing temporal variations over time.

3.1 The time-causal limit kernel

Consider the Fourier transform of the composed convolution
kernel that we obtain by coupling K truncated exponential
kernels in cascade with a logarithmic distribution of the tem-
poral scale levels and thus time constants according to (13)
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Fig. 4 Approximations of the time-causal limit kernel for τ = 1 using
K = 7 truncated exponential kernels in cascade and their first- and
second-order derivatives. (top row) Logarithmic distribution of the scale

levels for c = √
2. (bottom row) Logarithmic distribution for c = 2.

(Horizontal axes: time. Vertical axes: function values)

and (14) for some c > 1:

ĥcomposed(ω; τ, c, K ) =
1

1 + i c1−K
√

τ ω

K∏
k=2

1

1 + i ck−K−1
√
c2 − 1

√
τ ω

. (24)

By formally letting the number of primitive smoothing steps
K tend to infinity and renumbering the indices by a shift
in terms of one unit, we obtain a limit object of the form
(Lindeberg 2016, Eq. 38)

Ψ̂ (ω; τ, c) = lim
K→∞ ĥcomposed(ω; τ, c, K )

=
∞∏
k=1

1

1 + i c−k
√
c2 − 1

√
τ ω

. (25)

By treating this limit kernel as an object by itself, which
will be well-defined because of the rapid convergence by
the summation of variances according to a geometric series,
interesting relations can be expressed between the temporal
scale-space representations

L(t; τ, c) =
∞∫

u=0

Ψ (u; τ, c) f (t − u) du (26)

obtained by convolution with this limit kernel.

3.1.1 Self-similar recurrence relation for the time-causal
limit kernel over temporal scales

Using the limit kernel, an infinite number of discrete temporal
scale levels is implicitly defined given the specific choice of
one temporal scale τ = τ0:

. . .
τ0

c6
,
τ0

c4
,
τ0

c2
, τ0, c

2τ0, c
4τ0, c

6τ0, . . . (27)

Directly from the definition of the limit kernel, we obtain
the following recurrence relation between adjacent temporal
scales:

Ψ (·; τ, c) = hexp(·;
√
c2−1
c

√
τ) ∗ Ψ

(
·; τ

c2
, c

)
(28)

and in terms of the Fourier transform:

Ψ̂ (ω; τ, c) = 1

1 + i
√
c2−1
c

√
τ ω

Ψ̂
(
ω; τ

c2
, c

)
. (29)

3.1.2 Behaviour under temporal rescaling transformations

From the Fourier transform of the limit kernel (25), we can
observe that for any temporal scaling factor S it holds that

Ψ̂ (ω
S ; S2τ, c) = Ψ̂ (ω; τ, c). (30)
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Thus, the limit kernel transforms as follows under a scaling
transformation of the temporal domain:

S Ψ (S t; S2τ, c) = Ψ (t; τ, c). (31)

If we, for a given choice of distribution parameter c, rescale
the input signal f by a temporal scaling factor S = 1/c such
that t ′ = t/c, it then follows that the scale-space representa-
tion of f ′ at temporal scale τ ′ = τ/c2

L ′ (t ′; τ
c2

, c
)

=
(
Ψ

(
·; τ

c2
, c

)
∗ f ′ (·)

) (
t ′; τ

c2
, c

)
(32)

will be equal to the temporal scale-space representation of
the original signal f at scale τ (Lindeberg 2016, Eq. 46)

L ′(t ′; τ ′, c) = L(t; τ, c). (33)

Hence, under a rescaling of the original signal by a temporal
scaling factor c, a rescaled copy of the temporal scale-space
representation of the original signal can be found at the next
lower discrete temporal scale, relative to the temporal scale-
space representation of the original signal.

3.1.3 Provable temporal scale covariance

Applied recursively, the above result implies that the tempo-
ral scale-space representation obtained by convolution with
the limit kernel obeys a closedness property over all tempo-
ral scaling transformations t ′ = c j t with temporal rescaling
factors S = c j ( j ∈ Z) that are integer powers of the distri-
bution parameter c (Lindeberg 2016, Eq. 47),

L ′(t ′; τ ′, c) = L(t; τ, c) for t ′ = c j t and τ ′ = c2 jτ,

(34)

thus allowing for perfect scale covariance over the restricted
subset of scaling factors S = c j that precisely matches the
specific set of discrete temporal scale levels that is defined
by a specific choice of the distribution parameter c. Based
on this desirable and highly useful property, it is natural to
refer to the limit kernel as the scale-covariant time-causal
limit kernel (Lindeberg 2016, Sect. 5).

3.1.4 Qualitative properties

Figure 4 shows graphs of this time-causal limit kernel as well
its first- and second-order temporal derivatives for a few val-
ues of the distribution parameter c. As can be seen from
the graphs, the raw smoothing kernels have a skewed shape,
where the temporal delay increases with decreasing values of
the distribution parameter c, and with the explicit measures

of the skewness γ1 and kurtosis γ2 of these kernels increas-
ing as function of the distribution parameter c according to
(Lindeberg 2016, Eqs. (130) and (131))

γ1 = 2(c + 1)
√
c2 − 1(

c2 + c + 1
) , (35)

γ2 = 6
(
c2 − 1

)
c2 + 1

. (36)

3.1.5 Experimental results

Figure 5 shows the result of smoothing two synthetic tem-
poral signals with the time-causal limit kernel for different
values of the temporal scale parameter τ . As can be seen
from the graphs, the signal is gradually smoothed from finer
to coarser temporal scales, here clearly seen in the way
that finer-scale structures are suppressed before coarser-scale
structures in the left column and that higher frequencies are
suppressed before lower frequencies in the right column. In
addition, the temporal delay increases from finer to coarser
temporal scales, here seen in terms of different temporal off-
sets regarding the temporal moments at which the temporal
peaks occur.

When using a comparably large value of the distribution
parameter c, as used in this figure, the temporal delay will be
comparably low,which is a preferable propertywhenneeding
to respond fast in a time-critical context. When using lower
values of the distribution parameter, the temporal delay at a
given temporal scale will be longer, which may be a prefer-
able property if you want to use the temporal scale-space
representations as temporal memory buffers, with the coarser
temporal scale representations then constitutingmemories of
what has happened further in the past.

Figure 6 gives an experimental illustration of the temporal
scale covariant property of the time-causal limit kernel. Here,
a synthetic signal generated from a simulatedWiener process
has been rescaled by a temporal rescaling factor S = 2. From
these two input signals, temporal scale-space representations
have then been computed at the matching temporal scale lev-
els

√
τ = 128 and

√
τ ′ = 256. Due to the temporal scale

covariance property, these temporal scale-space representa-
tions are then also related by the same temporal scaling factor
S = 2.

Figure 7 gives an illustration of the equality between the
two different ways of computing the representation in the
upper right corner from the signal in the lower left corner in
Fig. 6, using either a clockwise orientation or a counterclock-
wise orientation in the corresponding commutative diagram
in Fig. 3. As can be seen from the visualization, the results
are essentially indistinguishable, showing that a good numer-
ical approximation to temporal scale covariance can also be
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Fig. 5 Illustration of temporal
smoothing of two signals: (left)
a Brownian noise signal
generated from a simulated
Wiener process and (right) a
synthetic sine wave signal
f (t) = sin(exp((b − t)/a)) for
a = 200 b = 1000 with
temporally varying frequency so
that the wavelength increases
with time t , computed using a
discrete approximation of the
time-causal limit kernel for
c = 2 in terms of a set of
recursive filters coupled in
cascade. Observe how fine-scale
structures corresponding to
higher frequencies are
successively suppressed when
going from finer to coarser
temporal scales, and also that
the temporal scale-space
representations at coarser
temporal scales are associated
with longer temporal delays, in
this figure seen as different
offsets in the positions of the
peaks in the temporal signal at
different temporal scales.
(Horizontal axes: time. Vertical
axes: signal values)
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Fig. 6 Illustration of the temporal scale covariance property of the
temporal scale-space representation defined from convolutions with the
time-causal limit kernel. In the bottom row, the signal in the right col-
umn is a rescaling of the signal in the left column by a temporal scaling
factor S = 2 (with the temporal rescaling performed relative to the cen-
ter of the temporal interval). In the top row, the temporal scale-space
representations at the matching temporal scale levels

√
τ = 128 and√

τ ′ = 256 have for distribution parameter c = 2 been computed from
the corresponding input signals in the bottom row. Due to the temporal
scale-covariance property, these temporal scale-space representations

are in the ideal continuous case related by a temporal scaling transfor-
mation with the same temporal scaling factor S = 2 as between the
input signals. If one for experimental purposes compares a correspond-
ing temporal rescaling of the output from the discrete implementation
in terms of recursive filters (described in more detail in Sect. 4), one
can see that the corresponding graphs are practically indistinguishable
(see Fig. 7). In this way, this experiment verifies and visualizes the
theoretical properties reflected in the commutative diagram in Fig. 3.
(Horizontal axes: time. Vertical axes: signal values)

achieved in a discrete implementation (to be described fur-
ther in Sect. 4).

3.1.6 Applications of the time-causal limit kernel

The time-causal limit kernel and its temporal derivatives
has been used for modelling the temporal component in
spatio-temporal receptive fields in the retina, the LGN
and the primary visual cortex (V1) (Lindeberg 2021b), for
modelling the temporal component in methods for spatio-
temporal feature detection in video data (Lindeberg 2016),
for expressing methods for temporal scale selection in tem-

poral signals (Lindeberg 2017, 2018b), for modelling the
temporal component of spatio-temporal smoothing in meth-
ods for spatio-temporal scale selection (Lindeberg 2018a, b)
and for modelling the temporal component of smoothing in
computer vision methods for video analysis (Jansson and
Lindeberg 2018).

In Sect. 7.3, we do additionally propose to use the time-
causal limit kernel for modelling temporal phenomena at
multiple temporal scales in neural signals, and in Sect. 7.2
specifically to use this kernel formodelling the temporal vari-
ability in auditory receptive fields.
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Fig. 7 Comparison between the two different ways of computing the
representation in the upper right corner in Fig. 6 from the correspond-
ing representation in the lower left corner, using either the clockwise
direction (marked in green) or the counterclockwise direction (marked
in red). When generating this illustration, we have first essentially per-
formed a rescaling of the scale-space representation of the signal in the
left column and marked the result as solid green curve, and then over-
layed the scale-space representation of the signal in the right column
with a dashed red curve. (Technically, in the discrete implementation,we
have, however, instead visualized the equivalent result of such a compu-
tation at a lower resolution, to avoid the formally ill-defined operation of

interpolating the discrete signal in the left column to a higher resolution,
and instead subsampled the signal in the right column, which explains
the change in the labelling of the temporal axis.) (left) The result for
the entire temporal interval used in the right column in Fig. 6. (right)
Enlargement of a central region of the temporal interval. As can be seen
from the visualization, the results computed in the clockwise or coun-
terclockwise directions are basically indistinguishable, demonstrating
the scale covariance property of the temporal scale-space representation
defined by convolution with the time-causal limit kernel. (The result is
best viewed by zooming in to a digital copy of the article.) (Horizontal
axes: time. Vertical axes: signal values)

In Sect. 6.1 we outline how the time-causal limit ker-
nel can be used for defining time-causal and time-recursive
wavelet representations, and in Sect. 6.2 how the time-causal
limit kernel makes it possible to define time-causal and time-
recursive time-frequency representations (spectrograms) that
additionally obey temporal scale covariance.

3.2 Alternative scale-covariant temporal models

An alternative type of temporal model that one could also
consider from the general classification of temporal scale-
space kernels is to use a set of parallel temporal channels
formed by convolution of the input signal, with a single
truncated exponential function in each channel, and with
a geometric distribution of the their time constants, of the
form (16). As previously explained in Sect. 2.4, such tempo-
ral models have been previously used as models of temporal
memory in neuroscience (Howard 2021; Bright et al. 2020).

Because of the geometric distribution of the time con-
stants in these temporal channels, they will obey temporal
scale covariance. Temporal scale covariance will also apply
to different types of generalizations of such a model, e.g.
by having the same small number of truncated exponential
kernels in cascade in each temporal channel, with the time

constants between the different temporal channels coupled
according to a geometric distribution.

A fundamental difference between such temporal models
and the temporal scale-space model based on the time-causal
limit kernel, however, is that in the first class of models the
temporal channels for larger values of the scale parameter are
not guaranteed to constitute simplifications of the temporal
channels for smaller values of the scale parameter. By the
temporal smoothing kernels being scale-space kernels, each
temporal channel is guaranteed to be a simplification of the
input signal.When relating different temporal scale channels
to each other, however, the number of local extrema in a
temporal channel for a larger value of the temporal scale
parameter is not guaranteed to not exceed the number of
local extrema in a temporal channel for a finer smaller value
of the temporal scale parameter.

Because of the scale-recursive property (28) of the time-
causal limit kernel, it is on the other hand formally guaranteed
that the temporal scale-space representation at the next
coarser temporal scale corresponds to the result of apply-
ing temporal smoothing with a truncated exponential kernel
to the temporal scale-space representation at the nearest finer
temporal scale. Applied recursively, the temporal scale-space
representation at any coarser temporal scale corresponds to
the result of applying a set of truncated exponential kernels
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Fig. 8 Comparison between (blue curves) the time-causal limit kernel
according to (25) and approximated using thefirst K = 7 components of
the infinite convolution of truncated exponential kernels in cascadewith
its first- and second-order temporal derivatives and (brown curves) the
temporal kernels in Koenderink’s scale-time model (37) and their first-
and second-order temporal derivatives. All kernels correspond to tem-

poral scale (variance) τ = 1 with the additional parameters determined
such that the temporal mean values (the first-order temporal moments)
become equal in the limit case when the number of temporal scale levels
K tends to infinity (Eq. 38). (top row) Logarithmic distribution of the
temporal scale levels for c = √

2 (bottom row) Corresponding results
for c = 2. (Horizontal axes: time. Vertical axes: function values)

Fig. 9 Comparison between (brown curves) the ex-Gaussian model
according to (40) and (blue curves) the time-causal limit kernel accord-
ing to (25) and approximated using the first K = 7 components of the
infinite convolution of truncated exponential kernels in cascade. (left)
for μ = 1, σ = 1/2, m = 1, a0 = 0 and a1 = 1 corresponding to

τ ≈ 1.24, c ≈ 1.89, b0 = 0 and b1 ≈ 1.25, (middle) for μ = 4,
σ = 1/2, m = 2, a0 = 0 and a1 = 1 corresponding to τ ≈ 16.25,
c ≈ 2.65, b0 = 0 and b1 ≈ 5.01, (right) for μ = 4, σ = 2, m = 2,
a0 = 0 and a1 = 1 corresponding to τ ≈ 18.94, c ≈ 2.89, b0 = 0 and
b1 ≈ 19.37. (Horizontal axes: time. Vertical axes: function values)

in cascade to the representation at any finer temporal scale.
In this way, for the temporal scale-space representation gen-
erated by convolution with the time-causal limit kernel for
different values of the temporal scale parameter, every tem-
poral scale-space representation at a given temporal scale
is guaranteed to constitute a formal simplification of any
other temporal scale-space representation at any finer tem-
poral scale.

The time-causal limit kernel is special in that it both
obeys temporal scale covariance and guarantees non-creation
of new local extrema with increasing temporal scales with
regard to convolutions over a time-causal temporal domain.

3.3 Relation to Koenderink’s scale-timemodel

In his scale-time model, Koenderink (1988) proposed to
perform a logarithmic mapping of the past via a temporal
delay δ and then applying Gaussian smoothing with standard
deviation σ in the transformed domain. If we additionally
normalize these kernels to unit L1-norm, we obtain a time-
causal kernel of the form (Lindeberg 2016, Eq. 151)

hKoe(t; σ, δ) = 1√
2πσ δ

e− log2( t
δ )

2σ2
− σ2

2 . (37)
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In (Lindeberg 2016, Appendix 2) a formal mapping between
this scale-time kernel and the time-causal limit kernel is
derived, by requiring the first- and second-order moments
of these two classes of kernels to be equal:

⎧⎨
⎩

τ = δ2 e3σ
2
(
eσ 2 − 1

)

c = eσ2

2−eσ2

⎧⎪⎨
⎪⎩

σ =
√
log

(
2c
c+1

)

δ = (c+1)2
√

τ

2
√
2
√

(c−1)c3

(38)

which hold as long as c > 1 and σ <
√
log 2 ≈ 0.832.

Figure 8 shows a comparison between the time-causal
limit kernel and Koenderink’s scale-time kernels regarding
the zero-order convolution kernels as well as their first- and
second-order derivatives. As can be seen from the graphs,
these two classes of kernels have qualitatively rather simi-
lar shapes. The time-causal limit kernel does, however, have
the conceptual advantage that it can be computed in a time-
recursive manner, whereas the scale-time kernel does not
have any known time-recursive implementation, implying
that it formally requires an infinite memory of the past (or
some substantially extended temporal buffer, if the infinite
temporal convolution integral is truncated at the tail).

While we do not have any compact explicit expression
for the time-causal limit kernel over the temporal domain,
if we approximate the time-causal limit kernel by a scale-
time kernel according to the mapping (38), we obtain the
following estimate for the location of the maximum point of
the time-causal limit kernel:

tmax ≈ (c + 1)2
√

τ

2
√
2
√

(c − 1)c3
= δ. (39)

This estimate can be expected to be an overestimate, and is a
better estimate of the temporal delay of the time-causal limit
kernel than the temporal mean according to (10).

3.4 Relation to the ex-Gaussianmodel used by
Bright et al.

In (Bright et al. 2020), a so-called ex-Gaussian model
(Grushka 1972), that is the convolution of an unnormalized
Gaussian function with an unnormalized truncated exponen-
tial kernel

hex-Gauss,gen(t) = a0 + a1

∞∫

u=0

e− (t−m−u)2

2σ2 e− u
μ du, (40)

is used for fitting temporal response functions of neurons to
an analytical temporal model. In Appendix A.1, a relation
between this ex-Gaussian model and a corresponding model

based on the time-causal limit kernel

hlimit-kern,gen(t) = b0 + b1 Ψ (t; τ, c) (41)

is derived by requiring the zero-, first- and second-order tem-
poral moments of these kernels to be equal, if the DC-offsets
a0 and b0 are disregarded and assumed to be equal.

This leads to the following mapping between the param-
eters of the two models

b1 = M0, (42)

c = δ2 + V

δ2 − V
, (43)

τ = V , (44)

where δ and V denote the temporal mean and the temporal
variance of the ex-Gaussian model for a0 = 0

δ = M1

M0
, (45)

V = M2

M0
−

(
M1

M0

)2

, (46)

and M0, M1 and M2 denote the explicit expressions for the
zero-, first- and second-order moments of the ex-Gaussian
model for a0 = 0, according to (88), (89) and (90).

Figure 9 shows a few examples of ex-Gaussian temporal
models approximated by models based on the time-causal
limit kernel in this way. As can be seen from the graphs, the
two classes of kernels can capture qualitative similar tempo-
ral shapes in time-causal temporal data,7 with the conceptual
differences that: (i) the model based on the time-causal limit
kernel always tends to zero at the temporal origin t = 0 when
the DC-offset is zero, whereas the ex-Gaussian model may
take nonzero values for t = 0, (ii) the time-causal limit kernel
does not contain any internal non-causal temporal compo-
nent as the time-shifted Gaussian kernel in (40) constitutes,
and (iii) the time-causal limit kernel has a completely time-
recursive implementation, which is essential whenmodelling
temporal phenomena in real time as they, for example, occur
in biological neurons. The model based on the time-causal

7 A certain qualifier is, however, necessary in this context, since the ex-
Gaussian model contains one more parameter than the model based on
the time-causal limit kernel. Hence, the above mapping between these
models is only valid if the temporal delay m in the ex-Gaussian model
is not too large compared the temporal time constant μ and the amount
of temporal smoothing σ . If a mapping is to be performed between the
two models in the regime where this assumption does not hold, then an
additional temporal delay parameter t0 should be introduced into the
model based on the time-causal limit kernel (98) at the cost of more
complex analytical expressions for determining the parameters of the
model based on the time-causal limit kernel from the temporalmoments,
now up to order 3, of the ex-Gaussian model, see Appendix A.2 for a
further treatment of such an extension.
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limit kernel is also specifically possible to implement based
on a cascade of first-order integrators in cascade, which is a
natural model for the information transfer in the dendrites of
neurons (Koch 1999, Chapters 11–12).

3.4.1 Extension to third-order moment-based model fitting
involving also a flexible temporal offset

In Appendix A.2, an extension of the above second-order
moment-based model to a third-order moment-based model
is performed, which makes it possible to also determine a
temporal offset t0

hlimit-kern,gen(t) = b0 + b1 Ψ (t − t0; τ, c), (47)

and which may be relevant in situations when the temporal
origin of the signal cannot be accurately determined in an
experimental situation. Since the closed-form expressions
for the solutions become more complex in this case (they
are determined from the solutions of a fourth-order algebraic
equation), we restrict ourselves to a conceptual and algo-
rithmic description in this treatment, see Appendix A.2 for
further theoretical details and experimental results.

3.4.2 Extension to model fitting for other signals or
functions

The above general procedures, whereby the parameters in
the model based on the time-causal limit kernel are deter-
mined from the lower-order temporal moments of the data,
can also be more generally used for fitting models based
on the time-causal limit kernel to other signals and func-
tions that: (i) are defined for non-negative values of time,
(ii) assume non-negative values only, (iii) have a roughly
unimodal shape of first increasing and then decreasing and
(iv) decay towards zero towards infinity. The approach for
fitting basically implies replacing the temporal moments
M0, M1, M2 and optionally M3 of the ex-Gaussian model
by the temporal moments of the signal or function to be
fit with a model based on the time-causal limit kernel, see
Appendix A.3 for additional details.

4 Computational implementation of
convolutions with the time-causal limit
kernel on discrete temporal data

In the theory presented so far, we have throughout assumed
that the signal is continuous over time. When implementing
this model on sampled temporal data, the theory must be
transferred to a discrete temporal domain.

In this section, we will describe how the temporal recep-
tive fields can be implemented in terms of corresponding

discrete temporal scale-space kernels that possess scale-
space properties over a discrete temporal domain, and in
addition are both time-causal and fully time-recursive.

Following Lindeberg (1990) and in a corresponding way
as the treatment in Sect. 2, let us define a discrete kernel
as a discrete scale-space kernel if for any input signal it is
guaranteed that the number of local extrema, alternatively the
number of zero-crossings, cannot increase under convolution
with the discrete scale-space kernel.

4.1 Classification of scale-space kernels for discrete
signals

To characterize the class of discrete scale-space kernels, we
can, in a corresponding way as for the continuous case, also
build upon classical results by Schoenberg (1930, 1946,
1947, 1948, 1950, 1953, 1988), and as further developed
in the monograph by Karlin (1968).

Making a summary of the treatment in Lindeberg (1990,
Sect. IV) (2016, Sect. 6.1), a discrete smoothing kernel is
a discrete scale-space kernel if and only if it has its gener-
ating function of the sequence of filter coefficients ϕ(z) =∑∞

n=−∞ cnzn of the form (Schoenberg 1948)

ϕ(z) = c zk e(q−1z−1+q1z)
∞∏
i=1

(1 + αi z)(1 + δi z−1)

(1 − βi z)(1 − γi z−1)
(48)

where c > 0, k ∈ Z, q−1, q1, αi , βi , γi , δi ≥ 0 and∑∞
i=1(αi + βi + γi + δi ) < ∞.

4.1.1 Basic classes of primitive scale-space kernels over a
discrete signal domain

With regard to the original temporal domain,8 this character-
izationmeans that, besides trivial rescalings and translations,
there are three basic classes of discrete smoothing transfor-
mations:

– two-point weighted average or generalized binomial
smoothing

fout(x) = fin(x) + αi fin(x − 1) (αi ≥ 0),

fout(x) = fin(x) + δi fin(x + 1) (δi ≥ 0),
(49)

8 In the general expression (48) for the generating function of a discrete
scale-space kernel, the factors 1+αi z and 1+ δi z−1 are the generating
functions of generalized binomial filters of the form (49), the factors
1−βi z and 1−γi z−1 are the generating functions of recursive filters of
the form (50), the interpretation of the factor e(q−1z−1+q1z) is explained
in Footnote 9, whereas the factor zk corresponds to a translation in the
temporal domain. The product form of the overall expression in the
domain of the generating functions does in turn correspond to convolu-
tions of the corresponding primitives over the original temporal domain.
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– moving average or first-order recursive filtering

fout(x) = fin(x) + βi fout(x − 1) (0 ≤ βi < 1),

fout(x) = fin(x) + γi fout(x + 1) (0 ≤ γi < 1),
(50)

– infinitesimal smoothing 9 or diffusion as arising from
the continuous semi-groups made possible by the factor
e(q−1z−1+q1z).

To transfer the continuous first-order integrators derived in
Sect. 2.2 to a discrete implementation, we shall in this treat-
ment focus on the first-order recursive filters (50), which by
additional l1-normalization constitute both the discrete cor-
respondence and a numerical approximation of time-causal
and time-recursive first-order temporal integration (11).

4.2 Discrete temporal scale-space kernels based on
recursive filters

Given a signal that has been sampled by some temporal frame
rate r , the temporal scale σt in the continuous model in units
of seconds is first transformed to a temporal variance τ rela-
tive to a unit time sampling

τ = r2 σ 2
t . (51)

Then, a discrete set of intermediate temporal scale levels
τk is defined by (12) or (17), with the difference between
successive scale levels according to

Δτk = τk − τk−1 (52)

with τ0 = 0.
For implementing the temporal smoothing operation

between two such adjacent scale levels (with the lower level
in each pair of adjacent scales referred to as fin and the upper
level as fout), wemake use of a first-order recursive filter nor-
malized to the form

fout(t) − fout(t − 1) = 1

1 + μk
( fin(t) − fout(t − 1)) (53)

and having a generating function of the form

Hgeom(z) = 1

1 − μk (z − 1)
, (54)

9 These kernels correspond to infinitely divisible distributions as can
be described with the theory of Lévy processes (Sato 1999), where
specifically the case q−1 = q1 corresponds to convolution with the
non-causal discrete analogue of the Gaussian kernel (Lindeberg 1990)
and the case q−1 = 0 corresponds to convolution with time-causal
temporal Poisson kernel (Lindeberg and Fagerström 1996; Lindeberg
1997a).

which is a time-causal kernel and satisfies discrete scale-
space properties of guaranteeing that the number of local
extrema or zero-crossings in the signal will not increase with
increasing scale (Lindeberg 1990; Lindeberg and Fagerström
1996). These recursive filters are the discrete analogue of the
continuous first-order integrators (11).

Each primitive recursive filter (53) has temporal mean
value mk = μk and temporal variance Δτk = μ2

k + μk ,
and we compute μk from Δτk in (52) according to

μk =
√
1 + 4Δτk − 1

2
. (55)

By the additive property of variances under convolution, the
discrete variances of the discrete temporal scale-space ker-
nels will perfectly match those of the continuous model,
whereas the temporal mean values and the temporal delays
may differ somewhat. If the temporal scale τk is large relative
to the temporal sampling distance, the discrete model should
be a good approximation in this respect.

By the time-recursive formulation of this temporal scale-
space concept, the computations can be performed based on
a compact temporal buffer over time, which contains the tem-
poral scale-space representations at temporal scales τk , and
with no need for storing any additional temporal buffer of
what has occurred in the past, to perform the corresponding
temporal smoothing operations.

For practical implementations, we often approximate the
time-causal limit kernel using 4–8 layers of recursive filters
coupled in cascade using either c = √

2 or c = 2.
A summarizing algorithmic description of how to imple-

ment these temporal filtering operations in practice is given
in Appendix B.

5 Computation of temporal scale-space
derivatives

So far, we have been concerned with the problem of how to
smooth a temporal signal in such a way that the smoothing
transformation is guaranteed to not increase the number of
local extrema in the signal, or equivalently the number of
zero-crossings. In many applications, one is, however, more
interested in studying the change in the signal over time, as
can be modelled by temporal derivatives.

For a purely time-dependent signal, the first-order tempo-
ral derivative will lead to strong responses in the signal when
the temporal slope is high, corresponding to, e.g. onsets or
offsets of a sound in auditory processing, or motion in the
world, alternatively changes in the illumination, for video
processing. Regarding visual processing over a purely spatial
domain, first-order spatial derivatives will respond to edges
in the image domain, which in turn may correspond to dis-
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continuities in either depth, surface orientation, reflectance
or illumination in the world.

For a purely time-dependent signal, the second-order
derivatives may on the other hand often lead to strong
responses near local maxima or minima over time, if the
sign of the first-order temporal derivative changes rapidly at
those points. Concerning audio processing, a second-order
temporal derivative applied to a spectrogram representation
may give a strong response to, e.g. a beep or some other
brief temporal sound, provided that the temporal scale is suf-
ficiently near the temporal duration of the sound. Applying
second-order derivatives with respect to logarithmic frequen-
cies to a spectrogram will in turn enhance spectral bands and
formants, provided that the logspectral scales are appropri-
ately selected. Regarding visual processing, a second-order
temporal derivative applied to a video stream may give a
strong response to a flashing light, again assuming that the
temporal scale is sufficiently near the temporal duration of
the flash. Assuming that the visual observer does not fixate a
moving object, second-order temporal derivatives may also
give strong responses to image patterns that move relative
to the viewing direction. For visual processing on a purely
spatial domain, second-order spatial derivative operators can
be specially designed to give strong responses to blob-like
or corner-like image structures, which can be detected by
interest point detectors.

Beyond such pointwise or regionwise responses over time,
as described above, temporal derivatives can also be inter-
preted and used densely, for every time moment, and, for
example, be combined according to a local Taylor expansion
around any temporal moment t0:

L(t0 + Δt; τ) = L(t0; τ) + Δt Lt (t0; τ)

+ (Δt)2

2
Ltt (t0; τ) + O((Δt)3), (56)

to characterize the local temporal structures in the temporal
signal at any scale τ . Such a representation involving tem-
poral derivatives up to order N is referred to as a temporal
N -jet representation.

A practical complication that, however, arises, when com-
puting temporal derivatives at multiple scales concerns how
to compare the responses between different levels of scale.
Due to the temporal smoothing operation, the amplitude of
the temporal derivatives can be expected to decrease mono-
tonically with increasing amount of temporal smoothing,
provided that the temporal smoothing operation is suffi-
ciently well-designed. This does, for example, hold for
temporal smoothing with the truncated exponential kernels,
which arise as the only possible temporal smoothing prim-
itives in the time-causal scale-space kernels, including the
time-causal limit kernel.

In this section, we will describe a way to reduce the prob-
lem of decreasing amplitude of temporal derivatives with
increasing values of the temporal scale parameter, by instead
using scale-normalized temporal derivatives. The intention
is that by using appropriately designed scale-normalized
derivative operators, it should be possible to judge if a tem-
poral derivative response of a certain order at a certain
temporal scale should be regarded as stronger or weaker than
a corresponding temporal derivative response at some other
temporal scale. We will also describe how temporal scale
covariance can be obtained for temporal derivative operators
that are combined with the time-causal limit kernel.

5.1 The scale-normalized derivative concept

For the non-causal Gaussian scale-space concept defined
over a purely spatial domain, and corresponding to Gaussian
smoothing at all scales, it can be shown that the canonicalway
of defining scale-normalized derivatives at different spatial
scales s is according to (Lindeberg 1998a, b, 2021a)

∂ξ = sγ /2 ∂x , (57)

where γ is a free parameter. Specifically, it can be shown
(Lindeberg 1998a, Sect. 9.1) that this notion of γ -normalized
derivatives corresponds to normalizing the m:th order Gaus-
sian derivatives gξm over N -dimensional image space to
constant L p-norms over scale

‖gξm (·; s)‖p =
⎛
⎝

∫

t∈R
|gξm (x; s)|p dt

⎞
⎠

1/p

= Gm,γ (58)

with the power p in the L p-norm depending on the scale
normalization power γ , the order of differentiation m and
the spatial dimensionality N of the signal according to

p = 1

1 + m
N (1 − γ )

, (59)

where the perfectly scale-invariant case γ = 1 corresponds
to L1-normalization for all orders m.

5.2 Scale normalization for time-causal temporal
derivatives

For temporal derivatives10 defined from the time-causal
scale-space concept corresponding to convolution with trun-

10 For notational convenience, and as is common in the field of scale-
space theory, we write derivatives with subscripts, such that Lt denotes
the first-order derivative of the scale-space representation L with respect
to time t , otherwise often written as ∂L

∂t , and Ltt denotes the second-

order derivative, which can also be written as ∂2L
∂t2

. In a corresponding
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Fig. 10 Illustration of the result of computing discrete approximations
of second-order scale-normalized temporal derivatives Lζ ζ from the
time-causal temporal scale-space representation L at different scales
(using distribution parameter c = 2 and scale normalization power
γ = 1), here for a synthetic input signal f consisting of two temporal
peaks generated as discrete approximations to time-causal limit kernels
for temporal scales τ = 16 and τ = 256 with a certain amount of
relative temporal delay to separate the responses as well as a small
amount of added white Gaussian noise. (Horizontal axes: time. Vertical
axes: Signal values)

cated exponential kernels coupled in cascade, it can be shown
to be meaningful to define time-causal scale-space deriva-
tives in a corresponding manner (Lindeberg 2016, 2017):

– By variance-based scale normalization, we define scale-
normalized temporal derivatives according to

∂ζ n = τ nγ /2 ∂tn , (60)

where τ denotes the variance of the temporal smoothing
kernel.

– By L p-norm-based scale normalization, we determine a
temporal scale normalization factor αn,γ (τ )

∂ζ n = αn,γ (τ ) ∂tn (61)

such that the L p-norm (with p determined as function
of γ according to (59)) of the corresponding composed
scale-normalized temporal derivative computation kernel
αn,γ (τ ) htn equals the L p-norm of some other reference
kernel, where we may initially take the L p-norm of the
corresponding Gaussian derivative kernels (Lindeberg
2016, Sect. 7.3)

‖αn,γ (τ ) htn (·; τ)‖p = αn,γ (τ ) ‖htn (·; τ)‖p

= ‖gξn (·; τ)‖p = Gn,γ . (62)

5.3 Scale covariance property of scale-normalized
temporal derivatives

In the special case when the temporal scale-space repre-
sentation is defined by convolution with the scale-covariant
time-causal limit kernel according to (26) and (25), it is
shown in (Lindeberg 2016, Appendix 3) that the corre-
sponding scale-normalized derivatives become truly scale
covariant under temporal scaling transformations t ′ = c j t
with scaling factors S = c j that are integer powers of the
distribution parameter c

L ′
ζ ′n (t ′; τ ′, c) = c jm(γ−1) Lζ n (t; τ, c)

= c j(1−1/p) Lζ n (t; τ, c) (63)

between matching temporal scale levels τ ′ = c2 jτ . Specif-
ically, for γ = 1 corresponding to p = 1 the magnitude
values of the scale-normalized temporal derivatives atmatch-
ing scales become fully scale invariant

L ′
ζ ′n (t ′; τ ′, c) = Lζ n (t; τ, c), (64)

manner, Ltn denotes the n:th order derivative, elsewhere often written
as ∂n L

∂tn . The operator ∂tn denotes the n:th order temporal derivative
operator, such that Ltn = ∂tn L . The operator ∂ζ n does in turn denote
the n:th order scale-normalized temporal derivative operator, such that
Lζ n = ∂ζ n L .
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allowing for well-defined comparisons between the mag-
nitude values of different types of temporal structures in a
signal at different temporal scales.

5.4 A canonical class of time-causal, time-recursive
and scale-covariant temporal basis functions

The above scale covariance property implies that the scale-
normalized temporal derivatives of the time-causal limit
kernel constitute a canonical class of temporal basis func-
tions over a time-causal temporal domain.

These kernels have been used as temporal basis functions
for spatio-temporal receptive fields (Lindeberg 2016, 2021b;
Jansson and Lindeberg 2018) and for expressing methods for
temporal scale selection (Lindeberg2017, 2018b) and spatio-
temporal scale selection (Lindeberg 2018a, b) that detect and
compare temporal structures at different temporal scales in a
completely scale-invariant manner.

In this treatment, we additionally propose to use this
family of temporal basis functions to model the temporal
variability of neurons over multiple scales (Sect. 7.3) and
specifically the temporal variability in computational mod-
els of auditory receptive fields (Sect. 7.2).

5.5 Discrete approximations of scale-normalized
temporal scale-space derivatives

For the discrete temporal scale-space concept over dis-
crete time described in Sect. 4.2, discrete approximations
of temporal derivatives are obtained by applying temporal
difference operators

δt = (−1,+1), δt t = (1,−2, 1) (65)

to the discrete temporal scale-space representation at any
temporal scale, which in turn is constructed from a cascade
of first-order recursive filters of the form (53), with the time
constants μk given by (55) from the differences in temporal
scale levels Δτk = τk − τk−1 with τk according to (12).

Scale normalization factors for discrete l p-normalization
are then defined in an analogous way as for continuous sig-
nals, (60) or (61), with the only difference that the continuous
L p-norm is replaced by a discrete l p-norm.

5.5.1 Experimental results

Figure 10 shows an illustration of computing discrete approx-
imations of second-order scale-normalized temporal deriva-
tives in this way,11 for a synthetic input signal consisting of

11 Here, using distribution parameter c = 2 for the time-causal limit
kernel and scale normalization power γ = 1 for the scale-normalized
temporal derivative operator.

two temporal peaks generated from discrete approximations
of the time-causal limit kernel for τ = 16 and τ = 256,
respectively, and with some amount of relative temporal
delay to separate the responses as well as a small amount
of added white Gaussian noise.

Observe how the dominant responses to the finer-scale
structures in the input signal are obtained at finer levels of
scale in the temporal scale-space representation, whereas
the dominant responses to the coarser-scale structures in the
input signal are obtained at coarser levels of scale in the tem-
poral scale-space.

Do also observe how the responses at coarser temporal
scales are associated with longer temporal delays, mani-
festing themselves as temporal peaks corresponding to the
underlying signal structures appearing at later time moments
at coarser levels of scale.

Do furthermore note that the range of values on the
vertical axis in these graphs is the same for all the scale
values, demonstrating the ability to make relative compar-
isons between the magnitudes of the derivative responses at
different scales, due to the notion of scale normalization of
the temporal derivatives, here with regard to the l1-norm.

6 Relations to wavelet analysis and
time-frequency analysis

For analyzing temporal signals at multiple temporal scales,
wavelet analysis (Grossmann andMorlet 1984; Mallat 1989,
1999; Heil andWalnut 1989;Meyer 1992; Daubechies 1992;
Chui 1992; Rioul and Duhamel 1992; Graps 1995; Deb-
nath and Shah 2002) and time-frequency analysis (Gabor
1946; Cohen 1995; Feichtinger and Strohmer 1998; Qian
and Chen 1999; Gröchenig 2001; Flandrin 2018) constitute
two other main classes of conceptual tools. In this treatment,
we do, however, not follow those notions as prototype mod-
els, instead adhering to the scale-space paradigm because
of its special properties. Nevertheless, the presented tempo-
ral scale-space theory can be related to wavelet analysis and
time-frequency analysis in the following ways:

6.1 Relations to wavelet analysis

By construction, the temporal derivatives of the time-causal
limit kernel Ψ (t; τ, c) defined from (25) have integral equal
to zero

∞∫

t=−∞
(∂tnΨ )(t; τ, c) dt = 0. (66)

In this respect, the temporal derivatives of the time-causal
kernel, complemented by normalization with respect to a
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suitably chosen norm, can serve12 as a mother wavelet over
a continuous time-causal temporal domain,

W (t; τ, c) = (∂tnΨ )(t; τ, c)

‖(∂tnΨ )(t; τ, c)‖ , (67)

in a similar way as Gaussian derivative kernels of a certain
order

W (t; σ) = (∂tn g)(t; σ)

‖(∂tn g)(t; σ)‖ with

g(t; σ) = 1√
2πσ

e−t2/2σ 2
, (68)

such as the Mexican hat wavelet (Marr 1976, 1982), also
known as a Ricker wavelet (Ricker 1944; Hosken 1988), and
corresponding to the second-order derivative of theGaussian,
can serve as a mother wavelet over a continuous non-causal
temporal domain.

In wavelet analysis, one usually normalizes both the
mother wavelet and the child wavelets to unit L2-norm, lead-
ing to translated and rescaled child wavelets of the form

ψa,b(t) = 1√
a
W

(
t − b

a

)
. (69)

In scale-space theory, the most common way of normalizing
the Gaussian derivative kernels as well as temporal deriva-
tives of the time-causal limit kernel is to constant L1-norm
over scales (and corresponding to scale-normalized deriva-
tives for γ = 1 according to Sect. 5.1), although other scale
normalizations, including L2-normalization, are also possi-
ble, as further described in Sect. 5.1. Such L1-normalization
then leads to translated and rescaled child wavelets of the
form

ψa,b(t) = 1

a
W

(
t − b

a

)
. (70)

In the following, we will describe how the corresponding
wavelet representations obtainedmymapping a signal f onto
the child wavelets can be computed if the mother wavelet
is chosen as a temporal derivative of the time-causal limit
kernel.

12 Additionally, one usually states a requirement that the wavelet func-
tion should decrease sufficiently fast at the tails, such that

∫ ∞
t=−∞(1 +

|t |α)|∂tnΨ | dt < ∞ for some α > 0. As will be shown later, for the
temporal derivatives of the time-causal limit kernel, fulfilment of this
condition follows from an exponential decrease towards zero at the
infinity, see Eq. (75).

6.1.1 Handling the transformation properties of the child
wavelets within the algebra of the time-causal
temporal scale-space representation

By using the transformation properties of scale-normalized
derivatives of the time-causal scale-space representation of
the time-causal limit kernel (63), it follows that under a scal-
ing transformation of time t ′ = c j t for some integer j with c
being the distribution parameter of the time-causal limit ker-
nel, and with a corresponding transformation of the temporal
scale parameter τ ′ = c2 jτ , similar transformation proper-
ties hold for the scale-normalized temporal derivatives of the
time-causal limit kernel (let the input signal be the continuous
delta function f (t) = δ(t) in (63))

Ψ ′
ζ ′n (t ′; τ ′, c) = c jm(γ−1) Ψζ n (t; τ, c)

= c j(1−1/p) Ψζ n (t; τ, c), (71)

whereγ is the power in the temporal scale-normalizedderiva-
tive concept and p is the power in the corresponding L p-norm
that is kept constant over scale by the scale-normalized
derivatives.

This implies that if we choose the mother wavelet as a
temporal derivative of the time-causal limit kernel according
to (67), then the temporal scaling and translation operations
of the child wavelets in (69) and (70) can be expressed
fully within the algebra of the time-causal scale-space rep-
resentation, provided that the temporal scaling factors a are
chosen as integer powers of the distribution parameter c in
the time-causal limit kernel according to a = c j . This does
in turn imply that the result of expanding a temporal test sig-
nal onto the child wavelets can be directly extracted as the
corresponding temporal derivatives of the time-causal tem-
poral scale-space representation of the temporal test signal
at the different temporal scales, possibly complemented by
a scale-dependent scaling of the magnitude values, depend-
ing on the choice of L p-norm in the wavelet representation
and the choice of scale normalization power γ in the scale-
normalized derivative concept.

6.1.2 Finite Lp-norms for the temporal derivatives of the
time-causal limit kernel

A regularity requirement that one usually imposes onwavelet
functions is that they should be in both L1(R) and L2(R).
This property can be easily shown for the temporal deriva-
tives of the time-causal limit kernel, as follows:

Consider a partial fraction decomposition of the Laplace
transform (9) of the infinite convolution of truncated expo-
nential kernels that defines the time-causal limit kernel
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according to (25):

HΨ (q; τ, c) =
∞∏
k=1

1

1 + μkq
=

∞∑
k=1

Ak

1 + μkq
, (72)

with μk as functions of τ and c according to (13) and (14),
and where the coefficients Ak can be determined by first
multiplying both sides of the equation by (1+μkq) and then
setting q = −1/μk , leading to

Ak =
∞∏

i=1,i �=k

1

1 − μi
μk

. (73)

Interpreted over the original temporal domain, this means
that the time-causal limit kernel can be written in terms of the
following decomposition as a sum of truncated exponential
functions:

Ψ (t; τ, c) =
∞∑
k=1

Ak hexp(t; μk) =
∞∑
k=1

Ak

μk
e−t/μk (t ≥ 0).

(74)

Thus, the n:th order temporal derivative of the time-causal
limit kernel will have the following series representation:

(∂tnΨ )(t; τ, c) =
∞∑
k=1

(−1

μk

)n Ak

μk
e−t/μk (t ≥ 0). (75)

When time t tends to infinity, this function will in the limit
tend towards zero, and as fast as exponentially with respect
to he slowest time constantμ1. Since (∂tnΨ )(t; τ, c) is addi-
tionally finite for finite values of t , it follows that both the
L1- and the L2-norms of ∂tnΨ will be finite, implying that
∂tnΨ ∈ L1(R) ∩ L2(R), thus proving the result.

6.1.3 Time-causal and time-recursive wavelets for real-time
and time-critical applications

These resulting wavelets described in this section, consist-
ing of temporal derivatives of the time-causal limit kernel,
will be completely time-causal. The convolutions13 between
these wavelet kernels and a temporal measurement function
can also be computed in a completely time-recursive way,
thus eliminating the need for additional temporal buffering
and in turn allowing for minimal temporal response times in
a time-critical context. In these respects, the temporal deriva-
tives of the time-causal limit kernel may thus have interesting

13 In wavelet analysis, the expansion of a test function onto a set of
wavelet functions is usually computed in terms of inner products, cor-
responding to correlations. The reasonwhywe instead use convolutions
here is to avoid the additional step of reversing the time direction for the
temporal derivatives of the time-causal limit kernel in relation to how
they are used in the other parts of this article, in terms of convolutions.

potential use for wavelet analysis with regard to applications
that are to be performed over time-causal and time-recursive
temporal domains, such as for real-time signal analysis sys-
tems, or when modelling physical or biological systems for
which access to the relative future in relation to any time
moment is not possible.

Another type of time-causal wavelet representation has
been proposed and studied by Szu et al. (1992), based on
linear combinations of sine and cosine waves multiplied by a
truncated exponential function. In this context, the wavelets
based on temporal derivatives of the time-causal limit ker-
nel have the conceptual advantage that they are solely based
on truncated exponential kernels coupled in cascade, and can
therefore be implemented in a fully time-recursive manner.14

Additionally, with regard to the discrete implementation of
such temporal receptive fields in terms of recursive filters
coupled in cascade (according to Sect. 4.2), the computation
of wavelets based on temporal derivatives of the time-causal
limit kernel, an additional temporal scale level can be com-
puted with just the addition of a single recursive filter,
complemented with a discrete temporal difference operator
(according to Sect. 5.5).

6.2 Relations to time-frequency analysis

Ifwe combine the time-causal limit kernelΨ (t; τ, c) defined
according to (25) with pointwisemultiplication by a complex
exponential function eiωt , then we obtain a straightforward
way of defining a time-causal time-frequency representation
of a temporal signal f (t) according to

S(ω; τ, c) =
∞∫

u=0

f (t − u) Ψ (u; τ, c) eiωu du, (76)

where the complex-valued extension of the time-causal limit
kernel

χ(t, ω; τ, c) = Ψ (t; τ, c) eiωt (77)

can be seen as a time-causal analogue15 of theGabor function
(Gabor 1946), with the role of the Gaussian kernel g(t; σ)

14 In their work, Szu et al. (1992) propose optical computations to
achieve real-time performance for their time-causal wavelets, whereas
discrete approximations of the time-causal limit kernel can be expressed
in terms of recursive filters, which in turn can be implemented in real
time on standard digital signal processing hardware.
15 In this context, do specifically note that according to the classifi-
cation of continuous scale-space kernels according to Sect. 2.1, the
only possible continuous scale-space kernels are Gaussian kernels and
truncated exponential kernels coupled in cascade. The Gaussian kernel
is the canonical choice over a non-causal temporal domain, whereas
composed convolutions of truncated exponential kernels are the only
possible temporal scale-space kernels over a time-causal temporal
domain. Out of the latter family of options, the time-causal limit kernel
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Fig. 11 Graphs of the complex-valued extension χ(t, ω; τ, c) =
Ψ (t; τ, c) eiωt of the time-causal limit kernel Ψ (t; τ, c) for temporal
scale τ = 1 with distribution parameter c = 2 and different values of
the angular frequencyω. (left column) The real component, correspond-
ing to the time-causal limit kernel multiplied by a cosine wave. (right

column) The imaginary component, corresponding to the time-causal
limit kernel multiplied by a sine wave. (top row) Angular frequency
ω = 5. (bottom row) Angular frequency ω = 20. (Horizontal axes:
time. Vertical axes: kernel values)

in the Gabor function

G(t, ω; σ) = g(t; σ) eiωt = 1√
2π σ

e−t2/2σ 2
eiωt (78)

now replaced the by the time-causal limit kernel Ψ (t; τ, c)
for τ = σ 2. Figure 11 showsgraphs of a fewexamples of such
complex-valued extensions of the time-causal limit kernel for
different values of the angular frequency ω in relation to a
given temporal scale τ .

In this context, the time-causal limit kernel serves as a tem-
poral window function for computing a windowed Fourier
transform, to give better localization properties in the tem-
poral domain compared to a regular Fourier transform, and
where the window function in this case, in contrast to the
more common choice of a Gaussian window function, is
fully time-causal, to allow for real-time processing as well
as realistic modelling of real-world physical and biological

is a special choice that additionally allows for temporal scale covari-
ance over a time-causal temporal domain, in a corresponding way as
the regular Gaussian kernel allows for temporal scale covariance over
a non-causal temporal domain.

processes, where access to the relative future in relation to
any time moment is simply not possible.

6.2.1 Relations to the Gammatone filter

The complex-valued extension of the time-causal limit kernel
in (77) is specifically closely related to the Gammatone filter
(Johannesma 1972; Patterson et al. 1987, 1995; Hewitt and
Meddis 1994) in auditory processing

γ (t) = a tn−1e−2πbt cos(2πφ t + α), (79)

with the main difference being that the truncated exponential
kernels used in this auditory filter have equal time constants,
and can thus under a convolution operation be composed
into a single monomial multiplied by the complex exponen-
tial, in analogy with Eq. (19), and thereby corresponding to
a uniform distribution of the temporal scale levels accord-
ing to Sect. 2.5, whereas the temporal scale levels in the
complex-valued extension of the time-causal limit kernel
are constructed according to a geometric distribution of the
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temporal scale levels according to Sect. 2.3, thus, in turn,
allowing for different and more rapid temporal dynamics.

Another minor difference is that the phase of the Gam-
matone filter is represented as a phase angle α of a cosine
function, whereas the phase of the complex-valued extension
of the time-causal limit kernel is represented as the phase
value of a complex exponential.

6.2.2 Relations to the Heisenberg group

The time-frequency representation defined according to (76)
has the theoretically attractive property that it is closed
under (i) translations over time, (ii) multiplicative shifts in
the frequency of periodic or repetitive temporal signals and
(iii) uniform scaling transformations of the temporal axis
with discrete scaling factors S that are integer powers of
the distribution parameter c. Hence, except for the necessary
discretization of the temporal scale parameter according to
a geometric distribution, which implies closedness over a
discrete set of scaling factors as opposed to as over a con-
tinuum, this time-frequency representation has the ability to
capture similar types of transformations of the signal as the
Gabor family, and as can be modelled by the Heisenberg
group, see (Feichtinger and Gröchenig 1992). In this way,
the complex-valued time-causal limit kernel provides a way
todefine a scale-covariant time-frequency representation also
over a time-causal temporal domain.

6.2.3 Extension to an additionally time-recursive
time-frequency transform

If one additionally wants these time-frequency representa-
tions to also be time recursive, then it is possible to modify
this construction slightly, by instead multiplying the input
signal by a set of complex exponentials and then filtering the
resulting complex-valued signal with the time-causal limit
kernel (according to Eq. 81), thus implying that this time-
frequency transform can be implemented discretely in terms
of a set of recursive filters that operate over time on the
pointwisemultiplication of the input signal with a set of com-
plex exponential functions. The difference will then be that
the phase values will have to be compensated a posteriori,
whereas the magnitude values of the corresponding spectro-
gram will be preserved. An earlier version16 of this type of
theoretical model has been successfully used for computing
auditory receptive fields (Lindeberg and Friberg 2015a, b),
as will be further described in Sect. 7.2.

16 Without taking the number of temporal scale levels K to infinity to
enable true temporal scale covariance.

7 Applications tomodelling temporal
variations in biological systems

In this section,wewill describe different application domains
of using the theory for temporal scale-space representation,
specifically the time-causal limit kernel, to model temporal
variations in biological signals.

7.1 Temporal basis functions in spatio-temporal
receptive field models

In (Lindeberg 2011, 2013a), a general model for spatio-
temporal receptive fields is derived of the form

T (x1, x2, t; s, τ ; v,Σ) = g(x1 − v1t, x2 − v2t; s,Σ)

h(t; τ) (80)

where

– x = (x1, x2)T denotes the image coordinates,
– t denotes time,
– s denotes the spatial scale,
– τ denotes the temporal scale,
– v = (v1, v2)

T denotes a local image velocity,
– Σ denotes a spatial covariance matrix determining the
spatial shape of an affine Gaussian kernel g(x; s,Σ) =

1
2πs

√
detΣ

e−xT Σ−1x/2s ,

– g(x1−v1t, x2−v2t; s,Σ) denotes a spatial affine Gaus-
sian kernel that moves with image velocity v = (v1, v2)

in space-time and
– h(t; τ) is a temporal smoothing kernel over time.

This model for zero-order spatio-temporal receptive fields
should, in turn, be complemented by spatial and temporal
differentiation to lead to spatio-temporal receptive fieldswith
positive and negative lobes that are balanced in the sense of
the integral of the filter weights being equal to zero.

In (Lindeberg 2016, 2018a, 2021b), it is described how
the time-causal limit kernel can be successfully be used as
the temporal smoothing kernel in this context, i.e., h(t; τ) =
Ψ (t; τ)withΨ defined from its Fourier transform according
to (25), and allowing for truly time-causal and time-recursive
model of spatio-temporal receptive fields, which in turn
enable provable scale covariance and scale invariance prop-
erties over the temporal domain.

By comparisons with biological visual receptive fields
measured by electrophysiological cell recordings by DeAn-
gelis et al. (1995), DeAngelis and Anzai (2004), it is shown
in (Lindeberg 2016, 2021b) that this spatio-temporal recep-
tive field model very well captures the qualitative shape of
lagged and non-lagged LGN neurons as well as simple cells
in the primary visual cortex (V1).
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7.2 Temporal basis functions in spectro-temporal
receptive field models

In (Lindeberg and Friberg 2015a, b), a theoretical frame-
work for idealized models of auditory receptive fields is
presented, based on a two-stage model consisting of time-
causal spectrograms followed by spectro-temporal receptive
fields applied on these, and which comprises covariance and
invariance properties under natural sound transformations,
such as frequency shifts and glissando transformations.

The time-causal spectrograms in this model are defined
according to

Sh(t, ω; μ) =
∞∫

t ′=−∞
hcomposed(t − t ′; μ) f (t ′) e−iωt ′ dt ′,

(81)

where the temporal integration kernel hcomposed is from the-
oretical arguments constrained to be the convolution of a set
of truncated exponential kernels coupled in cascade. Follow-
ing the arguments in this paper, and further restricting this
kernel to be a time-causal limit kernel Ψ , we can extend the
previous theoretical framework for multi-scale spectrograms
to also comprise temporal scale covariance.

In the second-stage model of spectro-temporal receptive
fields in this theory, the idealized form of auditory receptive
fields are from theoretical arguments constrained to be of the
form

A(t, ν; Σ) = ∂tα ∂νβ (g(ν − vt; s) T (t; τa)) (82)

where

– ∂tα represents a temporal derivative operator of order
α with respect to time t which could alternatively be
replaced by a glissando-adapted temporal derivative of
the form ∂t = ∂t + v ∂ν ,

– ∂νβ represents a logspectral derivative operator of order
β with respect to logarithmic frequency ν,

– T (t; τa) represents a temporal smoothing kernel with
temporal scale parameter τa , which should in the time-
causal case be a set of truncated exponential kernels
coupled in cascade,

– g(ν − vt; s) represents a Gaussian spectral smoothing
kernel over logarithmic frequencies v with logspectral
scale parameter s and v representing a glissando param-
eter making it possible to adapt the receptive fields to
variations in frequency ν′ = ν + vt over time.

By comparisonwith biological auditory receptive fieldsmea-
sured by electrophysiological cell recordings by Qiu et al.
(2003), Andoni et al. (2007), Machens et al. (2004), Elhilali

et al. (2007) and Atencio and Schreiner (2012), it is shown
in (Lindeberg and Friberg 2015a) that the idealized recep-
tive fields from this model agree qualitatively very well with
biological auditory receptive fields measured in the inferior
colliculus (ICC) and primary auditory cortex (A1) of mam-
mals.

By following the arguments regarding temporal smooth-
ing in this paper, and constraining the temporal kernel in the
above model to be a time-causal limit kernel, T (t; τa) =
Ψ (t; τa), it follows that the auditory covariance properties
in the spectro-temporal receptive fieldmodel can be extended
to also comprise temporal scale covariance.

7.3 Temporal scales in neural signals

In this section, we describe previous evidence and use of
multiple temporal scales in neural signals, with relations to
the theory for processing temporal signals at multiple scales
presented in this paper.

Concerning the use of multiple temporal scales for pro-
cessing neural signals, Goldman (2009) shows how neural
responses can be maintained by a purely feedforward mech-
anism, which thus implements a temporal memory. In his
model, a set of first-order integrators with equal time con-
stants is used. By instead using different time constants of the
first-order integrators, as used for the implementation of the
time-causal limit kernel, we can get a more compact model
for the memory buffers, requiring less wetware or compu-
tational modules, with the additional benefit that the time
constants obey a self-similar logarithmic distribution.

Tsao et al. (2018) show how temporal information in the
lateral entorhinal cortex is robustly encoded over a wide
range of temporal scales, from time scales of seconds to
hours, where specifically the brain handles multiple scales
in parallel, consistent with the underlying construction of
a multi-scale representation over the temporal domain, and
specifically using a multi-scale temporal representation as a
temporal memory. In a further study of the primate entorhi-
nal cortex, Bright et al. (2020) experimentally model time
cells in this brain area as single truncated exponentials, in
line with theoretical model in Eq. (16), although also com-
plemented with a Gaussian smoothing step that leads to the
ex-Gaussian model, and conclude that the time cells in the
entorhinal cortex use a spectrum of time constants to con-
struct a temporal record of the past in support of episodic
memory. In a study of cerebellar unipolar brush cells, Guo
et al. (2021) show that the population of neurons generates
a continuum of multi-scale temporal representations, with
essentially a logarithmic distribution of the temporal scale
levels, consistent with the distribution of temporal scale lev-
els used for the temporal scale-space representation and its
associated temporal memorymodel based on the time-causal
limit kernel.
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In their computational model, of temporal memory,
Howard and Hasselmo (2020) propose that time cells in the
hippocampus can be understood as a compressed estimate of
events as a function of the past, and that temporal context cells
in the entorhinal cortex can be understood as the (real-valued)
Laplace transform of that function, respectively, where the
Laplace transform in turn arises from the integration with
truncated exponential kernels with different time constants,
as are used as the unique primitive time-causal temporal
smoothing kernel that are guaranteed to not increase the num-
ber of local extrema or zero-crossings in the signal. Howard
(2021) gives a more general overview of mechanisms for
temporal memory, including the use of multiple first-order
temporal integrators as arising from this theory.

In an fMRI study ofmemory recall in human subjects over
large variations in the time elapsed after the event, Monsa
et al. (2020) conclude that scale-selective activity character-
izes autobiographical memory processing and may provide a
basis for understanding how the human brain processes and
integrates experiences across temporal scales in a hierarchi-
cal manner.

Holcombe (2009) gives a general overview of differ-
ent temporal scale limits in visual perception, in particular
describing adistinction into slowand fast temporal processes,
which are hypothesized to originate from neural processes
over different ranges of temporal scales. In an fMRI study
of the human ventral stream, Gauthier et al. (2012) show
that the widths of temporal integration windows increase at
higher hierarchical levels in the visual hierarchy.

Regarding the use of multiple temporal scales in auditory
perception, Atencio and Schreiner (2012) show examples
of spectro-temporal receptive fields in the primary auditory
cortex (A1) with different spectro-temporal scale charac-
teristics; broadly tuned receptive fields with short temporal
duration and narrowly tuned receptive fields with longer tem-
poral duration. Chait et al. (2015) investigate how different
temporal scales interact in speech perception and suggest
that human speech perception uses multi-time resolution
processing. Teng et al. (2016) provide evidence that the audi-
tory system extracts fine-detail acoustic information using
short temporal windows and uses long temporal windows to
abstract global acoustic patterns.Concerning the specific area
of birdsong, Gentner (2008) shows how the use of multiple
temporal scaleswithin the acoustic pattern hierarchy conveys
information about the individual identity of the singer.Osman
et al. (2018) also propose a hierarchy of temporal scales for
discriminating and classifying the temporal shapes of sound
in different auditory cortical areas.

In a wider study regarding the visual, somatosensory
and auditory cortices, Latimer et al. (2019) found that the
behaviour of the adaptive responses that they observe can
be accounted for by fixed filters that operate over multiple
time scales. By developing a method for estimating temporal

scales in neuronal dynamics, Spitmaan et al. (2020) found
that most neurons exhibited multiple temporal scales in their
response, which consistently increased from parietal to pre-
frontal and cingulate cortex. Miri et al. (2022) in turn suggest
that gaze control requires integration over distributed tempo-
ral scales.

We propose that if the aim is to build mathematical mod-
els of such neural, perceptual or memory processes, then
the mathematical theory for time-causal scale-space kernels
presented in this paper should be ideally suited for building
such models that are both time-causal and time-recursive.
Specifically, if the aim is to build such temporal models that
can handle multiple temporal scales in a way that respects
temporal scale covariance, and under an architectural setting
that corresponds to multiple primitive temporal smoothing
stages coupled in cascade, then the time-causal limit ker-
nel (described in Sect. 3.1) with its temporal derivatives
(described in Sect. 5) constitutes a canonical class of tem-
poral basis functions to be used in such models.

As a consequence of the temporal delay of such time-
causal kernels (Eqs. 10 and 39), any time-causal perceptual
process will be associated with an inherent temporal delay
(complemented with the processing time of the neural pro-
cesses that implement the corresponding computations),
implying that the representation of the present (White 2020)
will in practice be a representation of some (temporally
extended) temporal moment(s)17 in the past, unless com-
plemented with extrapolation/prediction (White 2018) over
a time period corresponding to the temporal delay(s) of the
perceptual process that lead to that percept. Still, however, a
representation of the present, with or without temporal pre-
diction implying without or with an inherent temporal delay,
will by necessity be a representation of a temporally “fuzzy”
present.

In their review of the use of multiple temporal scales in
the brain, Cavanagh et al. 2020 state that short temporal
windows facilitate adaptive responding in dynamic envi-
ronments, whereas longer temporal windows promote the
gradual integration of information across time, and specifi-
cally concerning the notion of multiple temporal scales they
conclude a heterogeneity of temporal receptive fields at the
level of single neurons within a cortical region, consistent
with the aims behind the theory for temporal scale-space
representation described in this article.

17 For a time-causal temporal filtering process that operates over mul-
tiple temporal scales, there will in general be a different temporal delay
for each temporal scale, in the sense that the temporal delay will be
shorter for temporal filtering over a short temporal scale and longer for
temporal filtering over a long temporal scale. This raises an interesting
theoretical problem concerning how tomaintain an internally consistent
representation of the time-delayed present, given that different compo-
nents in such a representationmay be associatedwith different temporal
delays.
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8 Implications of the presented theory with
regard to the philosophy of time and
perceptual agents

The subject of this paper has been to describe a theoretical
framework for handling the notions of time and tempo-
ral scales for a perceptual system or a neural system, in a
both principled and theoreticallywell-foundedmanner. Since
this subject has implications regarding how we consider the
notion of time for a perceptual agent, we will in this section
describe relations to the philosophy of time (Mölder et al.
2016; Callender 2017), which is still an open topic in the
area of philosophy.

The notion of time is something that we usually take for
granted. Still there is no fully established definition for this
concept. Already St. Augustine (354–430) stated (Outler,
transl. 1955, Book 11, page 193):

What, then, is time? If no one asks me, I know what
it is. If I wish to explain it to him who asks me, I do
not know. Yet I say with confidence that I know that if
nothing passed away, there would be no past time; and
if nothing were still coming, there would be no future
time; and if there were nothing at all, there would be
no present time.
According to Newtonian or Galilean space-time, we can

treat time as flowing continuously and define a universally
valid notion of global time. According to Einstein’s relativity
theory (1905, 1916), different observers can measure time
differently, being affected by the relative velocity between
the observers. Thus, measurement of time is a local prop-
erty (attached to the path that an observer or a clock follows
in space-time), and (at very high relative velocities) differ-
ent observers may not even be able to agree on the temporal
ordering between different temporal events in the world. 18,

18 To understand how relative temporal ordering can be different for
two observer with different relative velocities, consider two observers
Alice and Bob in relation to a moving train with constant velocity. Alice
is in a waggon of the train, whereas Bob is standing on the ground out-
side. Let us assume that Alice is positioned in themiddle of the waggon,
and uses a special flashlight to emit two photons simultaneously from
exactly the middle of the waggon, one photon is emitted in the forward
direction of the train and the other one is emitted in the backward direc-
tion. Since light always travels at the speed of light in relation to any
Galilean frame according to Einstein, the two photons in the forward
direction and the backward direction will hit the walls in the forward
and the backward directions of the train simultaneously, from the view-
point of Alice. From the viewpoint of Bob, the situation will, however,
be different. Since the train moves in the forward direction, the photon
emitted in forward direction will have to travel a longer distance from
the temporal moment of emission to the temporal moment of arrival
than the photon emitted in the backward direction, since the train is
moving and changing the positions of the walls during the time it takes
for the light to travel between the two positions. Therefore, the photon
emitted in the forward direction will hit the wall in the forward direc-
tion after the photon emitted in the backward direction hits the wall
in the backward direction. Thus, because of the way that space-time is
transformed by high velocities, Alice and Bob will arrive at different
conclusions regarding the relative temporal ordering of the two events.

19, 20 This treatment deals with the handling of time for a
single perceptual agent that observes a dynamic world using
time-causal receptive fields as temporal primitives in its per-
ceptual system.

Originating from a paper by McTaggart (1908), there
are two main theories regarding time in the area of phi-
losophy: According to the A-theory, A-series events are
ordered by which are present, which are past, and which
are future (tensed propositions), whereas according to B-
theory, B-series events are ordered by which come before
and which come after (tenseless propositions) (Zalta (ed.),
Stanford Encyclopedia of Philosophy 2020). Thus, A-theory
is closer to how we perceive time as humans (and similar to
St. Augustine’s view above), whereas B-theory is closer to
how we describe temporal phenomena in physical theories
of the world.

In a treatment about the notion of temporal presence,
Power (2016) discusses how we are able to maintain a per-
ception of changes in the world in our representation of the
present. Essentially using the argument that the temporal
present is an instantaneous property (valid at a single time
moment only), while arguing that the perception of changes
requires access to properties of the world over an extended
temporal interval, he concludes that A-theory is false, since
extended temporal properties cannot exist in a representation
of the temporal presence at a single time moment.21

From the viewpoint of a temporal multi-scale analysis as
developed in this paper, where each measurement of proper-
ties in the world requires integration over a non-infinitesimal
temporal interval, it does, however, follow that anyperceptual
measurement of the world will have to be performed at some
non-infinitesimal inner temporal scale, and thus correspond
to integration over a non-infinitesimal duration over time.
From such a viewpoint there is no contradiction relative to a

19 A minor note concerning this thought experiment: If you find the
situation artificial in the respect that the two photons arrive at the two
walls exactly simultaneously from the viewpoint of Alice, you could
modify the thought experiment slightly: Move the flashlight just a tiny
bit in the forward direction, so that the photon emitted in the forward
direction arrives at the forwardwall slightly before the photon emitted in
the backward wall from the viewpoint of Alice, but not too much so that
that the photon emitted in the forward direction arrives at the forward
wall before the photon emitted in the backward direction arrives at the
backward wall from the viewpoint of Bob. Then, we have a complete
reversal of the temporal ordering of the two temporal events.
20 For a biological perceptual agent, the relativistic time corrections
that he or she may encounter due to relative velocities between two
observers who observe everyday phenomena in the world with their
own perceptual systems only will, however, be much shorter than the
inner time scales of their perceptual systems, implying that relativistic
time effects can be ignored in a treatment of how to handle the notion
of time for a perceptual agent that observes everyday phenomena.
21 The view that the present is an instantaneous property does also go
back to St. Augustine (Outler, transl. 1955, Book 11, page 194): “But
the present has no extension whatever.”
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perceptual representation of the present, since a multi-scale
representation of the present will always occur over multiple
temporal scales, and will thus have the possibility to collect
information about how properties in the world change over
time over extended temporal intervals.

Additionally, in human perception, there are dedicated
perceptual mechanisms for registering changes or motion
over time;22 compare, for example, with the illusion of the
motion after effect (Wohlgemuth 1911), implying that if you
look out of a window of a moving train for a long time, and
if the train suddenly stops, you may for a while perceive
a (physically non-existent) motion in the opposite direction.
Alternatively, youmay encounter a similar illusion if looking
at the motion of streaming water for a sufficiently long time,
and then perceive motion in the opposite direction if you
change your viewing direction to focus on a static object.
There are also static stimuli that give rise to perception of
motion (see, e.g. Conway et al. 2005).

The model for temporal multi-scale processing developed
in this paper does thus make the following assumptions con-
cerning the handling of the notion of time for a perceiving
agent: The perceptual system of the perceiving agent has a
lowest layer of biophysical sensors, which performs tempo-
ral integration of the underlying physical signal with some
shortest time constant corresponding to the smallest possible
inner temporal scale of the perceiving agent. Then, succes-
sive layers of such operations are coupled in cascade in a
hierarchical manner over that first layer, leading to a lay-
ered architecture in the perception system, with successively
longer effective time constants at higher layers corresponding
to coarser temporal scales. Each such representation in any
layer of the hierarchy operates on input information acquired
in the present, possibly complemented with access to mem-
ory buffers of the past. Thus, from the perspective of the
perceiving agent, he or she cannot have any access to the
actual physical present in the external world (“das Ding an
sich”; Kant 1783, 1902), but instead just access to a tempo-
rally blurred representation of the present, which from the
perspective of the perceiving agent is the only available rep-
resentation of the present23 (see Fig. 12).

22 In computational models of vision, such temporal changes can be
measured in a direct way, by receptive fields in terms of temporal or
spatio-temporal derivatives, in other words not by first perceiving the
underlying spatial structures at each time moment and then inferring
temporal relations as a secondary process, but in instead directly in
the sense of using specific change detectors or motion detectors that
operate directly on the spatio-temporal image structure caused by a
dynamic scene.
23 Note, however, that this notion of an inner temporal scale for any rep-
resentation of the present is, however, not the same notion as the notion
of “the specious present” in the area of philosophy and psychology of
time, a terminology forwarded by James (1890, pages 609–610), who
stated that: “In short, the practically cognized present is no knife-edge,
but a saddle-back, with a certain breadth of its own on which we sit

Fig. 12 Illustration of non-infinitesimal temporal duration of any phys-
ical measurement that arises as a consequence of a non-infinitesimal
inner temporal scale in a physical temporalmeasurement device, specif-
ically for any biological sensory or perceptual system, as well as the
nonzero temporal delay of any time-causal temporal receptive field,
which implies that the representation at any present moment will de
facto instead be a representation of what happened some amount of
time ago in the past. For the scale-covariant time-causal limit kernel
proposed as themost idealizedmodel of a temporal receptive field in this
article, the temporal delay will specifically be proportional to the tem-
poral scale measured in units of [time], thus implying longer temporal
delays at coarser temporal scales. (For a physical or biological imple-
mentation of these notions, there will also be another complementary
temporal delay, not treated further here, caused by the time it takes to
carry out the actual computations in the perceptual system.) (The verti-
cal arrow in this illustration is intended to represent the present moment.
The blue curve, in turn, reflects how different information from differ-
ent temporal moments in the past contribute to the representation of the
present at that present moment. To represent the temporal duration of
the time-causal temporal smoothing kernel, we have in this illustration
drawn the “full width half maximum” (FWHM), which is proportional
to the temporal standard deviation of the temporal scale-space kernel,
in other words proportional to the square root of the temporal scale
parameter τ )

From the representation of the (temporally blurred fuzzy)
present, the internal perceiving system of the agent may also
compute representations at coarser temporal scales, which
by the temporal delays inherent to the time-causal tempo-
ral processes will also serve as a temporal memories of the
past. The perceiving agent has no access to a video or audio
recording of the past. Instead, the only possible representa-
tion of the past is what is stored in the temporal memories of
the perceiving agent.24 Some of these memories may be of

perched, and from which we look in two directions into time. The unit
of composition of our perception of time is a duration, with a bow and
a stern, as it were—a rearward- and a forward-looking end. It is only
as parts of this duration-block that the relation of succession of one end
to the other is perceived.” A main difference between these concepts is
that the notion of an inner temporal scale will be associated with any
primitive that can be represented in the specious present, for example, in
short-term temporal buffers of the immediate past, each with a different
temporal delay.
24 Here, we disregard representations of the past that can be acquired
by other external means, such as by communication with other individ-
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a short term nature and soon be overwritten by more recent
information, while other memories may be stored for further
longer term access.

A more technical problem in relation to temporal mem-
ory concerns making estimates of the duration of a temporal
event. According to the standard methodology in physics,
one would use a clock, register the times of the beginning
and the end of the temporal event and compute the duration
from the difference between these temporal moments (a B-
series type of measurement). A biological perceiving agent
does, however, not have access to any explicit clock, and there
is no evidence for an accurate inner clock in the human brain
that a human perceiving agent could relate to for directly
measuring the duration of temporal events (Wittmann 2009).

From the viewpoint of a temporal multi-scale analysis,
it is, however, in principle possible to estimate the duration
of a temporal event by operating on representations at mul-
tiple temporal scales and comparing the relative strengths
of their responses, thus using A-type measurements in the
(time-delayed) present as opposed to quantitative B-type
temporal relations for estimating temporal duration. In (Lin-
deberg 2018a), it is shown how it is possible to define
multi-scale spatio-temporal visual operations that respond
by their strongest response over temporal scales at a tem-
poral scale corresponding to the temporal duration of the
temporal event, thus estimating the duration of a temporal
event based on measurements at a single temporal moment
only, although a very special temporal moment at which
the response assumes extrema over both time and temporal
scales. This is an extension of spatial scale selection (Lin-
deberg 1998a, 2021a), which makes it possible to estimate
spatial scales without need for explicitly laying out a ruler. 25

Due to the temporal delays of the time-causal receptive
fields that drive this perceptual engine over time, any repre-
sentation of the present will not be a representation of the
actual present moment, but instead of what had occurred at
some temporal moments (or rather temporal intervals) in the
past. Furthermore, representations at coarser temporal scales
will harbour the traces of events that occurred further in the
past compared to representations at finer scales, thus provid-
ing basic mechanisms for temporal memory buffers.

To make it possible for the perceiving agent to handle fast
occurring temporal events in a dynamic world, it is therefore
extremely valuable for a perceiving agent to be able to per-
form predictions from the time-delayed perceptual present

uals, by reading written records, by observing explicit video or audio
recordings of the past, or by finding traces in the world of past events,
as done in archeology or forensics.
25 The spatial scale selection methodology involves estimating the spa-
tial size of image structures by detecting the spatial scale levels at which
multi-scale spatial image operations assume their maxima over spatial
scales (Lindeberg 1998a, 2021a).

Fig. 13 The temporal delays of the time-causal receptivefields resulting
from the presented theory call for amechanism for performing temporal
prediction to extrapolate the de facto time-delayed representation of the
present (here represented as the temporal peak of the temporal receptive
field marked in blue) to a better representation of the actual present
(here represented by the vertical line on the time axis), to enable better
temporal dynamics for a perceptual agent that interacts with a dynamic
world. (Additionally, it is, of course, for other purposes also preferably
to also attempt to perform predictions into the actual future in relation to
any timemoment, to enable temporal planning and to compensate for the
time it will take to execute the actions called for by the perceptual agent.
The latter types of temporal predictions are, however, not assumed to
influence the representation of the present in this treatment)

to at least the actual physical present, so as to be able to
coordinate his or her actions with fast occurring temporal
phenomena (Fig. 13). Given that it will additionally take time
to plan and execute an action in practice, it is in a similar way
essential that the perceptual agent can perform predictions
into the actual future in relation to the actual present moment
when planning and executing an event. Even further predic-
tions to the future may of course also be valuable for longer
term planning, and to be able to make such longer term pre-
dictions, it is very valuable to have an explicit memory of the
past over longer temporal scales. Thus, the notion of multiple
temporal scales is also important for making predictions into
the future, for different time scales into the future.

For the brain of a perceiving agent, its ability to predict
what will happen in the future may therefore be one of the
most critical factors that determine its ability to survive and
reproduce in a competition between individuals and species
in the survival of the fittest (Darwin 1859, 2004; Spencer
1864, 2020). Minimizing the prediction error, has been pro-
posed as main principle underlying brain function (Friston
2010; McCrone 2022). It has also been argued that the sen-
sory cortex is optimized for prediction of future input (Singer
et al. 2018), and furthermore been demonstrated that it is
possible to learn the receptive fields of deep neural networks
by training the networks to predict the relative future from
pre-recorded video sequences of natural scenes (Singer et al.
2018; Kwon and Park 2019; Lotter et al. 2020). Low-level
neuronal learning mechanisms have also been proposed in
terms of predicting future activity (Luczak et al. 2022).
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To conclude, we argue that in a A-theory type treatment
of time for a perceptual agent, it is essential to complement
previous such treatments with explicit notions of (i) non-
infinitesimal temporal scales for any representations of the
present, and also to incorporate (ii) the unavoidable tempo-
ral delays of time-causal receptive fields that determine the
functional properties of perceptual systems. In a correspond-
ing manner, given the extended temporal delays of even the
fastest temporal processes in, e.g. human vision, it is essential
to complement the perceptual process with (iii) mechanisms
for temporal predictions, since otherwise the actions of the
perceiving agent will be too slow to be able to handle and
cope with rapid temporal phenomena in the environment.26,
These three notions are immediate consequences of treating
temporal perception as a consequence of a temporal mea-
surement problem, where information in physical stimuli has
to be integrated over non-infinitesimal durations over time (a
main assumption underlying the formulation of the presented
temporal scale-space theory), and making a notion such as
the instantaneous present de facto impossible for a perceptual
agent.27

Given the working hypothesis that perception has to
involve some mechanisms for temporal prediction to com-
pensate for the non-avoidable temporal delays associated
with time-causal temporal integration over non-infinitesimal
neighbourhoods over time, our conscious experience of the
present in the world, thus has to synthesize a view of the
world, created by our brain, and truly corresponding to

26 Considering, for example, the sport of playing tennis. For a pro-
fessional tennis player, the speed of the tennis ball after a serve may
be up to the order 200 km/h, corresponding to more than 50 m/s. For
among the faster temporal processes in human vision, the temporal
limit of visual judgement is of the order of 20 ms, while for among
some slower processes the limit of visual judgement is of the order of
100 ms (Holcombe 2009). Regarding spatio-temporal receptive fields
in the primary visual cortex (V1), explicit modelling of examples of
such receptive fields measured by DeAngelis et al. (1995), DeAngelis
and Anzai (2004) lead to temporal scale values in the range from 50
to 80 ms (Lindeberg 2016). The composed temporal scale level for the
entire visual hierarchy has to be longer, whereas the fastest possible
visual reaction times are of the order of 200 ms (Jain et al. 2015). Dur-
ing temporal intervals in the range 20–100 ms, the tennis ball will be
able to move by the order of 1–5 m, or during 200 ms even as far as
10 m (if we neglect the loss of speed because of the air resistance). As
a tennis player, you quickly learn that you have to fixate on the ball in
order to be able to hit it properly, which compensates for some amount
of the relative motion. Nevertheless, it seems unlikely that we would be
able to judge the position and the timing of the ball properly, unless our
conscious perception of it involves at least some component of tem-
poral extrapolation or prediction. Specifically, the process of fixating
on a rapidly moving target also needs an explicit temporal prediction
mechanism.
27 For further support of the working hypothesis that our perception
of the present likely involves essential components of prediction or
extrapolation in the forward direction of time, see Nijhawan (1994),
Nijhawan (2008), Grush (2007), Grush (2008), Changizi et al. (2008)
and White (2018).

“controlled hallucination” (Koenderink 2011; Clark 2016;
Paolucci 2021; Seth 2021). It is a “hallucination” in the sense
that the view of the present is not actually a view of how the
world is or was at the moment that it was first registered and
then passed on to further processing. It is on the other hand
“controlled” in the sense that it is grounded on biophysical
measurements of properties in the world, and processed by a
biological system that has been refined over evolution over a
very large number of generations.

Let us finally emphasize that this treatment does not make
any claim of being able to judge about the properties of time
itself, which can only be made by physical experiments, pos-
sibly complemented by theoreticalmodelling and analysis, as
done in the area of theoretical physics. Instead, the treatment
in this section concerns how the notion of time is handled by
a perceptual agent, specifically how the notion of multiple
temporal scales with their associated temporal delays have
to be considered in such a context, with a set of immediate
implications thereof.

Let us also stress that themodel used as basis for this treat-
ment is continuous in time, whereas for a biological neural
system that communicates with spikes between its neurons,
the underlying communication channels are in reality dis-
crete, however, here assumed to be operating at a temporal
scale below the inner temporal scale of the functional pro-
cesses in the perceptual system.

9 Historical developments of temporal
scale-space theory

For the reader interested in a historical overview of previous
developments of temporal scale-space theory, this section
gives an overview of some the main previous contributions
in this area that this paper is based on, follows and extends.

Koenderink (1988) pioneered the area of the temporal
scale-space representation by proposing his scale-timemodel
based on applying Gaussian smoothing over a logarithmi-
cally transformed temporal domain.

A complete classification of the general class of continu-
ous scale-space kernels was first given in (Lindeberg 1993b).
While this classification also included the truncated exponen-
tial kernels used asmain temporal primitives in this paper, the
main topic of that book was spatial computer vision, and the
specific detailed structure of time-causal scale-space kernels
was at first developed further in themore dedicated treatment
in (Lindeberg and Fagerström 1996) aimed at video process-
ing, specifically including the logarithmic distribution of the
temporal scale parameter in the set of temporal scale chan-
nels.

The topic of temporal scale selection was first addressed
in (Lindeberg 1997a), including detailed investigations of the
response properties of time-causal receptive fields over tem-
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poral scales and time, and illustrating how a closely related
temporal model based on the time-causal Poisson kernel, in
turn assuming a semi-group property over temporal scales,
can also serve as a temporal memory of the past.

In (Lindeberg 1997b, 2001) the time-causal model based
on the temporal Poisson kernel, specifically the temporal
derivatives of this kernel, was used for modelling the tempo-
ral variability in biological spatio-temporal receptive fields.
In ter Haar Romeny et al. (2001) the temporal variability
in biological spatio-temporal receptive fields was modelled
using temporal derivatives of Koenderink’s scale-time ker-
nels.

Other temporal scale-spacemodels based on a semi-group
property over temporal scales were then studied in (Fager-
ström 2005, 2007) and (Lindeberg 2011).

In (Lindeberg 2016) a substantial theoretical extension
wasmade of the temporalmodel based on truncated exponen-
tial kernels coupled in cascade, by deriving the time-causal
limit kernel, which allows for temporal scale covariance. In
(Lindeberg 2017) this model was extended to temporal scale
selection, including detailed studies of the temporal response
properties and scale selection properties for the cases of a
uniform sampling vs. a logarithmic sampling of the temporal
scale parameter. A general proof was also presented, explain-
ing how previous temporal models based on the assumption
of a semi-group property over temporal scales lead to poor
temporal dynamics, specifically undesirably long temporal
delays.

In (Lindeberg 2016) the developments of the time-causal
limit kernel were performed in the context of video pro-
cessing, and were used for deriving theoretical models of
spatio-temporal receptive fields with close relations to bio-
logical receptive fields in the lateral geniculate nucleus
(LGN) and the primary visual cortex (V1). In (Lindeberg
2018a) this theoretical framework for spatio-temporal recep-
tive fields was extended to scale-covariant spatio-temporal
feature detection with integrated spatio-temporal scale selec-
tion. In (Lindeberg 2018b) corresponding extensions were
made for dense temporal scale selection as well as dense
spatio-temporal scale selection. In (Jansson and Lindeberg
2018) a specific application to video analysis was developed
to analyze dynamic textures in a temporally scale-covariant
manner. In (Lindeberg 2021b) the same theoretical model
for spatio-temporal receptive fields based on using the time-
causal limit kernel and its temporal derivatives as temporal
basis functions was used for modelling biological vision in
an axiomatic normative theory of visual receptive fields

In (Lindeberg and Friberg 2015b, a) parallel developments
were made for auditory signals, showing how main classes
of time-frequency transforms (spectrograms) can be derived
in an axiomatic manner, as well as how auditory receptive
fields at a higher level can also be axiomatically derived with
very close similarities to biological auditory receptive fields.

Most of the previous developments of the temporal scale-
space theory relevant for the treatment in this paper have,
however, been performed with regard to visual processing,
and in the context of models for spatio-temporal receptive
fields. Some parallel developments have on the other hand
been performed with regard to auditory processing.

Anticipating that this could be a cause to problems for a
reader from a background in biology or signal processing,
who is interested in analysing or modelling purely temporal
phenomena using a corresponding theory, and wanting to get
reasonably quickly into the associated concepts, a first main
purpose of this article has therefore been to give a dedicated
and self-contained treatment that develops the relevant tem-
poral scale-space theory for the specific domain of purely
temporal signals, without having the theory intertwined with
concepts regarding spatial or frequency domains, as is the
case in the previously available literature, dealing with visual
or auditory processing.

We do additionally outline extensions of this temporal
scale-space theory to forming time-causal and time-recursive
wavelet representations as well as time-causal and scale-
covariant time-frequency representations, which do both
provide novel contributions with regard to these areas.

With regard to modelling of temporal phenomena in
biology, we develop detailed comparisons to other purely
temporal models that can be used for such purposes, includ-
ing ways of translating results from those models to models
based on the time-causal limit kernel studied in this paper.
With regard to such purposes, we do also extensively relate
to previous work on modelling temporal scales in neural
signals, for which we proposed that the presented tempo-
ral scale-space model could provide a both theoretically and
practically valuable tool. Specifically, we present a general
procedure for fitting the time-causal limit kernel to non-
negative data, without any need for making use of an explicit
expression of the time-causal limit kernel over the temporal
domain.

We do finally present implications of the presented theory
to fundamental concept formation in the area of the philos-
ophy of time and regarding non-infinitesimal inner temporal
scales for any temporal sensor measurement in a perceptual
agent, including the resulting inevitable nonzero temporal
delays implied by that, in turn implying a need for making
predictions into the real present moment, to be able to handle
rapid temporal phenomena in the environment.

10 Summary and conclusions

We have presented a theory for how temporal smoothing
of temporal signals can be performed in such a way that it
guarantees that the smoothing process does not create new
artificial structure in the signal, in the sense that the number
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of local extrema in the signal, or equivalently the number
of zero-crossings, is guaranteed to not increase from finer
to coarser temporal scales. Additional critical components
of this theory are temporal causality, implying that we are
not allowed to access information from the future in rela-
tion to any time moment, and temporal recursivity, implying
that the temporal smoothing process should not require any
other temporal memory of the past than the resulting tempo-
ral scale-space representations themselves.

A complete classification of the linear and shift-invariant
convolution kernels that obey these properties has beengiven,
based on an earlier treatment in (Lindeberg and Fagerström
1996), in turn based on earlier classical results by Schoen-
berg (1948, 1950). For continuous signals, the corresponding
temporal scale-space kernels consist of truncated exponen-
tial kernels, corresponding to first-order integrators coupled
in cascade, and for discrete signals, first-order recursive fil-
ters coupled in cascade (Sect. 2.2).

As a conceptual extension of this general approach, we
have described a specific subset of choosing these kernels
in such a way that temporal scale covariance is obtained.
The corresponding time-causal limit kernel that permits scale
covariance, which is a novel construction in (Lindeberg
2016), is the limit case of an infinite number of truncated
exponential kernels coupled in cascade, with specific choices
of the temporal time constants (Sect. 3.1).

Temporal scale covariance in this context means that if the
input signal is rescaled by some uniform temporal scaling
factor S = ci , where c is the distribution parameter of the
time-causal limit kernel and i is some integer, then the result
of performing temporal smoothing on the rescaled temporal
signal is the same as performing temporal smoothing on the
input signal, followed by a corresponding rescaling of the
processed original signal, and complemented by a shift of i
units along the scale dimension (Sect. 3.1.3).

These temporal kernels, optionally combined with their
temporal derivatives, do in this way constitute a canonical
class of temporal basis functions for numerous purposes of
temporal modelling, in situations when the temporal oper-
ations have to be time-causal and time-recursive, and in
addition have the ability to handle temporal information over
multiple temporal scales in a theoreticallywell-foundedman-
ner. With appropriate scale normalization of the temporal
derivatives, the temporal derivatives of the time-causal limit
kernel are also truly scale covariant, with preserved mag-
nitude values of temporal derivatives at matching temporal
scale levels under scaling transformations, in turn allowing
for truly scale-invariant processing under temporal scaling
transformations of the input signal (Sect. 5.3).

We have given an explicit expression for the time-causal
limit kernel in the Fourier domain (25) and although the
kernel lacks a compact closed-form expression over the tem-
poral domain, we have shown how it can be related to other

temporal models, such as Koenderink’s scale-time kernels
(Sect. 3.3) and the ex-Gaussian model, which is the con-
volution with an exponential kernel with a single truncated
exponential function (Sect. 3.4). We have also presented a
general methodology for how the parameters in a model
based on a (temporally either unshifted or time-shifted)
time-causal limit kernel can be determined from lower-order
temporal moments of some other temporal function or tem-
poral signal (Sect. 3.4.2 and Appendix A.3).

We have described how these kernels can be implemented
on discrete data, based on a set of first-order recursive filters
coupled in cascade, where also the discrete implementa-
tion guarantees that new local extrema, or equivalently new
zero-crossings, cannot be created from finer to coarser levels
of scale (Sect. 4). The discrete implementation of tempo-
ral derivatives is straightforward, in terms of small support
finite difference operators applied to the discrete tempo-
ral scale-space representation (Sect. 5.5). Thus, the discrete
implementation is highly efficient and lends itself to real-time
applications.

We propose that the presented theory, serving as a nor-
mative theory of purely temporal receptive fields, provides a
canonical way of definingmulti-scale representations of tem-
poral signals in situations where the signal operations have to
be truly time-causal, because of lack to access of future infor-
mation in real-time scenarios, and time-recursive, because
of a need to keep memory buffers of the past to a minimum
in terms of memory requirements. Specifically, we propose
that the time-causal limit kernel with its temporal deriva-
tives constitutes a canonical class of temporal basis functions
in situations when the temporal scales may vary, especially
when temporal scale covariance and temporal scale invari-
ance are desirable properties.

We have also related the theory to other approaches for
processing temporal signals at multiple temporal scales,
specifically wavelet analysis and time-frequency analysis.
We have outlined how the temporal derivatives of the
time-causal limit kernel can serve as time-causal and time-
recursivewavelet bases (Sect. 6.1) andhowa complex-valued
extension of the time-causal limit kernel can be seen as
time-causal analogue of Gabor functions, in turn enabling
truly scale-covariant time-frequency analysis also over time-
causal and time-recursive temporal domains (Sect. 6.2).

Concerning applications of the presented theory, we have
described how these time-causal kernels constitute a canon-
ical class of temporal kernels for modelling spatio-temporal
and spectro-temporal receptive fields in biological percep-
tion (Sects. 7.1–7.2). We have also given a more general
overviewof the applicability ofmultiple temporal scale levels
in perceptual, memory and cognitive processes in biological
nervous systems, as well as given arguments proposing that
the time-causal kernels treated in this paper should constitute
a corresponding canonical class of temporal kernels when
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modelling neural signals as well as more general perceptual
and temporal memory processes by explicit mathematical
models (Sect. 7.3).

Finally, we have presented general arguments for the need
for incorporating the notion of non-infinitesimal temporal
scales with their associated nonzero temporal delays when
considering a perceptual representation of the present (not
the same concept as the instantaneous actual present, which
a perceptual agent has no possible access to), which then also
leads to a direct need for temporal extrapolation or prediction
in order to compensate for the temporal delays associated
with the time-causal temporal filtering operations in a time-
causal perceptual system (Sect. 8). We propose that these
arguments should have essential implications for the logical
reasoning in A-type theories of time in the philosophy of
time, as well as when modelling perceptual agents.
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A Appendix A: Relation between the time-
causal limitkernel and theex-Gaussianmodel
used by Bright et al.

In (Bright et al. 2020, see Eqs. 2 and 3), the authors fit a
so-called ex-Gaussian model, which is the convolution of an
unnormalized Gaussian function with an unnormalized trun-
cated exponential kernel, to the temporal response functions
of neurons. With slightly different naming of the variables to
avoid notational clashes with the notation used elsewhere in
this article, let us consider a temporal response function of
the form

hex-Gauss,gen(t) = a0 + a1

∞∫

u=0

e− (t−m−u)2

2σ2 e− u
μ du, (83)

which after explicit computation of the convolution integral
in Mathematica assumes the form

hex-Gauss,gen(t)

= a0 + a1

√
π

2
σ e

2mμ−2μt+σ2

2μ2 erfc

(
mμ − μt + σ 2

√
2μσ

)
.

(84)

A.1 Second-order moment-basedmethod without
flexible temporal offset parameter

In this appendix, we will derive a relation between the above
ex-Gaussian model and a corresponding model based on the
time-causal limit kernel

hlimit-kern,gen(t) = b0 + b1 Ψ (t; τ, c), (85)

with the time-causal limit kernel Ψ (t; τ, c) in (26) defined
from its Fourier transform according to (25).

For simplicity, let us first assume that we are in range
of the parameter space of the ex-Gaussian model where the
temporal delay is small relative to the standard deviation and
the time constant μ, such that we do not need to introduce an
additional temporal delay in themodel (85) basedon the time-
causal limit kernel. Let us also assume that we can assume
that the DC levels in the two models should be equal, such
that we can throughout assume that b0 = a0. Then, our task
is to derive a mapping to compute the parameters b1, τ and c
in the model based on the time-causal limit kernel from the
parameters a1, m, σ and μ in the ex-Gaussian model.

The approach that we shall follow is to compute the zero-,
first- and second-order temporal moments of the two models
with the DC-offsets a0 and b0 suppressed

hex-Gauss(t) = a1

√
π

2
σ e

2mμ−2μt+σ2

2μ2 erfc

(
mμ − μt + σ 2

√
2μσ

)

(86)

and

hlimit-kern(t) = b1 Ψ (t; τ, c), (87)

and determine the mapping between the parameters of the
two models from the requirement that the integral, the tem-
poral mean and the temporal variance should be equal.

Computing the (uncentered) temporal moments up to
order two of the ex-Gaussian model (86) in Mathematica
gives

M0 =
∞∫

t=0

hex-Gauss(t) dt

= a1

√
π

2
μσ

(
erf

(
m√
2σ

)

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


54 Biological Cybernetics (2023) 117:21–59

+e
2mμ+σ2

2μ2 erfc

(
mμ + σ 2

√
2μσ

)
+ 1

)
, (88)

M1 =
∞∫

t=0

t hex-Gauss(t) dt

= a1

√
π

2
μσ

(
μe

2mμ+σ2

2μ2 erfc

(
mμ + σ 2

√
2μσ

)

+(m + μ)

(
− erfc

(
m√
2σ

))

+
√

2

π
σe− m2

2σ2 + 2(m + μ)

)
, (89)

M2 =
∞∫

t=0

t2 hex-Gauss(t) dt

= a1

√
π

2
μσ

(
− erfc

(
m√
2σ

) (
m2 + 2mμ + 2μ2 + σ 2)

+2μ2e
2mμ+σ2

2μ2 erfc

(
mμ + σ 2

√
2μσ

)

+2
(
m2 + 2mμ + 2μ2 + σ 2)

+
√

2

π
σ(m + 2μ)e− m2

2σ2

)
, (90)

from which we in turn obtain the temporal mean δ and the
temporal variance V according to

δ = M1

M0
, (91)

V = M2

M0
−

(
M1

M0

)2

. (92)

A.1.1Method for second-ordermoment-basedmodel fitting

Using the fact that the temporal mean and the temporal vari-
ance of the time-causal limit kernel are given by (Lindeberg
2016, Eqs. 34 and 35)

δ =
√
c + 1

c − 1

√
τ , (93)

V = τ, (94)

identifying these expressions and solving for b1, c and τ in
the model (87) based on the time-causal limit kernel gives

b1 = M0, (95)

c = δ2 + V

δ2 − V
, (96)

τ = V , (97)

which with δ and V according to (91) and (92) as well as M0,
M1 and M2 according to (88), (89) and (90) gives the desired

mapping between the ex-Gaussian model (83) and the model
(85) based on the time-causal limit kernel.

A.1.2 Experimental results

Figure 9 shows examples of ex-Gaussian temporal models
approximated by time-causal limit kernels in this way. A
conceptual advantage of the time-causal limit kernel in this
context, is that we do not need to use or modify a Gaussian
kernel to model the initial transient phenomena in a time-
causal temporal response function that decays towards zero
in an exponential manner towards the tail. In this way, a
neural response modelled by the model based time-causal
limit kernel would also correspond to a biologically plausible
implementation corresponding to temporal integration of the
form illustrated in Fig. 2.

A.2 Extension to a third-order moment-based
method involving an additional temporal offset
parameter

As a remark concerning extensions, if the ex-Gaussianmodel
is in a range of the parameter space where the temporal delay
is large relative to temporal duration of temporal onset of the
composed kernel, then an additional temporal offset t0 can
be added to the model (85) based on the time-causal limit
kernel

hlimit-kern,gen(t) = b0 + b1 Ψ (t − t0; τ, c) (98)

and an additional computation and identification of the third-
order central moments be performed to determine also this
parameter in the mapping between the two types of temporal
models.

The explicit expression for the unnormalized and uncen-
tered third-order temporal moment of the ex-Gaussianmodel
for a0 = 0 is

M3 =
∞∫

t=0

t3 hex-Gauss(t) dt

= a1

√
π

2
σ

(
μ erf

(
m√
2σ

) (
m3 + 3m2μ + 6mμ2 + 3mσ 2

+6μ3 + 3μσ 2)

+μe− m2

2σ2

⎛
⎝−6μ3e

(mμ+σ2)
2

2μ2σ2 erf

(
mμ + σ 2

√
2μσ

)

+
√

2

π
σ

(
m2 + 3mμ + 6μ2 + 2σ 2)

+e
m2

2σ2
(
m3 + 3m2μ + 6mμ2 + 3mσ 2

+6μ3 + 3μσ 2)
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Fig. 14 Comparison between (brown curves) the ex-Gaussian model
according to (40) and (blue curves) the time-causal limit kernel accord-
ing (25) approximated using the first K = 7 components of the infinite
convolution of truncated exponential kernels in cascade. (left) A model
with an unshifted time-causal limit kernel fitted using the second-
order moment-based method to an ex-Gaussian model with parameters
μ = 1, σ = 1/2, m = 2, a0 = 0 and a1 = 1 corresponding

to τ ≈ 1.25, c ≈ 1.32, b0 = 0 and b1 ≈ 1.25. (right) A model
with a time-shifted time-causal limit kernel fitted using the third-order
moment-based method to the same ex-Gaussian model with parameters
μ = 4, σ = 2, m = 2, a0 = 0 and a1 = 1 corresponding to τ ≈ 1.25,
c ≈ 1.88, t0 ≈ 0.98, b0 = 0 and b1 ≈ 1.25. (Horizontal axes: time.
Vertical axes: function values)

+6μ3e
(mμ+σ2)

2

2μ2σ2

⎞
⎠

⎞
⎠ , (99)

whereas the expression for the normalized and centered third-
order moment of the time-causal limit kernel is (Lindeberg
2016, Eq. 36)

κ3 = 2(c + 1)
√
c2 − 1 τ 3/2(

c2 + c + 1
) . (100)

Using the relationship between the centered and uncentered
third-order moments

C3 =
∞∫

t=0

(t − δ)3 h(t) dt

=
∞∫

t=0

t3 h(t) dt − 3δ
∫ ∞

t=0
t2 h(t) dt

+ 3δ2
∫ ∞

t=0
t h(t) dt − 3δ3

∫ ∞

t=0
h(t) dt

= M3 − 3M1

M0
M2 + 3M2

1

M2
0

M1 − M3
1

M3
0

M0, (101)

we obtain the following expression for the normalized and
centered third-order moment of the ex-Gaussian model

κ3 = C3

M0
= M3

M0
− 3M1M2

M2
0

+ 2M3
1

M3
0

. (102)

A.2.1 Method for third-order moment-based model fitting

To determine the parameters in the model based on the
time-shifted time-causal limit kernel (98) with the DC-offset
disregarded (b0 = 0), we can hence proceed as follows:

1. Compute the unnormalized and uncentered moments M0,
M1, M2 and M3 of the ex-Gaussian model according to
(88), (89), (90) and (101).

2. Compute the varianceV of the ex-Gaussianmodel accord-
ing to (92) and let the variance τ of the time-causal limit
kernel be equal to this value according to (94).

3. Identify the normalized and centered third-ordermoments
of the ex-Gaussian model and the model based on the
time-causal limit kernel according to (102) and (100).

4. With the third-order moment κ3 of the ex-Gaussianmodel
computed according to (102) and the variance τ of the
time-causal limit kernel according to (94), square the
expression (100) and solve the resulting fourth-order alge-
braic equation in terms of the distribution parameter c of
the time-causal limit kernel. This will give four roots for
c, out of which only two of the roots can be expected
to satisfy the original unsquared equation, because of the
squaring operation that may introduce new false roots.

5. Select28 the real root of the original Eq. (100) that addi-
tionally satisfies c > 1. Then, determine the temporal

28 The skewness measure γ1 = κ3/V 3/2 = 2(c + 1)
√
c2 − 1/(c2 +

c + 1), which is used for determining the distribution parameter c in
the model based on the time-causal limit kernel with a flexible temporal
offset t0, increasesmonotonicallywith c for c > 1 and assumes values in
the range ]0, 2[. Hence, provided that the skewness measure determined
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offset t0 of the time-shifted time-causal limit kernel in
(98) from the normalized and centered first-ordermoment
of the time-causal limit kernel

δ =
√
c + 1

c − 1

√
τ + t0, (103)

with δ identified with the normalized first-order moment
of the ex-Gaussian model according to (91).

6. Compute the amplitude b1 of the time-shifted time-causal
limit kernel in (98) according to (95).

This procedure can either be carried out purely numerically or
in a package for symbolic computation, such asMathematica.

A.2.2 Experimental results

Figure 14 shows the result of applying this procedure for fit-
ting a time-shifted time-causal limit kernel to an ex-Gaussian
model that does not obey the assumptions for fitting a model
based on the non-shifted time-causal limit kernel to it accord-
ing to the previous second-order moment-based method. In
the left figure, the result of the second-order moment-based
method is shown, demonstrating a substantial difference
because of the fixed zero offset of the original time-causal
limit kernel. The right figure shows corresponding results
for the third-order moment-based method, demonstrating a
much better agreement between the two models, when an
additional degree of flexibility is introduced into the model
based on the time-causal limit kernel by adding the temporal
offset parameter.

A.3 Fittingmodels with the time-causal limit kernel
to other functions or signals

Note that with replacement of the moments M0, M1, M2

and optionally M3 with the moments of some other non-
negative function or signal, the same overall procedures
can more generally be used for fitting models based on the
time-causal limit kernel to other one-dimensional signals or
functions that: (i) are defined for positive values of time,
(ii) assume non-negative values only, (iii) have a roughly
unimodal shape of first increasing and then decreasing and
(iv) tend to zero towards infinity. The second-order moment-
basedfitting approach is in this context intended for situations
when the temporal origin of the signal or function is known in
advance and in some sense intended to be minimal, whereas
the third-ordermoment-based fitting approach is intended for
situations when the temporal origin in the data is unknown
and hence needs to be adapted to each situation.

from κ3 and V is in this range, there will a unique real root for c that
satisfies c > 1.

B Appendix B: Implementing temporal fil-
tering with a discrete approximation of the
time-causal limit kernel

This appendix gives a brief explicit description about how
to implement temporal filtering of a sampled discrete signal
with a discrete approximation of the time-causal limit kernel.

For simplicity, assume29 that the input signal has been
sampled with a unit time increment Δt = 1. Then, given
a temporal standard deviation of the kernel σ in such units
of time, compute its variance τ = σ 2 and choose a suitable
value of the distribution parameter c > 1 that determines the
sampling density in the temporal scale direction.

1. Compute a set of temporal scale levels τk according to a
geometric distribution (12):

τk = c2(k−K )τ (1 ≤ k ≤ K ). (104)

2. Compute a corresponding set of scale increments:

Δτk = τk − τk−1 (1 ≤ k ≤ K ) (105)

with the additional definition τ0 = 0.
3. Compute the time constantsμk for a set of temporal recur-

sive filters with generating functions of the form (54)
according to (55):

μk =
√
1 + 4Δτk − 1

2
(1 ≤ k ≤ K ). (106)

4. Couple the following sets of first-order recursive filters in
cascade (53):

fout(t)− fout(t−1) = 1

1 + μk
( fin(t)− fout(t−1)). (107)

Note that, in a real-time scenario or an offline scenario
where memory efficiency is important, if the task is to
compute a single temporal scale level only, such as the
first temporal scale level in a cascade, this operation can
be performed without explicitly storing the representa-
tions at the intermediate temporal scale levels, except for
at the current and the previous temporal frames.
Furthermore, when computing multiple temporal scale
levels in parallel, the temporal scale-space representation
at the next coarser temporal scale is most efficiently com-
puted by applying a single recursive filter to the temporal
scale-space representation at the nearest finer temporal

29 If the input signal has been sampled with a frame rate r not equal to
one, then first transform the temporal standard deviation σt relative to
the original temporal axis to a standard deviation relative to a temporal
axis with unit frame rate according to σ = r σt , in analogy with (51).
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scale (if we assume a dense representation over tempo-
ral scale levels, where all the temporal scale levels are
assumed to be used in the later processing stages).

5. Optionally, compute discrete approximations of scale-
normalized temporal derivatives for some γ > 0 (where
γ = 1 is a standard default value) by applying the
following discrete derivative approximation operators
(according to Eqs. 60 and 65)

δt,norm = σγ (1,−1) δtt,norm = σ 2γ (1,−2, 1) (108)

to the temporally smoothed signal, alternatively instead
using L p-normalization according to (61) as opposed to
variance-based normalization according to (60).
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