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Abstract
Motor systems show an overall robustness, but because they are highly nonlinear, understanding how they achieve robustness
is difficult. In many rhythmic systems, robustness against perturbations involves response of both the shape and the timing
of the trajectory. This makes the study of robustness even more challenging. To understand how a motor system produces
robust behaviors in a variable environment, we consider a neuromechanical model of motor patterns in the feeding apparatus
of the marine mollusk Aplysia californica (Shaw et al. in J Comput Neurosci 38(1):25–51, 2015; Lyttle et al. in Biol Cybern
111(1):25–47, 2017). We established in (Wang et al. in SIAM J Appl Dyn Syst 20(2):701–744, 2021. https://doi.org/10.1137/
20M1344974) the tools for studying combined shape and timing responses of limit cycle systems under sustained perturbations
and here apply them to study robustness of the neuromechanical model against increased mechanical load during swallowing.
Interestingly, we discover that nonlinear biomechanical properties confer resilience by immediately increasing resistance
to applied loads. In contrast, the effect of changed sensory feedback signal is significantly delayed by the firing rates’ hard
boundary properties. Our analysis suggests that sensory feedback contributes to robustness in swallowing primarily by shifting
the timing of neural activation involved in the power stroke of the motor cycle (retraction). This effect enables the system
to generate stronger retractor muscle forces to compensate for the increased load, and hence achieve strong robustness. The
approaches that we are applying to understanding a neuromechanical model in Aplysia, and the results that we have obtained,
are likely to provide insights into the function of other motor systems that encounter changing mechanical loads and hard
boundaries, both due to mechanical and neuronal firing properties.
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1 Introduction

In many animals, motor control involves neural oscillatory
circuits that can produce rhythmic patterns of neural activity
without receiving rhythmic inputs [central pattern genera-
tors (CPGs)], force generation by muscles, and interactions
between the body and environment. Moreover, sensory
feedback from the peripheral nervous system is known to
modulate the rhythms of the electrical signals in CPGs and
thereby facilitate adaptive behavior.

Motor systems show an overall robustness, but because
they are highly nonlinear, understanding how they achieve
robustness due to their different components is difficult. To
understand how animals produce robust behavior in a vari-
able environment, Shaw et al. (2015) and Lyttle et al. (2017)
developed a neuromechanical model of triphasic motor pat-
terns to describe the feeding behavior of the marine mollusk
Aplysia californica. Like many rhythmic motor systems,
feeding inAplysia involves two distinct phases ofmovement:
a power stroke during which the musculature engages with
the substrate (the seaweed) against which it exerts a force
to advance its goal (ingestion of seaweed), and a recovery
stage during which the motor system disengages from the
substrate to reposition itself, in preparation for beginning the
next power stroke. Similarly, in legged locomotion, the stance
phase corresponds to the power stroke and the swing phase
corresponds to the recovery stage.

Also, like many rhythmic motor systems, feeding in
Aplysia involves a closed-loop system, which integrates
biomechanics and sensory feedback, and exhibits a stable
limit cycle solution. It has been conjectured that sensory
feedback plays a crucial role in creating robust behavior by
extending or truncating specific phases of the motor pattern
(Lyttle et al. 2017, §3.1). To test this hypothesis, we applied
small mechanical perturbations as well as parametric per-
turbations to the sensory feedback pathways in the coupled
neuromechanical system. It was shown in Lyttle et al. (2017)
that a sustained increase in mechanical load leads to changes
in both shape and timing of the limit cycle solution: the sys-
tem generates stronger retractor muscle force for a longer
time in response to the increased load. Qualitatively simi-
lar effects have been observed during in vivo experiments
in Aplysia (Gill and Chiel 2020). In general, we expect that
applying parametric changes to CPG-based motor systems
leads to changes in both the shape and timing of the resulting
limit cycle behavior (Fig. 1).

In Aplysia, the increased duration (timing) and increased
force (shape) have opposite effects on the task-fitness, mea-
sured as seaweed consumption per unit time. Strengthening
the retractor force pulls in more food with each cycle,
which increases fitness, whereas lengthening the cycle time
decreases fitness. Together these effects approximately can-
cel, making the system robust against increased load. This

type of “stronger-and-longer” response may occur generi-
cally in other motor systems. Thus, in this paper, we seek
to understand the roles of sensory feedback and biomechan-
ics in enhancing robustness. To this end, we apply recently
developed tools from variational analysis (Wang et al. 2021)
to quantitatively study changes in shape and timing of a limit
cycle under static perturbations.

In the first part of the present paper (cf. Sect. 2.1), we
apply the classical tools of forward variational analysis to
the model introduced by Shaw et al. (2015) and Lyttle et al.
(2017) (denoted as the Shaw–Lyttle–Gill or SLG model for
brevity) to arrive at the following insights:

– Nonlinear biomechanical properties confer resilience by
immediately increasing resistance to applied loads, on
timescales much faster than neural responses.

– The main effect of sensory feedback is to shift the timing
of retraction neural pool deactivation; in parallel, firing
rate saturation effectively censors sensory feedback dur-
ing specific movement subintervals.

While the forward-in-time variational analysis is illu-
minating and allows us to explain in detail the robustness
mechanism, it is still incomplete. Over time, the original and
perturbed cycle will become increasingly out of phase due to
the timing changes under sustained perturbations. Hence, the
shape displacements estimated from the forward variational
analysis will become less and less accurate over time. This
difficulty is not limited to models of feeding in Aplysia cali-
fornica. For example, if we were to compare the gaits of two
subjects walking on treadmills with slightly different speeds,
although the ratio of stance and swingmaybe the functionally
important aspect, this quantity is difficult to assess directly
without putting the two movements on a common footing by
comparing them using a common time scale.

Thus, in order to compare perturbed and unperturbed
motions with greater accuracy, in the remainder of the paper
(cf. Sect. 2.2 and following)we showhow to extend the local-
in-time variational analysis to a global analysis by applying
the infinitesimal shape response curve (ISRC) analysis and
local timing response curve (LTRC) analysis developed in
Wang et al. (2021). We review these methods in Sect. 3. This
time-rescaled analysis accounts for both global timing sensi-
tivity (through the infinitesimal phase response curve, IPRC),
as well as local timing sensitivity (through LTRC) by rescal-
ing time to take into account local differences in the effects
of parametric variation. It yields a more accurate and self-
consistent description of the oscillator trajectory’s changing
shape in response to parametric perturbations and helps com-
plete the picture by providing a complementary perspective.
Specifically, our time-rescaled analysis provides additional
insights, specifically that
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Fig. 1 A sustained change in parameter � in a dynamical system ẋ = F(x,�) producing a limit cycle trajectory typically causes changes in both
the timing and shape of the trajectory, which may both influence the performance S of the limit cycle system

– Increasing the applied load on the system increases the
duty cycle of the neuron pool responsible for retraction,
in the sense that the retraction neuron pool is activated for
a larger percentage of the closed phase of the cycle. (The
closed phase of the trajectory occurs while the animal’s
radula-odontophore, or grasper, is closed on the seaweed,
and encompasses the power stroke.) This effect ulti-
mately results in more seaweed being consumed, despite
increased force opposing ingestion.

– We are able to derive the multidimensional infinitesi-
mal phase response curve (IPRC) despite the presence
of nonsmooth dynamics in the system; we identify the
mechanical component of the IPRC as the one that con-
tributes most to robustness, and note that its contribution
arises from the “power stroke” segment of the motor
cycle.

– We derive an analytical expression for the robustness to
the mechanical perturbation that decomposes naturally
into a sum of two terms, one capturing the effect of the
perturbation on the shape of the trajectory, and the other
capturing the effect on the timing; this result provides
a quantitative analysis of robustness that confirms the
qualitative insights described previously in the literature.

– In addition to sensory feedback and intrinsic biomechani-
cal properties, robustness against changes in applied load
can arise from coordinated changes of multiple param-
eters such as the gain of sensory feedback and muscle
stiffness.

The dynamics of the SLG model (Lyttle et al. 2017) is
given by

da0
dt

= (a0(1 − a0 − γ a1) + μ + ε0(xr − ξ0)σ0)/τa

da1
dt

= (a1(1 − a1 − γ a2) + μ + ε1(xr − ξ1)σ1)/τa

da2
dt

= (a2(1 − a2 − γ a0) + μ + ε2(xr − ξ2)σ2)/τa

du0
dt

= ((a0 + a1)umax − u0)/τm

du1
dt

= (a2umax − u1)/τm

dxr
dt

= (Fmusc(u0, u1, xr ) + r Fsw)/br (1)

This system incorporates firing rates of three neuron popula-
tions, corresponding to the “protraction-open” (a0),
“protraction-closed” (a1), and “retraction” phase (a2). Note
that when a nerve cell ceases firing because of inhibition,
its firing rate will be held at zero until the balance of inhi-
bition and excitation allow firing activity to resume. Hence,
we supplement model (1) with three hard boundaries intro-
duced by the requirement that the firing rates a0, a1, a2 must
be nonnegative:

�0 = {a0 = 0}, �1 = {a1 = 0}, �2 = {a2 = 0}.

During the limit cycle, when a neural variable ai changes
from positive to 0, we call that the ai landing point; when it
changes from 0 to positive, we call that the ai liftoff point.
The fact that the trajectory is non-smooth at the landing and
liftoff points will play an important role in the analysis to
follow. See Sect. 4 for further discussion of the biological
basis for our modeling assumptions.

This model also consists of a simplified version of the
mechanics of the feeding apparatus: a grasper that can open
or close (xr ), a muscle that can protract the grasper to reach
the food (u0) and another muscle that can retract the grasper
to pull the food back into itsmouth (u1). The net force exerted
by the muscles is given by the sum of the two muscle forces

Fmusc(u0, u1, xr ) = Fmusc,pro + Fmusc,ret

= k0φ

(
c0−xr

w0

)
u0 + k1φ

(
c1−xr

w1

)
u1

(2)

where

φ(x) = −3
√
3

2
x(x − 1)(x + 1)

is the effective length-tension curve for muscle forces, ci ,wi

and ki denote the mechanical properties of each muscle.
Fsw represents the external force applied to the seaweed,

which can only be felt by the grasper when it is closed on
the food (a1 + a2 > 0.5), during which r = 1. When the
grasper is open (a1 + a2 ≤ 0.5), r = 0; that is, the grasper
moves independently of the seaweed. This condition leads
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to a transversal crossing boundary; that is, the open/closing
boundary given by

�o/c = {a1 + a2 = 0.5}.

Values for model parameters and initial conditions are given
in Tables 2 and 3 in Appendix. For additional details on the
biological assumptions motivating the model, see Shaw et al.
(2015) and Lyttle et al. (2017).

In this paper, we are interested in the so-called heteroclinic
mode in which the neural dynamics temporarily slow down
when the sensory feedback overcomes the endogenous neu-
ral excitation and forces the neural trajectory to slide along
the hard boundary ai = 0. Such temporary slowing down of
neural variables allows the muscles, which evolve on slower
timescales, to “catch up”; hence the seaweed can be swal-
lowed and ingested successfully. Following the terminology
fromWang et al. (2021), we call attracting periodic trajecto-
ries that experience sliding motions limit cycles with sliding
components (LCSCs).

Using classical sensitivity analysis and our recently devel-
oped tools from variational analysis (Wang et al. 2021), we
show here that biomechanics and sensory feedback coop-
eratively support strong robustness by changing the timing
and shape of the neuromechanical trajectory.While both sen-
sory feedback and biomechanics respond immediately to the
increased load, we find that the sensory feedback effect is
initially censored while the neural activity is pinned against
a hard boundary of neuronal firing. Thus the effect of the sen-
sory feedback signal is significantly delayed relative to onset
of the increased load.Our analysis suggests that sensory feed-
back mediates robustness mainly through shifting the timing
of neural activation and specifically increasing the duty cycle
of the retraction neural pool. This response allows the system
to digest more seaweed despite the increased force opposing
ingestion and hence achieve strong robustness. In addition
to uncovering the mechanisms for robust motor control, our
methods allow us to quantify analytically the robustness of
the model system to the mechanical perturbation. Finally,
although we focus on the Aplysia californica feeding system
as ourworking example, ourmethods should extend naturally
to a broad range of motor systems.

Our paper is organized as follows.We present our analysis
and main results in Sect. 2. Methods that we use to under-
stand the robustness in the Aplysia neuromechanical model
are presented and reviewed in Sect. 3. We discuss limitations
and possible extensions of our approach in Sect. 4.

2 Results

Recall that a sustained (parametric) perturbation often causes
changes in both shape and timing of the neuromechanical

trajectory solution of (1). In this paper, we adopt methods
developed in Wang et al. (2021) for analyzing the joint vari-
ation of both shape and timing of limit cycles with sliding
components under parametric perturbations.

2.1 Forward variational analysis

We begin our analysis by investigating how the shape of
the trajectory changes in response to a sustained increase in
mechanical load Fsw. To a first approximation, the change
in shape can be captured by classical sensitivity analysis
(also called forward variational analysis) which we review
in Sect. 3.

We apply a small static perturbation to system (1) by
increasing the model parameter Fsw by ε = 0.02: Fsw →
Fsw + ε, and comparing the new, perturbed limit cycle tra-
jectory γε to the original, unperturbed limit cycle trajectory
γ0, beginning at the start of the grasper-closed phase (time 0
in Fig. 2 panels A–D). That is, we plot v ≈ (γε(t)−γ0(t))/ε;
see (13)–(15) for precise definitions. Note that Fsw is mul-
tiplied by an indicator function that is only nonzero when
the trajectory is in the grasper-closed phase. Thus the per-
turbation is only present when the grasper is closed on the
food.

The neural and biomechanical components of the unper-
turbed trajectory γ (t) are shown by the solid curves in
Fig. 2A, B, respectively. The perturbed trajectories γε(t) are
indicated by the dashed lines. The gray shaded regions indi-
cate phases when the grasper in the unperturbed system is
closed. With the perturbation (increased load), the transition
from closing to opening is delayed; this transition is indi-
cated by the magenta vertical line. Figure 2C, D shows the
difference between the two trajectories per perturbation along
the neural directions and along the biomechanical direc-
tions, respectively. These curves can be approximated by the
solutions to the forward variational equation (14) defined in
Sect. 3. The muscle forces Fmusc(u0, u1, xr ) before and after
the perturbation are shown by the gray curves in Fig. 2B, and
the difference between them is included as the gray curve in
Fig. 2D.

Figure 2 yields several insights about the roles of sensory
feedback and biomechanics in robustness, which we discuss
in detail below.

2.1.1 Biomechanics confer resilience by immediately
increasing resistance to the increased load

Immediately following the perturbation of the mechanical
load,we observed a positive displacement in the grasper posi-
tion xr relative to the unperturbed trajectory (Fig. 2D, yellow
curve). This displacement simply reflects the grasper being
pulled by a stronger force Fsw + ε. If nothing other than the
applied load Fsw changes in the system, a linearized analysis
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Fig. 2 A small sustained perturbation is applied to the Aplysia model
(1) over the closing phase in which Fsw → Fsw + ε with perturbation
ε = 0.02. A, B Time series of the trajectory components for nominal
force value Fsw (solid) and perturbed force value (dashed) over two
periods, aligned at the start of the closed phase. C, D The displacement
solution, v(t), to the forward variational equation over two periods. The
gray curve in D denotes the displacement between the perturbed and
unperturbed muscle forces Fmusc, shown as the gray curves in panel B.
The yellow dashed line in panel D approximates the displacement in
xr if the net muscle force Fmusc did not change after perturbation. The

intervals during which the grasper without perturbation is closed on
the food are indicated by the shaded regions. The vertical magenta lines
indicate the times at which the grasper under perturbation switches from
closed to open. The difference in periods and the delay in the grasper
opening time both accumulate, making the comparison between the
two trajectories invalid except at short times. A, C show trajectories
and displacements along the neural directions, while B, D show trajec-
tories and displacements along the mechanical directions. The lines in
panel C (resp., D) approximate the difference between the dashed and
solid trajectories from panel A (resp., B) per perturbation

suggests that the initial displacement of xr would approxi-
mately follow the yellow dashed line given by 1

br
t (Fig. 2D).

Nonetheless, while this line gives a good initial approxima-
tion, the true displacement in xr (yellow solid curve) quickly
sags below the yellow dashed line over time. This difference
arises due to the negative displacement occurring in the mus-
cle force Fmusc(u0, u1, xr ) (Fig. 2D, gray curve) which acts
to overcome the increased load. However, early in the retrac-
tion cycle, all other variables, including themuscle activation
u0 and u1, show almost no displacement at all (see Fig. 2C,
D). This observation suggests that long before the sensory
feedback effect has time to act, the biomechanics may play
an essential role in generating robust motor behavior, by pro-
viding an immediate, short-term resistance to increased load.

Early in the retraction cycle, increasing the load stretches
both the retractor and protractor muscles, and moves them
down their length-tension curves. As a result, both forces
become weaker, but the magnitude of the protractor mus-
cle force drops more quickly than the retractor muscle force
(Fig. 3). Thus, the retractor muscle force grows relative to the
opposing protractor muscle force. This shift endows the sys-
temwith a built-in resilience, in that increasing seaweed force
opposing ingestion automatically (i.e., without changes in
neural activation) engages a larger resistingmuscle force long
before neural pools or muscles show differential activation.
This is a new insight beyond the previous “longer-stronger”
hypothesis (Shaw et al. 2015; Lyttle et al. 2017).
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Fig. 3 The time series of the perturbed (dashed) and unperturbed (solid)
protractor muscle forces Fmusc,pro (red) and retractor muscle forces
Fmusc,ret (blue) over two periods. The gray shaded regions and the
magenta lines have the same meanings as in Fig. 2

2.1.2 Sensory feedback effects are largely delayed by the
firing rate hard boundary properties

Changes in xr due to the increased load will immediately
propagate to the neural variables (a0, a1, a2) through the sen-
sory feedback εi (xr − ξi )σi )/τa , and hence should affect
the neural variables without any lag. However, no significant
displacement of the neural variables is observed until nearly
the end of the retraction cycle (Fig. 2C). In other words,
while the sensory feedback itself immediately responds to
the increased load, the effect of the changed sensory feed-
back signal is not manifest until much later in the retraction
cycle, when the protraction-open neuron pool is released
from inhibition along its hard boundary and starts to fire
(Fig. 2). Hence, the nonsmooth hard boundary conditions
on neuronal firing rates significantly delay the effect of sen-
sory feedback, and create intervals during which neurons are
insensitive to sensory feedback.

2.1.3 Sensory feedback contributes by shifting the timing of
neural activation

Due to the hard boundary effects, the displacements of the
neural variables appear near the endof the closed phase,when
the protraction-open neuron pool a0 lifts off from its hard
boundary, and the retraction-closed neuron pool a2 deacti-
vates to stop firing (Fig. 2A, C). A positive (resp., negative)
displacement of a2 (resp., a0) indicates that a2 deactivates
(resp., a0 activates) at a later time with the increased load,
and hence the retraction-closed phase is prolonged. Conse-
quently, the retraction muscle activity will increase, because
its stimulation by the retraction motor neuron is prolonged,
allowing the slow retractor muscle to generate larger forces

(Fig. 3). Similarly, we also observe a decreased protractor
muscle activity, as the protraction neuron pool a0 turns on
at a later time. This decrease leads to a stronger retractor
muscle force and a weaker protractor muscle force (Fig. 3).
Hence, a more negative net muscle force results (Fig. 2D,
gray curve), which corresponds to a stronger resisting force
pulling the seaweed towards the jaw to swallow the food.
To summarize, the main effect of sensory feedback that con-
tributes to robustness is prolonging the retraction phase to
confer on the system a resilience in that increasing seaweed
force opposing ingestion engages a larger resisting muscle
force.

Thus, sensory feedback contributes to robustness primar-
ily by shifting the timing of neural activation, as opposed
to the magnitude of neural activation. Biologically, this dis-
tinction corresponds to affecting the timing of motor neuron
burst onset or offset, rather than burst intensity.

2.2 Variational analysis with rescaled time—ISRC

Under the forward-in-time analysis, the grasper of the per-
turbed system lags behind the grasper of the unperturbed
system throughout the closing phase; yet the net seaweed
movement was measured to be greater for the perturbed sys-
tem (Lyttle et al. 2017). Fig. 4 shows an expanded view
of the perturbed and unperturbed systems’ grasper position
(Fig. 4A) and the linearized difference produced by the vari-
ational equation (Fig. 4B). As this detailed view shows, at the
time when the unperturbed system transitions from closed to
open (gray-white boundary) the unperturbed grasper position
is more retracted than the perturbed grasper position at the
coincident time point. Similarly, the grasper component of
the variational equation is positive at the gray-white bound-
ary. Furthermore, at the time when the perturbed system
transitions from closed to open (magenta line) the perturbed
system continues to be less retracted than the unperturbed
system. Thus, whether we compare the systems at the per-
turbed or unperturbed opening time, the perturbed grasper
is “further behind.” Yet the overall effect in the perturbed
system is a larger net intake of seaweed per cycle.

This apparent contradiction underscores the need to
extend theperturbation analysis beyond the standard forward-
in-time variational analysis. In particular, if one cycle is
slower than another, then while the local perturbation anal-
ysis can explain the cause-and-effect relations a short time
into the future, they cannot account for the net effect around
a cycle in a self-consistent way. Over time, the displace-
ments between the two trajectories grow, and the linearized
approximation becomes invalid except at short times (cf. Jor-
dan et al. 2007). Hence, unless time is rescaled to take into
account the difference in cycle period, comparing the com-
ponents of the original and perturbed cycles will become less
and less meaningful.
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(A)

(B)

Fig. 4 Enlarged views of Fig. 2B, D near the first transition from closed
to open. Note the displacement of xr (i.e., the xr component of v(t)
shown as the yellow solid line in B) is positive both at the end of the
closing time of the unperturbed system (see the green arrow near the
grey/white boundary) and the perturbed system (see the green arrow
near the magenta line)

To overcome this difficulty, we extend the local-in-time
variational analysis to a global analysis by rescaling time so
the unperturbed closing and opening events coincide with
those after perturbations, respectively. We do so by apply-
ing the infinitesimal shape response curve (ISRC) analysis
and the local timing response curve (LTRC) (Wang et al.
2021), which we review in Sect. 3. This method yields a
more accurate and self-consistent description of the oscillator
trajectory’s changing shape in response to parametric pertur-
bations (see Fig. 5). We show that the combination of the
ISRC and the LTRC gives a sensitivity analysis of an oscilla-
tor to sustained perturbations within any given region (e.g.,
protraction or retraction cycle, opening or closing phase) and
provides a self-contained framework for analytically quanti-
fying and understanding robustness to perturbations.

We write γ1 for the linear shift in the limit cycle shape in
response to the static perturbation Fsw → Fsw + ε, that is:

γε(τε(t)) = γ0(t) + εγ1(t) + O(ε2),

uniformly in time. Note that the time for the perturbed tra-
jectory is rescaled to be τε(t) to match the unperturbed time
points. The linear shift γ1(t) is the so-called ISRC curve
and satisfies a nonhomogeneous variational equation (see
Sect. 3). Compared with the forward variational equation,
the ISRC equation has one additional nonhomogeneous term
ν1F0(γ0(t)) that arises from the time rescaling. In this term,
ν1 is determined by the choice of time rescaling τε(t) and
F0(γ0(t)) is the unperturbed vector field evaluated along the
unperturbed limit cycle γ0(t) (see Sect. 3 for details).

Since the perturbation is applied to the seaweed, it can
only be felt by the system when the grasper is closed on the
seaweed. It is natural to expect that the segment at the closing
phase has a different timing sensitivity than the segment at
the opening phase. We hence choose to rescale time differ-
ently in the two phases, using piecewise uniform rescaling
when computing the ISRC. This leads to a piecewise ISRC
equation, where ν1 is piecewise constant. It was shown in
Wang et al. (2021) that ν1 can be estimated from the LTRC
analysis (see Sect. 3).

In Fig. 5A, B, the time traces of variables along the unper-
turbed limit cycle are shown by the solid curves, whereas the
perturbed limit cycle whose time has been rescaled to match
the unperturbed time points as described above are indicated
by the dashed curves.With the piecewise rescaling, the transi-
tions between the closing and opening events of the perturbed
andunperturbed systemsnowcoincide.The relative displace-
ments between the perturbed and unperturbed trajectories
are approximately given by the piecewise ISRC γ1 shown in
Fig. 5C, D. In contrast to the forward variational analysis,
in which the displacements grow over time, the piecewise
ISRC curve is periodic, meaning we have achieved a self-
consistent global description of the response of the limit cycle
to increased load.

We now show that the apparent contradiction that we
obtained from the forward variational analysis, i.e., that the
grasper displacement at the end of the closing phase is pos-
itive (cf. Fig.4), can now be resolved in the time-rescaled
picture. In response to the perturbation, the relative displace-
ment of the grasper position (the xr component of γ1, denoted
as γ1,xr ) initially increases (i.e., the grasper becomes more
and more protracted due to the increased load) and reaches
its peak at about t = 1.4 (see Fig. 5D, yellow curve). Then, it
starts to decrease and becomes negative at the time when the
grasper opens. This means later in the retraction cycle, the
perturbed grasper is less and less protracted than the unper-
turbed version and eventually become more retracted by the
end of the closing phase (Fig. 5D, green arrow). In sum-
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Fig. 5 Variational analysis with piecewise uniform time rescaling. The
same sustained perturbation as in Fig. 2 is applied to the Aplysiamodel
(1). A, B Time series of the perturbed (dashed) and unperturbed solu-
tions (solid). Here piecewise uniform rescaling is applied so the closing
and opening events coincide. C, D The ISRC with piecewise uniform

rescaling γ (t) over two periods. Shaded regions have the same mean-
ings as in Fig. 2. Note the xr component of the ISRC is negative at the
time of opening (see green arrow). With piecewise uniform rescaling,
the variational approximation is consistent across multiple periods (c.f.,
Fig. 2)

mary, the grasper perturbed by larger force begins “behind”
the unperturbed version, but catches up around 60% of the
way through the retraction phase (in relative time) and comes
out “ahead” by the time both graspers open, consistent with
having a larger net seaweed intake (Lyttle et al. 2017).

To understand what causes γ1,xr to be negative despite
its initial big rise, we consider the effect of the perturbation
on the neural pool through sensory feedback. In Fig. 5C, we
observe positive displacements in γ1,a2 (yellow curve) occur-
ring both when the retraction neuron pool a2 activates and
when it deactivates. These displacements indicate that with
the increased load, the retraction neuron a2 activates earlier
and turns off later relative to the unperturbed a2. In other
words, increasing the applied load on the system increases
the duty cycle of the neuron pool involved in retraction, i.e.,
the retraction neuron pool is activated for a larger percent-
age of the total cycle. As a result, the motor system recruits

a larger retractor muscle force, as indicated by the positive
displacement of the retractor muscle activation u1 during
the closing phase (Fig. 5D, red curve). A similar increase in
motor recruitment in response to increased external load has
been observed in vivo (Gill and Chiel 2020). In the model,
the stronger retraction force acts to impede the protraction
of the grasper, and eventually pulls the grasper to a more
retracted state. Thus the grasper displacement crosses zero
andbecomes negative at the end of the closing phase (Fig. 5D,
green arrow).

Note that there is no perturbation during the opening phase
(Fig. 5, white space). During this phase of the cycle, dis-
placements slowly decay and are nearly zero by the time the
grasper closes on the food again.
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Fig. 6 IPRC for the Aplysia model. Grey shaded region indicates the
period when the radula/odontophore is closed. On the bottom, the red,
yellow and blue rectangles denote the protraction-closed, retraction-
closed and protraction-open phases, respectively. The blue spike in the
IPRC in the top panel occurs when the a0 variable “lifts off” from the
a0 = 0 boundary; the red spike occurs when the a1 variable lifts off;
the liftoff point for a2 is indicated with an arrow

2.3 Timing responses to sustained perturbations of
Fsw.

2.3.1 Infinitesimal phase response curve

To understand the timing response of system (1) to increased
load, we perform an IPRC analysis. Figure 6 shows the time
traces of the IPRCcurve over one cycle.As before, the shaded
region indicates the phase when the grasper is closed.

The IPRC curves associated with biomechanical variables
are shown in Fig. 6, lower panel. In particular, the timing
sensitivity of system (1) to the increased load on the grasper
(Fsw → Fsw + ε) can be estimated using the IPRC along
the xr direction, i.e., the yellow curve in the lower panel
of Fig. 6. Since the perturbation only has effect during the
closing phase, only the portion of zxr over the shaded region
is relevant. This portion is strictly negative. Therefore, in
response to the increased load considered above, the system
undergoes phase delay, and hence the total period is pro-
longed. This finding is consistent with earlier results on the
sensory feedback effect obtained from the variational analy-
sis (see Sect. 2.2).

The linear shift in period can be estimated by evaluating
the integral

T1 := lim
ε→0

Tε − T0
ε

= −
∫ T0

0
z(t)ᵀ

∂Fε(γ0(t))

∂ε

∣∣∣
ε=0

dt,

where T0, Tε are the periods before and after perturbation
ε (see Sect. 3). For the perturbation on Fsw, the derivative
∂Fε(γ0(t))

∂ε
equals (0, 1

br
)ᵀ over the grasper-closed region, and

equals 0 during the grasper-open region, where the first 0 is
a 5× 1 zero vector and the second 0 is a 6× 1 vector. It then
follows that

T1 = −
∫

�close

zxr (t)/br dt (3)

where �close denotes the grasper-closed phase.
Other IPRC curves in Fig. 6 indicate the timing sensitivity

of the model to other perturbations and lead to several useful
insights as well as testable predictions. For example,

– The IPRC curves are continuous except at the liftoff
points (Fig. 6 top panel, blue and red spikes). While all
three neural variables go through liftoff points, there is
no large spike in za2 (yellow curve). The absence of a
yellow spike and the fact that the red spike is larger than
the blue spike, imply that the system has the highest tim-
ing sensitivity to perturbing a1 and intermediate timing
sensitivity to a0, both of which are significantly higher
than the sensitivity to a2 perturbations.

– Excitatory inputs to neural populations lead to phase
advance and hence shorten the total period, because the
IPRC curves associated with neural variables are mostly
positive (Fig. 6 top panel).

– Most of the time the system is not sensitive to neural per-
turbations, but there also exist sensitive regions when the
trajectory is not restricted to the hard boundaries (e.g.,
Fig. 6 top panel, blue and red spikes). For instance, the
system has high timing sensitivity to perturbations of
a0 late in the closing phase and to perturbations of a1
late in the opening phase, whereas sensory inputs are
largely ignored early in the opening phase. This effect is
a concrete example of differential penetrance, a striking
feature of many biological systems in which some neural
activity can vary greatly, with little effect on behavior,
whereas in other circumstances, a small change in neural
activity may have a very large impact on behavior (Chiel
et al. 1999; Beer et al. 1999; Ye et al. 2006; Cullins et al.
2015).

– Increasing the protractor muscle activation u0 causes a
phase delay early in the closing phase and late in the open-
ing phase, and a phase advance otherwise. In contrast,
increasing the retraction muscle activation u1 causes a
phase advance early in the closing phase and late in the
opening phase, and a phase delay otherwise. “Appendix
B” discusses why the system has different timing sensi-
tivities to muscle perturbations.
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Although all three neural variables go through liftoff
points, there is no large yellow spike in za2 (see Fig. 6). To
understand this, we note that before a0 (resp., a1) lifts off its
hard boundary, there exists no inhibition from other neurons
except for inhibitory sensory feedback. However, when a2
lifts off at around t ≈ 3.2, it still experiences inhibition from
a0 (see Fig. 5A). In other words, there are two inhibitory
effects pressing neurons a2 down to the hard boundary, but
only one inhibitory effect acting on the other two neuron
populations. As a result, while there is a discontinuous jump
of the IPRC curve corresponding to a2 at the liftoff point, it
remains small as the other inhibition is still present.

2.3.2 Local timing response curve

While the IPRC is a powerful tool for understanding the
global timing sensitivity of an oscillator to sustained per-
turbations, it does not give local timing sensitivities, which,
however, are needed for computing the ISRC curve as dis-
cussed above. We hence adopt the local timing response
curve (LTRC) method developed in Wang et al. (2021) and
reviewed in Sect. 3. To illustrate this method, we show the
LTRCassociatedwith the closing phase and denote it asηclose

(see Fig. 7). Although the LTRC ηclose is defined through-
out the full domain, estimating the effect of the perturbation
within the closing region only requires evaluating the LTRC
in this region. Figure 7 shows the time series of ηclose for
the model in the closing region, obtained by numerically
integrating the adjoint equation backward in time with the
initial condition of ηclose given by its value when the grasper
switches from closing to opening. Note that ηxr , the yellow
curve in Fig. 7 lower panel, remains positive over the clos-
ing phase. This implies that the increased load on seaweed
prolongs the time remaining in the closing region; that is, the
increased load prolongs the total closing time. The relative
shift in the closing time caused by the increased load can also
be estimated by integrating the LTRC (see Section 3).

In addition, Fig. 7 implies that strengthening the protractor
muscle activation u0 during the closing phase prolongs the
total closing time, whereas increasing the retraction muscle
activation u1 decreases the total closing time. Similarly, we
can compute the LTRC over other phases, such as the retrac-
tion phase, in order to estimate local timing sensitivities of
the system in other regions.

Finally we note an interesting feature in ηclose: there is an
abrupt change in ηxr at the a0 = 0 liftoff point (Fig. 7 bottom
panel, dashed vertical line). To understand this behavior, note
that an instantaneous perturbation of xr directly propagates
to neural pools through sensory feedback. While all three
neural pools are affected by this mechanical perturbation,
the neural components of ηclose are zero most of the time
except when the trajectory lifts off from the a0 = 0 constraint
(Fig. 7 top panel, blue spike). This observation implies that

Fig. 7 Time series of the LTRC ηclose over the closing phase. The
liftoff point on a0 = 0 coincides with the spike in ηa0 (blue curve,
top panel). The cusp where ηxr changes from increasing to decreasing
(intersection of yellow and vertical black dashed curves in the bottom
panel) also occurs at the liftoff point for a0

the system has a high local sensitivity to a0 during the blue
spike, whereas the sensitivity to a1 and a2 are significantly
smaller than unity at all times. Thus, to understand the effect
of perturbing xr on the local timing, it is sufficient to focus
on ηa0 and examine how a0 reacts to perturbing xr .

Similar to the forward variational analysis, perturbing xr
delays the activation of a0, i.e., a0 lifts off from a0 = 0 at
a later time. That is, the displacement in a0 near the a0 = 0
liftoff point is negative. Since ηa0 is negative near the liftoff
point, perturbing xr prolongs the total closed time (i.e., ηxr
is positive during the closed phase).

Next we address the cusp phenomena observed in ηxr
(Fig. 7, bottom panel, yellow curve). Note that perturbations
arriving before the trajectory lifts off from a0 = 0 delay the
activation of a0 by increasing the inhibition from its sensory
feedback. Moreover, the closer the time of perturbation to
the time of liftoff, the larger the delay on the activation of
a0. Such a larger delay leads to a greater increase in the total
closed time due to perturbing xr . Hence, before the liftoff
time (Fig. 7, bottom panel, vertical black dashed line), ηxr
gradually increases. Once the trajectory has passed the liftoff
point, perturbing xr delays the activation of a0 by decreas-
ing its sensory feedback, the effect of which now becomes
excitatory. The size of this effect decays exponentially as the
trajectory gradually leaves the boundary a0 = 0. Thus, there
is a cusp in the ηxr curve at the liftoff point, after which ηxr
rapidly decreases.
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2.4 Robustness to static perturbations

In this section, we show how the robustness of the Aplysia
model (1), the ability of the system to maintain its perfor-
mance despite perturbations, can be quantified using the
ISRC, IPRC and LTRC analysis.

Following Lyttle et al. (2017), we quantify the perfor-
mance or task fitness via the average seaweed intake rate

Sε = −xr ,ε
Tε

(4)

where xr ,ε is the net change in perturbed grasper position
xr ,ε during the grasper-closed phase and Tε is the perturbed
period. Note that we assume the seaweed is moving together
with the grasperwhen it is closed and notmoving at all during
the grasper-open component of the trajectory.Hence,−xr ,ε
denotes the total amount of seaweed consumed per cycle.

Since the vector field Fε(x) in system (1) is piecewise
smooth in the coordinates x and smooth in the perturbation
ε, it follows that the following expansion holds:

xr ,ε = xr ,0 + εxr ,1 + O(ε2),

where xr ,0 is the net change in the unperturbed grasper
position during the grasper-closed component of the trajec-
tory. Here,xr ,1 is approximately given by the net change of
the xr component of the ISRC γ1, which is denoted as γ1,xr
(see Sect. 2.2), over the grasper-closed phase. Suppose the
grasper closes at tclose and opens at topen over one cycle. It
follows that xr ,1 = γ1,xr (t

open) − γ1,xr (t
close).

Lyttle et al. (2017) show that the robustness, i.e., the rela-
tive shift in the taskfitness per relative change in perturbation,
for small ε, can be written as

Robustness = Fsw
ε

S(ε) − S0
S0

= Fsw

(
xr ,1
xr ,0

− T1
T0

)
+ O(ε), (5)

as ε → 0. Recall that T0 is the period of the unperturbed
limit cycle and T1 denotes the linear shift in period, which
can be estimated using the IPRC (see Sect. 2.3.1).

In summary, the robustness formula can be decomposed
into two parts, one involving changes in shape (in particular,
the grasper position xr ) and the other involving the timing
change. As discussed before, changes in shape can be esti-
mated using the ISRC and the LTRC analysis, whereas the
latter can be quantified using the IPRC. Below, we illus-
trate the quantification of the robustness by considering the
perturbation to be the increase in the constant applied load
Fsw → Fsw + ε.

The ISRCwith or without timing rescaling corresponding
to the perturbation on the applied load have already been

computed and discussed in Sects. 2.1 and 2.2.Note thatxr ,1
in (5) is the net change in the ISRC during the grasper-closed
phase. Choosing the ISRCwith rescaling based on the timing
of the closing and opening events provides a more accurate
estimate of xr ,1. Hence, we use the ISRC with piecewise
rescaling to estimate xr ,1, which is the net change in γ1,xr
over the closing region per cycle (see the yellow curve over
the shaded region in the lower right panel of Fig. 5 and the
green arrow marking the difference at the end of the closing
phase). Furthermore, the linear shift in the period T1 can be
estimated by (3) using the IPRC.

From the above analysis, we obtain xr ,1
xr ,0

≈ 0.4806 and
T1
T0

≈ 1.6532, both of which are positive and are consistent
with the concept of an adaptive “stronger and longer” change
in the motor pattern in response to increased load. It follows
that the robustness is approximately −1.1726× 10−2. (Note
that the smaller this number is in magnitude, the more robust
the system is.) To the first order in ε, the relative change in
the performance is then given by

S(ε) − S0
S0

≈ −1.1726 × 10−2(ε/Fsw),

which is illustrated by the red circle as the perturbation size
ε varies (see Fig. 8, top panel). To see what this means, we
take a data point on the line indicated by the arrow, i.e.,
(0.42,−0.005). Here ε/Fsw = 0.42 indicates a 42% increase
in load Fsw, which only causes a 0.5% decrease in the task
fitness, corresponding to a highly robust response. Here the
“stronger” effect (i.e., the first term in the robustness formula
(5) being positive) contributes to the robustness, whereas
the “longer” effect (i.e., the second term in the robustness)
reduces it. However, these two effects are not independent
from each other: it is the longer retraction-closed time that
allows the muscle to build up a stronger force, thereby con-
tributing to a robust response.

We also compute the relative change in S with respect to
ε using direct numerical simulations (see Fig. 8, blue stars),
which show good agreement with our analytical results. In
contrast, if we estimate xr ,1 using the ISRC with a uni-
form timing rescaling (see Fig. 11), the resulting estimated
robustness becomes more negative and no longer gives an
accurate approximation to the actual robustness (see Fig. 8,
bottom panel). That is, the ISRC using different rescaling
factors over the grasper-closed phase (ν1,close) versus the
grasper-open phase (ν1,open), gives a much better approx-
imation to the robustness than the ISRC based on a global
timing rescaling ν1 = T1/T0. The fact that the ν1,open/close are
obtained via the LTRC analysis highlights the contribution of
this novel analytical tool. This observation demonstrates that
for systems under certain circumstances [e.g., non-uniform
perturbation as considered in system (1)], the ISRC together
with the LTRC greatly improves the accuracy of the robust-

123



698 Biological Cybernetics (2022) 116:687–710

0 0.2 0.4 0.6 0.8 1
-0.02

-0.015

-0.01

-0.005

0

Fig. 8 Relative change in task fitness (S(ε)− S0)/S0 computed numer-
ically (blue stars) versus those obtained analytically from the ISRC and
the IPRC according to formula (5) (red circles), as the perturbation ε on
the seaweed load Fsw varies. Without perturbation, the nominal applied
load is Fsw = 0.01. The approximation using the ISRC with different
timing rescalings during the grasper-closed (ν1,close) versus grasper-
open phases (ν1,open) estimated from the LTRC analysis matches the
actual simulation (top panel), whereas the ISRC with uniform rescaling
ν1 = T1/T0 estimated from the IPRC no longer gives a good approxi-
mation (bottom panel)

ness, compared to the ISRCwith global timing analysis given
by the IPRC.

2.5 Sensitivity of robustness to other parameters

In general, the performance of motor control systems may be
affected not only by external parameters, such as an applied
load, but also be internal parameters, for instance describing
the physical properties of the biomechanics or neural con-
trollers. The variational tools used in the previous section to
understand mechanisms of robustness to increases in applied
load—the IPRC, ISRC and LTRC—can also give insights

into the effects of changing internal model parameters. For
instance, in the SLG model, appropriately varying strengths
of protractor or retractor muscles can overcome effects of
the increased mechanical load Fsw → Fsw + ε. Because of
the SLG model’s relative simplicity, we can relate many of
these changes to specific components of the fitness equation
in detail.

Below, we first consider how varying sensory feedback
strengths can help restore the reduced seaweed intake rate due
to increased applied load. Then, we examine how changing
the strengths of the protractor and retractor muscles affects
robustness to applied loads.

2.5.1 Varying sensory feedback strengths

Figure 9 shows the seaweed intake rate and robustness to the
increased load Fsw with respect to changes in sensory feed-
back strengths εi , i ∈ {0, 1, 2}. The performance S0 becomes
negative when ε0 or ε1 is relatively small (e.g., smaller than
10−5) or when ε2 is relatively big (e.g., larger than 10−3),
during which the system is in a fast limit cycle/biting mode
and hence cannot swallow seaweed.

When the system is in the heteroclinic/swallowing mode,
as one might expect, increasing the sensory feedback (e.g.,
ε2) improves the performance. Surprisingly, our results
show that increasing sensory feedback strengths to the two
protraction-related neural pools leads to opposite results by
decreasing the performance. These results seem to suggest
that to restore the deficit caused by the increased load and
achieve an increased robustness, we can either increase ε2 or
decrease ε0 and/or ε1. However, this is not true. As shown
in Fig. 9, a decrease in the robustness can be induced by
either decreasing ε0 or increasing ε2. Moreover, the robust-
ness is largely insensitive to changes in ε1, despite the fact that
it influences the performance. Understanding these effects
on the robustness would require analysis of a second-order
variational problem and represents a future direction for
understanding neuromodulation.

2.5.2 Varying muscle strengths

Next we investigate how variations of k0 and |k1|, the
strengths of the protraction and retraction muscles, affect the
robustness to changes in seaweed load.

Figure 10 shows that performance improves with the
increased protractor muscle strength k0 or the increased
retractor muscle strength |k1|. This suggests that increasing
k0 or |k1| can help restore the deficit in the performance
due to the increased mechanical load and hence boost the
robustness, which agreeswith our numerical simulations (see
Fig. 10, top panel, black curve).
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Fig. 9 Effects of varying ε0 (top row), ε1 (center row) and ε2 (bot-
tom row) on the robustness (5) to Fsw and the unperturbed seaweed
intake rate S0, when Fsw = 0.01. Blue curves: Fitness S0. Black curves:
Robustness

Recall that the robustness can be approximated as

Fsw
(

xr ,1
xr ,0

− T1
T0

)
[see Eq. (5)]. Understanding the underly-

ing mechanisms of the robustness requires one to investigate
how the two quantities involving shifts in shape and timing
change with respect to k0 or |k1| (see Fig. 10, lower three

panels). We find that increasing k0 or |k1| reduces T1 and
−xr ,1 while T0 and −xr ,0 are almost unaffected. Hence,
bothxr ,1/xr ,0 (the “stronger” effect in response to pertur-
bations on the seaweed load) and T1/T0 (the “longer” effect
) are decreased as we increase the muscle strengths. How-
ever, the reduction in the “stronger” effect is smaller than the
reduction in the “longer” effect. As a result, the robustness

approximated by Fsw
(

xr ,1
xr ,0

− T1
T0

)
increases as k0 or |k1|

increases.
Together, our analytical tools suggest ways in which coor-

dinated changes in intrinsic parameters couldmaintainfitness
and thus enhance robustness.

3 Methods

In this section, we review the classical variational theory for
limit cycles (e.g., Filippov 1988; Bernardo et al. 2008; Leine
and Nijmeijer 2013; Park et al. 2018), and new tools that we
recently developed in Wang et al. (2021) for linear approxi-
mation of the effects of small sustained perturbations on the
timing and shape of a limit cycle trajectory in both smooth
and nonsmooth systems.

In the next two sections we treat the smooth and non-
smooth cases, respectively. In each case, we consider a
one-parameter family of n-dimensional dynamical systems

dx
dt

= Fε(x), (6)

indexed by a parameter ε representing a static perturbation
of a reference system

dx
dt

= F0(x). (7)

3.1 Timing and shape responses to static
perturbations in smooth systems

Following Wang et al. (2021), we make the following
assumptions:

Assumption 1 – The vector field Fε(x) : � × I → R
n is

C1 in both the coordinates x in some open subset� ⊂ R
n

and the perturbation ε ∈ I ⊂ R, where I is an open
neighborhood of zero.

– For ε ∈ I, system (6) has a linearly asymptotically stable
limit cycle γε(t), with finite period Tε depending (at least
C1) on ε.

It follows from Assumption 1 that when ε = 0, F0(x) is
C1 in x ∈ � and the unperturbed system (7) exhibits a T0-
periodic linearly asymptotically stable limit cycle solution
γ0(t) = γ0(t + T0) with 0 < T0 < ∞.
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Fig. 10 Effects of varying muscle strengths k0 (left panels) and |k1|
(right panels) on the robustness to Fsw (top panels, black curve) and the
unperturbed seaweed intake rate S0 (top panels, blue curve). Default
parameters k0 = 1, k1 = −1 represent the strengths and directions of

protraction and retraction muscles. The second and third rows of pan-
els show the effects of muscle strengths on timing (T0, T1) and shape
(−xr ,0,−xr ,1), respectively. The bottom panels shows how T1/T0
(blue) and xr ,1/xr ,0 (red) change as muscle strengths vary

Assumption 1 also implies that the following approxima-
tions hold:

Fε(x) = F0(x) + ε
∂Fε

∂ε
(x)

∣∣∣
ε=0

+ O(ε2), (8)

Tε = T0 + εT1 + O(ε2), (9)

γε(τε(t)) = γ0(t) + εγ1(t) + O(ε2) (uniformly in t), (10)

whereT1 is the linear shift in the limit cycle period in response
to the static perturbation of size ε. This global timing sensitiv-
ity, T1, is strictly positive if increasing ε increases the period.
The perturbed time τε(t) satisfies the conditions τ0(t) ≡ t
and τε(t+T0)−τε(t) = Tε; it allows approximation (10) to be
uniform in time1 and permits us to compare perturbed and
unperturbed trajectories at corresponding time points. The
vector function γ1(t) ≡ ∂γε(τε(t))

∂ε
|ε→0 is the linear (i.e., first-

order) shift in the limit cycle shape.
The timing and shape aspects of limit cycles are comple-

mentary, and may be studied together by considering the
infinitesimal phase response curve (IPRC) and the varia-
tional analysis of the limit cycle, respectively.

Infinitesimal Phase Response Curve (IPRC) The IPRC is a
classical analytic tool thatmeasures the timing response of an
oscillator due to an infinitesimally small perturbation deliv-

1 That is, the approximation remains valid for arbitrarily long times t .
Formally, there exists a constant C > 0, independent of t , such that∣∣∣ γε(τε(t))−γ0(t)

ε
− γ1(t)

∣∣∣ < Cε as ε → 0, for all t > 0.

ered at any given point on the limit cycle. It satisfies the
adjoint equation (Schwemmer and Lewis 2012)

dz
dt

= −DF0(γ0(t))
ᵀz, (11)

with the normalization condition

F0(γ0(t)) · z(t) = 1.

The linear shift in period T1 can be calculated using the IPRC
as

T1 = −
∫ T0

0
z(t)ᵀ

∂Fε(γ0(t))

∂ε

∣∣∣
ε=0

dt . (12)

Forward Variational Equation Classical sensitivity analysis
(Wilkins et al. 2009) has been used in many applications to
study the shape sensitivity or response of an oscillator to
sustained perturbations.

The dynamics of the linear shift

v(t) ≡ lim
ε→0

(γε(t) − γ0(t))/ε (13)

at time t of the periodic orbit γε(t) due to a sustained para-
metric perturbation ε initiated at time 0 satisfies the following
forward variational equation:

dv
dt

= DF0(γ0(t))v + ∂Fε(γ0(t))

∂ε

∣∣∣
ε=0

(14)
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Fig. 11 Variational analysiswith uniform rescaling. The sameperturba-
tion as in Fig. 2 is applied to theAplysiamodel (1). Left: The ISRC γ1(t)
with a uniform rescaling over one period. Right: Time series of the dif-
ference between the perturbed and unperturbed solutions along a0-, a2-,
and xr -directions. The black curve denotes the numerical displacement
(y(t) = yε(τε(t)) − y(t)) computed by subtracting the unperturbed
solution trajectory from the perturbed trajectory, after globally rescaling

time, and aligning trajectories at the onset of closing. The red dashed
curve denotes the product of the perturbation ε and the ISRC curve. The
vertical blue dashed lines indicate the times at which the unperturbed
grasper switches from closed to open. Shaded regions and the vertical
magenta lines have the same meanings as in Fig. 2. The perturbation is
the same as in Fig. 2

with initial condition v(0) set by the difference in the per-
turbed and unperturbed trajectories at the point where they
cross the Poincaré section defined by the beginning of the
closed phase. Specifically,

v(0) = lim
ε→0

(γε(t
close
ε ) − γ0(t

close
0 ))/ε. (15)

Compared with the homogeneous variational equation,
which studies the shape sensitivity to instantaneous per-
turbations, the forward variational equation (14) contains a
non-homogeneous term arising directly from the parametric
perturbation acting on the vector field.

However, since the perturbed limit cycle has a different
period Tε and hence a different perturbed time τε due to sus-
tained perturbations, the forward variational equation which
neglects such changes in timing fails to give a valid compar-
ison between the perturbed and unperturbed trajectories for
times on the order of a full cycle or longer (see Fig. 2C, D).
Hence, we adopt a new tool developed in Wang et al. (2021),
the infinitesimal shape response curve (ISRC), which incor-
porates both the shape and timing aspects and captures amore
accurate first-order approximation to the change in shape of
the limit cycle under a parametric perturbation.

Infinitesimal Shape Response Curve (ISRC) Suppose the
rescaled perturbed time can be written as τε(t) = t/νε ∈
[0, Tε] for t ∈ [0, T0]. It follows that the relative change
in timing denoted by νε = T0/Tε can be represented as
νε = 1 − εν1 + O(ε2) where ν1 = T1

T0
.

Wang et al. (2021) denote the linear shift in the peri-
odic orbit, γ1(t) in (10), as the ISRC and adapted Lighthill’s
method of “strained coordinates” (Jordan et al. 2007) to show
it satisfies the following variational equation. An equation
similar to (16) can also be derived by simultaneously Taylor
expanding the state variable x around the limit cycle and its
frequency (Keener 2018) (see “Appendix C” for details).

dγ1(t)

dt
= DF0(γ (t))γ1(t) + ν1F0(γ (t))

+∂Fε(γ (t))

∂ε

∣∣∣
ε=0

. (16)

This equation resembles the forward variational equation
(14), but has one additional non-homogeneous term aris-
ing from time rescaling t → τε(t). In contrast to the
forward variational dynamics ∂γε(t)

∂ε
, the ISRC γ1(t) is peri-

odic with period T0 (see Fig. 11, left). To see how well the
ISRC approximates the actual linear shift between the per-
turbed and unperturbed trajectories, we plot the linear shift
approximated from the ISRC (black curve) and the actual
displacement (red dashed curve). Overall, they show good
agreement with each other except near the transition between
the grasper-closed and grasper-open phases. Such discrepan-
cies arise from the fact that the solution segment at the closing
phase has different timing sensitivity to the parametric per-
turbation comparedwith the segment at the opening phase, as
discussed before. While these small errors are nearly unno-
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ticeable (seeFig. 11, right), they expandwhen the ISRC result
is used to calculate the robustness (see Fig. 8, bottom panel).

Thus, in the case when a parametric perturbation leads to
different timing sensitivities in different regions, we use the
local timing response curve (LTRC) defined by Wang et al.
(2021) to compute shifts in timing in different regions in order
to improve the accuracy of the ISRC, as demonstrated when
considering perturbations to the load applied to the seaweed
(see Fig. 12).

Local Timing Response Curve (LTRC) The accuracy of the
ISRC in approximating the linear change in the limit cycle
shape evidently depends on its timing sensitivity, that is, the
choice of the relative change in frequency ν1. In (16), we
chose ν1 to be the relative change in the full period, by assum-
ing the limit cycle has constant timing sensitivity. It is natural
to expect that different choices of ν1 will be needed for sys-
tems with varying timing sensitivities along the limit cycle.
Tomore accurately capture timing sensitivity of such systems
to static perturbations,Wang et al. (2021) defined a local tim-
ing response curve (LTRC) which is analogous to the IPRC
but measures the linear shift in the time that the trajectory
spends within any given region. Specifically, the LTRC is
the gradient of the time remaining in a given region until
exiting it through some specified Poincaré section - a local
timing surface corresponding to the exit boundary of this
region. Such a section could be given as a boundary where
the dynamics changes between regions, or where a perturba-
tion is applied in one region but not another. For instance, in
the feeding system of Aplysia californica (Shaw et al. 2015;
Lyttle et al. 2017), the open-closed switching boundary of
the grasper defines a local timing surface.

Let ηI denote the LTRC vector for region I. Suppose that
at time t in, the trajectory γ0(t) enters region I upon crossing
the surface�in at the point xin; at time tout, γ0(t) exits region
I upon crossing the surface �out at the point xout. Similar to
the IPRC, the LTRC ηI satisfies the adjoint equation

dηI

dt
= −DF(γ (t))ᵀηI (17)

together with the boundary condition at the exit point

ηI(xout) = −nout

noutᵀF(xout)
(18)

where nout is a normal vector of �out at the unperturbed exit
point xout. The linear shift in the total time spent in region I,
T I
1 , is given by

T I
1 = ηI(xin) · ∂xinε

∂ε

∣∣∣
ε=0

+
∫ tout

t in
ηI(γ (t)) · ∂Fε(γ (t))

∂ε

∣∣∣
ε=0

dt,

(19)

where xinε denotes the coordinate of the perturbed entry point
into region I. It follows that the relative change in frequency
local to region I is given by νI1 = T I

1/(t
out − t in).

Piecewise uniform ISRC The existence of different timing
sensitivities of γ (t) in different regions therefore leads to a
piecewise-specified version of the ISRC (16) with period T0,

dγ j
1 (t)

dt
= DF j

0 (γ (t))γ j
1 (t) + ν

j
1 F

j
0 (γ (t)) + ∂F j

ε (γ (t))

∂ε

∣∣∣
ε=0

,

(20)

where γ
j
1 , F j

0 , F j
ε and ν

j
1 denote the ISRC, the unper-

turbed vector field, the perturbed vector field, and the relative
change in frequency in region j , respectively, with j ∈
{I, II, III, . . .}. Note that in a smooth system, F j

0 ≡ F0 for
all j .

As discussed before, the piecewise-specified ISRC, where
ν1 takes different values in the closing and opening phases,
nicely complements the forward variational analysis. It pro-
vides a more self-consistent global description of the shape
response of the limit cycle to themechanical perturbation (see
Fig. 5). Displacements between perturbed and unperturbed
trajectories estimated using the piecewise-specified ISRC
agree well with the actual displacements (see Fig. 12). More-
over, it yields a much better approximation to the robustness
compared with the ISRC with uniform rescaling (see Fig. 8).

3.2 Timing and shape responses to static
perturbations in nonsmooth systems

As discussed before, system (1) is a piecewise smooth system
with one transversal crossing boundary �o/c and three hard
boundaries (�0, �1, �2). The study of limit cycle motions
in such nonsmooth systems requires analytical tools beyond
the standard arsenal of phase response curves and variational
analysis, developed for systems with smooth (differentiable)
right-hand sides (Spardy et al. 2011a, b; Park et al. 2017). For
small instantaneous displacements, variational analysis has
been extended to nonsmooth dynamics with both transver-
sal crossing boundaries and hard boundaries for studying
the linearized effect on the shape of a trajectory (Filippov
1988; Bernardo et al. 2008; Leine and Nijmeijer 2013; Dieci
and Lopez 2011). Analysis in terms of infinitesimal phase
response curves (IPRC) has likewise been extended to nons-
mooth dynamics for studying the linear shift in the timing of
a trajectory following a small perturbation, provided the flow
is always transverse to any switching surfaces at which non-
smooth transitions occur (Shirasaka et al. 2017; Park et al.
2018; Chartrand et al. 2018; Wilson 2019). Recently, Wang
et al. (2021) extended the IPRC method to nonsmooth sys-
tems with hard boundaries.
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Fig. 12 Displacements between perturbed and unperturbed trajecto-
ries estimated from the ISRC γ1 with piecewise uniform rescaling
(red dashed, εγ1) agree well with the actual displacement y(t) =

yε(τε(t))−y(t)where y = {a0, a1, a2, u0, u1, xr } (solid black). Shaded
regions, vertical magenta and blue lines have the same meanings as in
Fig. 11. The perturbation is the same as in Fig. 2

In nonsmooth systems with degree of smoothness one or
higher (i.e., Filippov systems), the right-hand-side changes
discontinuously as one or more switching surfaces are
crossed. A trajectory reaching a switching surface or bound-
ary has two behaviors: it may cross the boundary transver-
sally or it may slide along it. Hence, there are two types
of boundary crossing points: transversal crossing points, at
which the trajectory crosses a boundary with finite velocity
in the direction normal to the boundary, and non-transversal
crossing points including the landing point at which a slid-
ing motion along a switching boundary begins, and the liftoff
point at which the sliding terminates. The time evolutions
of the solutions to the variational equation (i.e., the forward
variational dynamics and the ISRC) and the solutions to the
adjoint equation (i.e., the IPRC and the LTRC) may experi-
ence discontinuities at a boundary crossing point (Filippov
1988; Bernardo et al. 2008; Leine and Nijmeijer 2013; Park
et al. 2018; Wang et al. 2021).

The discontinuity in the variational dynamics when a tra-
jectory meets a boundary crossing point xp at crossing time
tp can be expressed with the saltation matrix Sp (see Table
1):

v+
p = Sp v−

p

where v(t) denotes the solution of the forward variational
equation or the ISRC, v−

p = limt→t−p v(t) and v+
p =

limt→t+p v(t) represent the solution just before and just after
the crossing, respectively.

The discontinuity in z(t), the solution to the adjoint equa-
tion, at a boundary crossing point xp may be expressed with
the forward jump matrix (Jp)

z+
p = Jpz−

p (21)

where z−
p = limt→t−p z(t) and z+

p = limt→t+p z(t) are the
IPRC or the LTRC just before and just after crossing the
switching boundary at time tp in forwards time. However,
Wang et al. (2021) showed that the jump matrix is not well
defined at a liftoff point and hence introduced a time-reversed
version of the jumpmatrix, denoted asJp , defined as follows:

z−
p = Jpz+

p (22)

Table 1 summarizes the saltation and jump matrices at dif-
ferent types of boundary crossing points.

3.3 Simulation codes

Simulation codes written in Matlab are available at https://
github.com/yangyang-wang/AplysiaModel.

4 Discussion

Overview Motor systems are robust—they maintain their
performance despite perturbations. Understanding themech-
anisms of robustness is important but challenging. To unravel
the contributions of different components of robustness, we
adopted tools we established in Wang et al. (2021) and
reviewed in the methods section (Sect. 3) for studying com-
bined shape and timing responses of both continuous and
nonsmooth limit cycle systems under small sustained pertur-
bations.Weapplied these tools to understand themechanisms
of robustness in a neuromechanical model of triphasic motor
patterns in the feeding apparatus of Aplysia developed in
Shaw et al. (2015) and Lyttle et al. (2017). We show in the
results section (Sect. 2) that this framework lets us analyze
how a small sustained perturbation alters the shape and tim-
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Table 1 Saltation matrices and jump matrices at boundary crossing points in Filippov systems (Filippov 1988; Bernardo et al. 2008; Leine and
Nijmeijer 2013; Park et al. 2018; Wang et al. 2021)

Landing point Transversal crossing point Liftoff point

Variational dynamics Sp = I − n pn
ᵀ
p Sp = I + (F+

p −F−
p )n pT

n pT F
−
p

Sp = I

IPRC & LTRC (forward time) Jp = I Jp = (S−1
p )ᵀ Jp is undefined

IPRC & LTRC (time-reversed) Jp = I Jp = J−1
p Jp = I − n pn

ᵀ
p

In the table, Sp , Jp and Jp denote the saltation matrix, the jump matrix, and the time-reversed jump matrix at some boundary crossing point
xp = x(tp), respectively. F−

p = limx→x−
p
F(x) and F+

p = limx→x+
p
F(x) denote the vector fields of the nonsmooth system just before and just

after the crossing at xp , I denotes the identity matrix, n p denotes the unit normal vector of the crossing boundary at xp

ing of a closed loop system, and thus we began to describe
how the neural and biomechanical components interact to
contribute to robustness.

The first perturbation we considered was a sustained
increase in mechanical load (Fsw → Fsw + ε). To our
surprise, we discovered that long before sensory feedback
affected the system, biomechanics played an essential role in
robustness by producing an immediate force increase to resist
the applied load (Figs. 2, 3 and 4). Furthermore, although the
sensory feedback immediately responded to the perturbation,
its effect was delayed by the hard boundary properties of the
neural firing rates. Our analysis suggests that sensory feed-
back contributes to the robustness primarily by shifting the
timing of neural activation as opposed to changing neuronal
firing rate amplitude (Figs. 5, 6 and 7). Our methods can
also be readily used to quantify how changes in timing and
shape of trajectory affect the robustness (Fig. 8). We find that
sensory feedback and biomechanics contribute to the robust-
ness of the system by generating a stronger retractor muscle
force build-up during the prolonged retraction-closed phase
that resists the increased load. The increased retractor mus-
cle force ultimately leads to more seaweed being consumed
during the slightly longer cycle time despite the large oppos-
ing forces, thereby contributing to a robust response. These
new insights have refined and expanded a previous hypothe-
sis that sensory feedback is the major mechanism that plays
a crucial role in creating robust behavior (Lyttle et al. 2017).

Robustness is sensitive to other model parameters. For
example, in Sect. 2.5 we investigated how varying internal
parameters such as strengths of sensory feedback andmuscle
activity can help restore the performance that was reduced
by an increased applied load (Figs. 9 and 10). Again, we
obtained some non-intuitive results. For example, increas-
ing the sensory feedback strength can reduce the robustness
rather than improving it (Fig. 9). Moreover, increasing sen-
sory feedback gain has opposite effects on performance and
robustness, whereas increasing the protractor or retractor
muscle strength improves both performance and robust-
ness. Understanding sensitivities of performance to mixed
parameters requires us to go beyond our existing methods.

This second-order sensitivity represents an interesting future
direction for understanding neuromodulation - the coordi-
nated change of multiple system parameters in order to most
effectively counter the effect of an external perturbation
(Cropper et al. 2018). There are multiple pathways for neu-
romodulation, and the simplicity of the model lends itself to
detailed analysis of multifactor sensitivities. In future work,
we may apply the variational tools used in the present paper
for understanding howchanges inmultiple parameters simul-
taneously could impact model performance and robustness
(cf. Sect. 2.5).
Nonsmooth dynamics and biological realism Our model
incorporates two types of nonsmooth dynamics. Both of
these features complicate the model analysis, and one might
ask whether an “equivalent” smooth formulation might have
been employed. We emphasize that both types of nonsmooth
dynamics provide better reflection of the underlying bio-
physics than a “smoothed” version would do, and contribute
in fundamental ways to the biological mechanisms we study.
Our model assumes that neurons fire, once excited, at a
nonzero rate, and maintain a rate of exactly zero (rather than
“very small”) when inhibited. Thus our motor pool variables
ai have hard boundaries at zero firing rate. It is well known
that the Hodgkin–Huxley model, for example, fires at very
high rates when provided even relatively small currents, and
slower rates are only possible with additional ionic conduc-
tances, such as the A current (see, for example, Hille (2001)).
Studies on the energetics of neurons in real brains do not
assume that they can fire at values much lower than a few
Hertz. See, for example, Figure 2 in Laughlin and Sejnowski
(2003), where the minimum firing rate for rat cortex is esti-
mated to be about 3 Hz. Thus, the model we are using Lyttle
et al. (2017) is more realistic than one that assumes that
neurons can fire infinitely slowly [e.g., a sigmoid function
or a hyperbolic tangent function (Ermentrout 1998)]. Thus,
assuming that neurons fire once excited at a nonzero rate
(and thus have a “hard boundary” at 0 firing frequency) is
more biologically realistic. Moreover, we have attempted to
replicate the results in this paper using an alternative formu-
lation in which we replace the hard boundary with a “soft”
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boundary, implemented using a sigmoidal firing rate function
(Harris and Ermentrout 2015) and found that eliminating the
hard boundary drives the system from the so-called hetero-
clinic cycling regime (Shaw et al. 2015; Lyttle et al. 2017)
to the “limit cycle regime” in which it fails to consume sea-
weed at a rate sufficient to support survival. In addition to the
hard “sliding boundary” at zero firing rateWang et al. (2021)
our model has a nonsmooth transverse crossing of a Poincaré
section at the point when the grasper transitions from “open”
to “closed,” and the biomechanics switch from being free of
the mechanical loading to engaging the mechanical load of
the seaweed. It is important to realize that when an animal
encounters a load, that interaction creates a nonlinear change
in the dynamics of the system. Although some investigators
attempt to finesse this aspect by trying to add a smoothly
changing load function (such as a spring with a very stiff
spring constant), an entire field devoted to hybrid systems
has developed to study how dynamics evolves when there is
a discontinuous change due to interaction with the environ-
ment [see, for example, Holmes et al. (2006) and Aihara and
Suzuki (2010)].
Experimentally testable predictionsThe surprising result that
the length-tension curves of the opposing muscles gener-
ate an instantaneous response to force perturbations could
be tested, at least initially, using some of the more realistic
biomechanics models that have been developed of Aplysia
feeding.

For example, in a detailed kineticmodel that does not have
sensory feedback (Sutton et al. 2004; Novakovic et al. 2006),
one could apply a step increase in forcewhen theodontophore
is closed and the retractor muscle is activated while measur-
ing the force resistance to that change, and compare that to a
purely passive response in which the retractor muscle is not
activated. The results of this paper predict that there will be
significant differences between these conditions.

In a model that does have sensory feedback (Webster-
Wood et al. 2020), one could apply a step increase in force
when the odontophore is closed and measure the change in
force and the duration of the cycle to determine how that
perturbation alters fitness. This paper’s results predict that
the response to a sustained perturbation will be smaller in
the presence of sensory feedback andwill be larger if sensory
feedback is removed.

The model suggests that there may be delays from the
time that sensory feedback is available to the time that force
changes. Using the model, sinusoidal force changes could be
applied at different frequencies to determine the predicted
phase lag, and this effect could be tested in the real animal.

Results shown in Fig. 9 suggest that themodel is relatively
insensitive to changes in the strength of sensory feedback
over a wide range of gains. Thus, one experimental test might
be to increase or decrease the strength of sensory feedback
to show that robustness to changing mechanical loads is not

significantly affected. One way to test this hypothesis would
be to use the newly developed technology of carbon fiber
electrode arrays, which could be used to excite, inhibit, and
record from many sensory neurons simultaneously (Huan
et al. 2021).

In contrast, results shown in Fig. 10 suggest that changing
the relative strengths of themuscles can have larger effects on
robustness. Previous studies have shown that neuromodula-
tors can speed up and strengthen muscular contractions and
thus might contribute to robustness (Taghert and Nitabach
2012; Lu et al. 2015; Cropper et al. 2018). Studies of the
neuromuscular transform (Brezina et al. 2000) suggested that
neuromodulation could effectively speed up and strengthen
feeding responses in normal animals, and thus might con-
tribute to robustness.

Future experimental studies could be guided by coordi-
nated changes of parameters in this model using the analysis
tools we have presented.
Caveats and limitations Tracking possible transitions into
and out of constraint surfaces becomes combinatorially com-
plex as the number of distinct constraint surfaces grows.
Here we impose three hard boundaries at ai ≥ 0, as dis-
cussed above, by requiring firing rates to be nonnegative. An
earlier model specification given in Shaw et al. (2015) and
Lyttle et al. (2017) also required firing rates to be bounded
via the constraint ai ≤ 1. Here we relax this constraint for
computational convenience, since the coexistence of multi-
ple constraints requires encoding entry/exit conditions and
vector field restrictions for all feasible combinations of con-
straints. In practice, comparison of simulations with and
without the ai ≤ 1 constraint give qualitatively and quan-
titatively indistinguishable results under most conditions.

Our analysis is in principle limited to small perturbations.
Large perturbations lead to crossing of bifurcation bound-
aries in which the behavior switches to a different dynamical
mode. “Robustness” in a broader sense can mean the dis-
tance to a basin of attraction of another dynamical attractor.
For example, if the force is increased too much, the model
will collapse into a stable fixed point with overextended pro-
traction, while the animal will engage a different response
to release or sever the seaweed to avoid damage to its feed-
ing apparatus. This aspect is not captured in the variational
approach. Nonlinear and bifurcation analysis could comple-
ment the present study and is ripe for investigation in future
work.

In this paper, we considered a specific perturbation,
namely increasing the force opposing seaweed ingestion
Fsw → Fsw + ε. Note that in this formulation, the per-
turbation parameter ε carries the same units (force) as Fsw.
Consequently, in order to use a unitless measure of robust-
ness, expression (5) includes a factor of Fsw/ε. Also, in
this formulation, the timing sensitivity T1 (shift in period
per increase in force) and shape sensitivity γ1 (shift in
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limit cycle shape per increase in force) have units including
reciprocal force. As an alternative formulation, which might
facilitate comparison of robustness to perturbations across
different modalities, one could rewrite the force perturbation
as Fsw → Fsw(1 + ε). In this case ε would represent a unit-
less measure of relative perturbation size. The subsequent
variational, IPRC, ISRC and LTRC analysis would remain
unchanged, except the resulting quantities Z , T1, γ1, and
η1 would undergo a change in units, hence a multiplicative
(fixed) change in scale. An advantage of specifying perturba-
tions as a relative or unitless quantity would be that a similar
analysis to that undertaken in this paper could be applied
to other modalities in the same system or across disparate
systems.
Generalizability to other systems Although we focused in
the present work on the robustness of the mean rate of sea-
weed intake with respect to increases in the force opposing
ingestion, our analysis carries over to other objective func-
tions (e.g., calories consumedper energy expenditure) aswell
as other perturbations (e.g., temperature, which may alter
the speed of feeding in Aplysia). The variational approach
to analyzing robustness should apply to any reasonable
(e.g., smoothly differentiable) objective function and any
parameter represented in the system, e.g., adjustments to
changes in speed, steepness, or right-left asymmetry of walk-
ing movements on a (split) treadmill system (Frigon et al.
2013; Embry et al. 2018).

Our methods might also provide insights into how rapidly
a system can adjust to small modulation of forces. One could
possibly conduct experiments to study the linear response
of a system to modulation of applied force Fsw, such as an
instantaneous small change from one static force to another,
or a small amplitude sinusoidal modulation of Fsw. The
infinitesimal shape response curve and other variational tools
developed inWang et al. (2021)might play a role in the linear
response analysis. This treatment could represent an interest-
ing future direction.

The present manuscript applies variational methods to
understand the robustness in a specificAplysia neuromechan-
ical model (Lyttle et al. 2017). This model makes significant
simplifications to the real feeding apparatus control system
in order to gain mathematical tractability and analytical and
biological insights. Nonetheless, the framework developed
in Wang et al. (2021) applies naturally to more elaborate
dynamical models of Aplysia feeding such asWebster-Wood
et al. (2020) and models incorporating conductance-based
network descriptions of the central pattern generator (Cataldo
et al. 2006; Costa et al. 2020). Thus, what we have done here
provides a framework for understanding neural control of
motor behaviors like the one considered in this paper.

More broadly, motor control beyond the Aplysia feeding
system is also amenable to the analysis of the sort devel-
oped in Sect. 3 (Wang et al. 2021). For example, the stability

of bipedal walking movements remains a challenge in the
field of mobile robotics Vukobratovic et al. (2012); Wester-
velt et al. (2018). Biologically inspired robotics continues
to provide alternative approaches with greater robustness
than conventional devices (Beer 2009; Pfeifer et al. 2007;
Beer et al. 1997; Goldsmith et al. 2019). The variational
framework exhibited here applies to these systems as well
(Fitzpatrick et al. 2020). In the context of any motor control
model, the variational analysis we present here should allow
analysis of robustness of any reasonable objective function
with respect to any system parameter.
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A Tables for model parameters and initial
conditions

Values for model parameters and initial conditions of state
variables are given in Tables 2 and 3.
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Table 2 Model parameters

Parameter Value Description

γ 2.4 Inhibition strength from next
pool

εi 10−4 Sensory feedback strength

μ 10−6 Neural pool intrinsic excitation

τa 0.05 Neural pool time constant

τm 2.45 Muscle activation time constant

br 0.4 Grasper damping constant

c0 1.0 Position of shortest length for
I2

c1 1.1 Position of center of I3

Fsw 0.01 Force on the seaweed resisting
ingestion

σ0 −1 Sign of proprioceptive input to
a0 motor pool

σ1 1 Sign of proprioceptive input to
a1 motor pool

Table 2 continued

Parameter Value Description

σ2 1 Sign of proprioceptive input to
a2 motor pool

ξ0 0.5 Proprioceptive neutral position
for protraction-open neural
pool

ξ1 0.5 Proprioceptive neutral position
for protraction-closed neural
pool

ξ2 0.25 Proprioceptive neutral position
for retraction-closed neural
pool

umax 1.0 Maximum muscle activation

w0 2 Maximal effective length of I2

w1 1.1 Maximal effective length of I3

k0 1 Strength and direction of the
protractor muscle

k1 −1 Strength and direction of the
retractor muscle

B Different timing sensitivities tomuscle
perturbations

Here we explain why increasing the protractor (resp., retrac-
tor) muscle activation during the early closing phase leads to
a phase delay (resp., phase advance), whereas increasing the
muscle activations during the late closing phase lead to the
opposite effects (see Fig. 6 in Sect. 2.3.1).

Early in the closing phase (i.e., the protraction-closed
phase), increasing u0 leads to a phase delay. This effect
occurs because with larger u0 force, xr protracts more, which

Table 3 State variables

State variable Initial value Description

a0 0.9 Activity of I2 motor pool
(nonnegative)

a1 0.08355 Activity of hinge motor pool
(nonnegative)

a2 0.00003 Activity of I3 motor pool
(nonnegative)

u0 0.748 Activity of I2 muscle

u1 0.25 Activity of I3 muscle

xr 0.65 Grasper position (0 is retracted, 1
is protracted)

prolongs the inhibition to a0 through sensory feedback (feed-
back to a0 is inhibitory when xr > 0.5). Hence a0 activates
at a later time and the switch from closed to open is delayed,
corresponding to a phase delay (see Fig. 13A).

On the other hand, increasing u1 during the early closing
phase leads to a phase advance, because xr decreases due to
the increased retraction muscle forces and hence the inhibi-
tion switches to excitation earlier than in the original case
(see Fig. 13C).

During the late retraction-closed phase, increasing u0
leads to a phase advance (see Fig. 13B). With increased
protractor muscle force, xr increases, but soon the state tran-
sitions to protraction-open. Then, the inhibition on a1 from
the sensory feedback (feedback to a1 is inhibitory when
xr < 0.5) will be released earlier than before, because xr is
larger under perturbation and hence a1 activates earlier. As
a result, the system switches from opening to closing phase
earlier and this change corresponds to a phase advance.

On the other hand, if we increase u1 during the late closing
phase, a phase delay results because xr decreases with the
perturbation. This effect prolongs the inhibition from sensory
feedback to a1, since xr stays below 0.5 for a longer time (see
Fig. 13D).

C An alternative derivation of the
infinitesimal shape response curve

Recall that we assume for ε small,

x′ = Fε(x)

has a linearly asymptotically stable limit cycle with fre-
quency w(ε) depending (at least C1) on ε. To incorporate
the unknown period into the problem, we make the change
of variables s = T0w(ε)t . Then, we look for period T0 peri-
odic solutions of the new equation

T0w(ε)x′ = Fε(x) (23)
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Fig. 13 Time series of
trajectories before (solid) and
after (dashed) an instantaneous
perturbation of the muscle
activation variables
(ui → ui + 0.1, see green
arrows). Left panels show
trajectories for neural variables,
while right panels show
trajectories for mechanical
variables. A Perturbing the
protractor muscle activation u0
at the beginning of the closing
phase leads to a phase delay. B
Perturbing u0 during the late
closing phase leads to a phase
advance. C Perturbing the
retractor muscle activation u1 at
the beginning of the closing
phase leads to a phase advance.
D Perturbing u1 during the late
closing phase leads to a phase
delay. Shaded regions and
vertical magenta lines have the
same meanings as in Fig. 2
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where the prime ′ denotes the derivative with respect to s.
We can write

x(t) = x0(t) + εx1(t) + . . .

w(ε) = w0 + εw1 + . . .
(24)

We substitute the above expansions into the governing equa-
tion (23), collect like powers of ε and obtain the following
equations

x′
0 = F0(x0)

x′
1 − DF0(x0)x1 = G(x0) − T0w1x′

0
(25)

where G(x0) = ∂Fε(x0)
∂ε

|ε→0. The first equation in (25) is just
the unperturbed differential equationwith x0 representing the
coordinate of the unperturbed limit cycle. The second equa-
tion is equivalent to the ISRC equation (2.20) that we derived
in Wang et al. (2021) and x1 denotes the coordinates of the
linear displacement between the perturbed and unperturbed
limit cycle.

By the Fredholm Alternative, the second equation of (25)
has a solution if and only if

∫ T0

0
(G(x0(s)) − T0w1x′

0(s)) · z(s) ds = 0

where z is the infinitesimal phase response curve. Hence, the
linear shift in the frequency is given by

w1 = 1

T 2
0

∫ T0

0
G(x0(s)) · z(s) ds,

which is equivalent to equation (2.14) in Wang et al. (2021).
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