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Abstract
Detecting small moving targets against a cluttered background in visual data is a challenging task. The main problems include
spatio-temporal target contrast enhancement, background suppression and accurate target segmentation. When targets are at
great distances from a non-stationary camera, the difficulty of these challenges increases. In such cases the moving camera
can introduce large spatial changes between frames which may cause issues in temporal algorithms; furthermore targets can
approach a single pixel, thereby affecting spatial methods. Previous literature has shown that biologically inspired methods,
based on the vision systems of insects, are robust to such conditions. It has also been shown that the use of divisive optic-flow
inhibition with these methods enhances the detectability of small targets. However, the location within the visual pathway the
inhibition should be applied was ambiguous. In this paper, we investigated the tunings of some of the optic-flow filters and use
of a nonlinear transform on the optic-flow signal to modify motion responses for the purpose of suppressing false positives
and enhancing small target detection. Additionally, we looked at multiple locations within the biologically inspired vision
(BIV) algorithm where inhibition could further enhance detection performance, and look at driving the nonlinear transform
with a global motion estimate. To get a better understanding of how the BIV algorithm performs, we compared to other
state-of-the-art target detection algorithms, and look at how their performance can be enhanced with the optic-flow inhibition.
Our explicit use of the nonlinear inhibition allows for the incorporation of a wider dynamic range of inhibiting signals, along
with spatio-temporal filter refinement, which further increases target-background discrimination in the presence of camera
motion. Extensive experiments shows that our proposed approach achieves an improvement of 25% over linearly conditioned
inhibition schemes and 2.33 times the detection performance of the BIV model without inhibition. Moreover, our approach
achieves between 10 and 104 times better detection performance compared to any conventional state-of-the-art moving object
detection algorithm applied to the same, highly cluttered and moving scenes. Applying the nonlinear inhibition to other
algorithms showed that their performance can be increased by up to 22 times. These findings show that the application of
optic-flow- based signal suppression should be applied to enhance target detection from moving platforms. Furthermore, they
indicate where best to look for evidence of such signals within the insect brain.
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1 Introduction

Small target detection in visual scenes has attracted sig-
nificant research attention owing to its applications in a
wide range of areas such as search and track (Gao et al.
2013), surveillance (Butler 2008), defence (Chen et al.
2014) and collision mitigation systems (Perry 1997; Li et al.
2016a). Electro-optic and infrared cameras are often used
for such applications as they offer a cost effective, small and
lightweight option. Long distances between the sensor and
targets can mean the objects of interest may only occupy a
few pixels in the image (pixel sized targets), with no shape
or texture information cues to help extract them (Gao et al.
2013). Couple this with atmospheric effects and low signal
to clutter ratios due to clouds, water ripple and trees, and
the task of successful detection with minimal false alarms
becomes extremely challenging (Xie et al. 2014).

A variety of conventional computer vision approaches
exist in the literature for detecting moving objects against
cluttered environments (Sobral and Vacavant 2014; Xu et al.
2016; Zhao et al. 2019; Li et al. 2016b). These methods were
mostly designed for detecting large objects (such as humans,
animals, cars, etc.) that generally occupy several hundredpix-
elswithin the image.Moreover, thesemethods heavily rely on
well defined shape, colour and textural features to build their
object detection models. In contrast, the spatial resolution of
the pixel sized targets that are studied in this paper ranges
from a few pixels to a single pixel without any shape or tex-
tural cues. Such targets are very hard to visually discriminate
from sensor noise and cluttered background features. Con-
ventional object detection methods do not take into account
these challenges andmay completely fail when applied to the
problem of pixel sized target detection. Similarly, state-of-
the-art neural network approaches often require larger targets
as they are biased towards texture (Geirhos et al. 2018), for
which there is none for such small targets. This can cause
neural networks to perform poorly as they either miss tar-
gets or produce a high number of false detections (Gao et al.
2018).

Through millions of years of evolution, the visual sys-
tem of many species of small flying insects has perfected
an astounding capability to detect and track small moving
targets in cluttered backgrounds (Pritchard 1965; O’Carroll
1993; Olberg et al. 2000; Nordström et al. 2006). Due to their
relatively simple structure and small size, the visual pathway
of small flying insects has been investigated and compu-
tationally modelled in different studies over the last few
decades (Hassenstein and Reichardt (1956a); Arnett 1972;
Payne and Howard 1981; Hardie and Weckström 1990; Jan-
sonius and Van Hateren 1991; Osorio 1991; Van Hateren
and Snippe 2001; Higgins and Pant 2004; Van Hateren
and Snippe 2006). One biologically inspired vision (BIV)
model (Wiederman et al. 2008a, b, c, 2010) built upon these

studies has been shown to be extremely robust to the chal-
lenges of small target detection against clutteredbackgrounds
in natural scenes. The multi-stage BIV has also been shown
recently to significantly outperform state-of-the-art conven-
tional small target detection and tracking methods (Bagheri
et al. 2017; Melville-Smith et al. 2019).

A practical, but extremely challenging, scenario for small
target detection is when the targets are far away and the scene
is captured by a camera mounted on a moving platform such
as a robot, aircraft or drone. The biological visual systems
of small flying insects deal with ego motion robustly (Wertz
et al. 2009). The motion pathways of the BIV, which have
been modelled on those found in insects have been shown to
be advantageous for rotational velocity estimations (Skelton
et al. 2019) and enhancing the saliency of targets (Wiederman
et al. 2008b).

For algorithms with a temporal component, we observe
that when such motion is induced onto imaging sensors, the
temporal filter responses can often create more false posi-
tives in areas of clutter. For algorithms that only have a spatial
component, performance is often independent of ego-motion
characteristics; however, many false positives can still occur
in regions of clutter.Wiederman et al. showed that themotion
estimation pathway of the BIV can provide an output that is
related to temporal changes in local contrast and is a good
estimator to identify regions of clutter. It’s use as an inhibitor
on the models target saliency output showed benefit, increas-
ing the separation of small targets from the background. In
this paper, we expand upon the work of Wiederman et al.,
which exploits low level scenemotion features through optic-
flow, by investigating whether there are better performing,
and potentially more biologically plausible, locations earlier
in the model to implement a motion inhibition mechanism,
rather than at the location presented byWiederman et al. (the
models output). The possible key stages are selected based
on our careful examination of their responses to the inhi-
bition signal under simulated camera motion. Additionally,
we also look at adding a new layer of nonlinear condition-
ing to the motion inhibition signal as well as tuning some
of the optic flow filters specifically for the purpose of small
target detection. Our explicit use of a compressive nonlinear-
ity allows for the incorporation of a wider dynamic range in
the inhibiting signal along with spatio-temporal refinement
which further increases target-background discrimination in
the presence of camera motion. Finally, we look at using the
conditioned motion signal and apply it as an inhibitor to the
output of other algorithms to see how their performance can
also be improved.

1.1 Comparative small target detectors

Background subtractionmethods are often used to find larger
moving objects within an environment; however when large
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amounts of motion are induced by a moving platform,
performance can degrade (Garcia-Garcia et al. 2020). The
detection of small targets is possible with methods such as
the pixel-based adaptive segmenter (PBAS) (Hofmann et al.
2012) in simulated scenarios which have static backgrounds
(Melville-Smith et al. 2019), but when motion is induced on
the background imagery, performance degrades significantly.

The local contrast method (LCM) (Chen et al. 2014) is an
algorithm inspired by the human visual system (HVS) and
designed for the detection of small, dim targets. Tradition-
ally LCM has been used on thermal infrared imagery where
target responses stand out from the background more than
in the visible spectrum. The method measures dissimilarity
between the current location and its neighbourhoods, thereby
enhancing target signals while simultaneously suppressing
background clutter. In testing it was shown to outperform
top-hat (Tom et al. 1993) and the average grey absolute dif-
ference maximum map (Wang et al. 1995) methods for the
purposes of small infrared target detection. Other research
groups have taken inspiration from the LCM to create new
algorithms, such as the spatial-temporal local contrast filter
(STLC) (Deng et al. 2016), which calculates separate spatial
and temporal contrasts and correlates them to find moving
targets, and the multi-scale relative local contrast method
(MRLCM) (Han et al. 2018) which looks at normalising
the local contrast measures over multiple kernel sizes, rather
than using an absolute contrast measure, and correlating each
scale for a result. Thesemethods have been shown to perform
well; however, they assume that the background is mostly
uniform, as is often the case with thermal infrared imagery.
STLC makes the assumption that the camera is static, look-
ing for changes in pixel intensity over time as the temporal
component to detect targets. This can cause issues when the
entire background is moving, as the assumptions made about
the temporal and spatial correlation no longer hold true, caus-
ing many false alarms. The multi-scale aspect of MRLCM is
seen as a disadvantage for this application, as all targets have
a size that fits within the smallest kernel for the algorithm,
3×3. Moving to larger scaled kernels is expected to have no
advantage and reduce performance when the different scales
are combined.

Taking inspiration from the many approaches that use the
HVS, Xia et al. (2018) proposed a new target extraction
method based on a local contrast measure combined with
a modified random walker (MRW) algorithm. The output of
the local contrast measure is used to generate a seed selec-
tion map fromwhere theMRWalgorithm begins segmenting
the image into background and targets. This method outper-
formed other methods to which it was compared, including
the multiscale patch-based contrast measure-based (MPCM)
method (Wei et al. 2016), nonnegative infrared patch-image
model based on partial sum minimisation of singular values-
based (NIPPS) method (Dai et al. 2017), and local steering

kernel (LSK) reconstruction-based method (Li and Zhang
2018). MRWwas also found to have better background sup-
pression than thesemethods, where high contrast edges, such
as those often found around clouds and the horizon, cause
false detections. This resulted in MRW being considered a
more capable and robust method for finding targets in select
environments.

Similarly, Qin et al. (2019) proposed a method similar
to MRW based on a facet kernel and the random walker
(FKRW) algorithm. This method first filters the imagery
to remove pixel-sized noise with high brightness and then
smooths the image using local order-statistic and mean filter-
ing. This is done to facilitate the random walker algorithm,
which performs better on images with less noise. A facet
kernel, which is a kernel based on the facet model (Haral-
ick 1987) used to find step edges, is then convolved with the
image to enhance targets which are separated from the back-
ground through an adaptive threshold. Lastly, a novel local
contrast descriptor based on the random walker algorithm is
used to suppress clutter and further enhance target signals.
The method has been shown to be more robust than other
methods based on the HVS, such as LCM and its variants,
over three scenes. This is due to FKRW’s ability to reduce
background clusters which many other methods detect. It is
suggested that the ability to reduce background clutter is due
to the exploitation of directional consistency as a result of
the facet kernel. Compared to the variable difference (VARD)
(Nasiri andChehresa 2017) algorithm,which is amethod that
compares the difference of the variance between three pro-
cessed layers, background suppression appears to be similar,
while FKRW was more robust over different scenes being
able to detect the target more often. Compared to MRW,
FKRWperformed better when comparing ROC curve perfor-
mance of true positives rates to false positives rates. FKRW
was also found to be more efficient.

1.1.1 Biologically inspired vision (BIV) model

Figure 1 shows the processing stages of the BIV model. The
original BIV model has two separate processing pipelines
for motion estimation and target detection tasks, where each
pipeline processes the input image sequence independently.

The first two stages computationallymodel the insect pho-
toreceptor cell (PRC) and lamina monopolar cell (LMC),
both based off work by Van Hateren (Van Hateren 1992;
Van Hateren and Snippe 2001), and are common to both
pipelines. The PRC is used to enhance the signal to noise ratio
(SNR) of the raw input image on a per-pixel level using vari-
able low-pass filters controlled by each input pixel’s intensity
(Griffiths 2018). Divisive and exponential feedbacks are used
to produce fast and slow adaptation over time. Finally, a first
order Naka-Rushton transform is used as a compressive non-
linearity to reduce the overall dynamic range of the signal.
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Fig. 1 Illustration of the biologically inspired visionmodel (BIV) of the
visual pathway of small flying insects. The original BIVmodel (Higgins
and Pant 2004; Wiederman et al. 2008a, b, c; Brinkworth and O’Carroll
2009; Wiederman et al. 2010; Melville-Smith et al. 2019) offers two
separate processing pipelines for motion estimation and target detection
tasks. The small boxes represent the first order spatio-temporal filters
and their combinations to realise the sequential processingmechanisms.
The first two processing stages, the photoreceptor cells (PRC) and the

lamina monopolar cells (LMC), are common to both pipelines. These
stages perform spatio-temporal pre-processing of the raw input (the
first two stages are represented twice in the diagram for the motion esti-
mation pipeline as this requires input from two neighbouring pixels).
The motion estimation pipeline models the elementary motion detec-
tion (EMD) cells and the medulla lobula interneuron (MLI) cell. The
target detection pipeline models the rectifying transient cells (RTC) and
the elementary small target motion detection (ESTMD) cells

The LMC enhances important information, such as edges,
while reducing redundant data (Van Hateren 1992). Both
temporal and spatial elements have leaky high-pass filters
applied, with the temporal domain being variably filtered on
the pixel level based on the adaptation level from the PRC.
Some models of the LMC have an additional nonlinearity
(modelled by a tanh function) on the output. Biologically
this makes sense, as it keeps the output signal within a fixed
limit. However, it is not always necessary in a computer
model without bandwidth limitations. This (optional) non-
linearity, and differing filter demands, explains why both
follow-on processes in the BIV model have high-pass fil-

ters on their inputs when the LMC has one on its output. The
PRC andLMCare powerful data pre-processors that together
can also be used to enhance the performance of traditional
target detection algorithms (Uzair et al. 2019, 2020a, b).

The motion estimation pipeline computationally mod-
els the elementary motion detection (EMD) cells, based on
work by Hassenstein and Reichardt, and the medulla lobula
interneuron (MLI) cells.While not physicallymodelled these
stages have strong neurophysiological support for their exis-
tence (Hassenstein 1951;Hassenstein andReichardt (1956a);
Haag et al. 2004). From an engineering and mathematical
modelling perspective the existence of the processing encap-
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sulated by the elaborations to the basic EMD, and the entire
MLI stage, are beneficial in reducing inter-scene variability
in motion processing (Brinkworth and O’Carroll 2009). The
EMD temporally correlates changes between neighbouring
pixels to generate local optic flow vectors. These optic flow
vectors are then normalised within the MLI using a non-
linear gain control to amplify the signal in regions of low
clutter relative to regions of high clutter. Models designed to
extract ego-motion have a subsequent processing stage based
on the lobula plate tangential cells (LPTC) (Borst et al. 1995;
Brinkworth and O’Carroll 2009; Borst et al. 2010; Skelton
et al. 2019).

The target detection pipeline has two distinct outputs,
one for bright targets and one for dark. Components of this
pipeline include the rectifying transient cells (RTC), based
on work by Jansonius and Van Hateren, and the elemen-
tary small target motion detector (ESTMD) neurons, based
on a modified EMD. The RTC is one of the most impor-
tant neurons in the target detection pipeline and, following
electro-physiological recordings from fly brains, was origi-
nally modelled explicitly for this purpose (Wiederman et al.
2008c). It helps to enhance and separate falling and rising
signals in time, such as those presented by small dark targets
passing over a brighter background pixel. The input to the
RTC is high-pass filtered and then two half-wave rectifiers
are used to separate the positive and negative components of
the signal. For each channel the derivative of each pixel is
calculated over time to detect rising and falling signals. The
rising signals induce a fast adaptation response while falling
signals induce a slow response. The resulting signal is sub-
tracted from the original half-wave rectified signal to negate
periods where the signal continues to increase for long peri-
ods and to prevent multiple rapid detections. Such responses,
if left unattenuated, can cause additional false detections, as
well as target detections in both the light and dark output
channels of the model: an unwanted result. To stop minor
signals (which are unlikely to be targets) from triggering
the fast adaptation, a threshold is used so that the deriva-
tive has to be above a defined value before the trigger comes
into effect. To enact a fast response, a delayed signal is used
to overcome sampling rate constraints of real digital sensor
hardware. For falling signals, a low pass filter is used to give
a slow adaptation from any previously detected rising sig-
nals, enforcing a refractory period between detections. To
reduce the detection of larger objects or bars (high contrast
lines), a local surround inhibition mechanism (Wiederman
et al. 2008c) is used to suppress such features. The ESTMD
is based on a theoretical model of the input to the small tar-
get motion detector (STMD) neuron (O’Carroll 1993) and is
not based on the actual neurophysiological recordings from
within the fly brain. ESTMDs implement a modified ele-
mentary motion detector (Hassenstein and Reichardt 1956b)
comparing the same point in space, rather than neighbouring

spatial elements, across the two processed channels (rising
and falling) from the RTC. The ESTMD takes the RTC out-
put and temporally correlates rising and falling signals,which
are often associated with small targets, on a per-pixel level.
Essentially, the target detection pipeline will respond to two
edges of opposite polarity in rapid succession. These sig-
nals of opposite polarity can exist in areas of high clutter
or where transitions between background and foreground
objects occur. In high clutter areas an increase in false positive
detections can occur. This necessitates the need for a mech-
anism to suppress the false positives in these regions while
maintaining true positive detection rates. Importantly, alter-
nating rising and falling edges would also occur in regions of
flicker. High-pass spatial filtering at the LMC (James 1992),
as well as the presence of the surround inhibition within the
RTC (Wiederman et al. 2008c), suppress responses to large-
scale flicker, making the model respond much more strongly
to spatially small targets.

For themodels implementation used in this study, the filter
time constants described in (Juusola et al. 1995; Van Hateren
and Snippe 2001;Mah et al. 2006;Wiederman et al. 2008a, c;
Brinkworth andO’Carroll 2009)were adapted for the simula-
tions resolution, update rate (100Hz), and background/target
speed, where all corner frequencies used were below the
Nyquist limit. The motion estimation pipeline has been
shown to function in hardware at 100 frames/s (Skelton et al.
2019) and model parameters have been tuned using a genetic
algorithm (Skelton et al. 2020).

1.1.2 Proposed nonlinear lateral inhibition scheme

Typically, when used for target detection, the BIV model
only uses the PRC, LMC, RTC and ESTMD. However, pre-
vious work (Wiederman et al. 2008b) and a limited pilot
study (Melville-Smith et al. 2019) showed that the use of
a divisive inhibiting signal based on local motion from the
addition of the EMD and MLI stages at locations D and A,
respectively (see Fig. 2), was beneficial when ego-motion
was induced into the imagery. Furthermore, it is known that
using local motion adaptation during translational motion
can improve the detected spatial structurewithin EMD-based
models (Li et al. 2017). In Melville-Smith et al. (2019), not
only were there a limited number of different environments
tested but over-saturation of the feedback occurred when a
linear conditioning was applied to the local area motion sig-
nal from within the MLI. While this suppressed false alarms
it also suppressed the response of the system to real targets.
Additionally, it was found that the inhibition calculations did
not align with cluttered areas due to temporal filter parame-
ters within the MLI, which caused many false positives (FP)
to be detected on leading edges, andmany true positives (TP)
to be suppressed on trailing edges.
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In this paper, we therefore propose a new nonlinear mech-
anism that further enhances the performance of small target
detection. Our new contributions include: performing non-
linear conditioning on the lateral inhibiting signal from the
absolute local-motion within the MLI, prior to the MLI local
area normalisation and nonlinearities occurring, to reduce
saturation; better tuning of the temporal low-pass filterwithin
the MLI to create a more accurate feedback map; and testing
multiple inhibition locations within the model to ascertain
the location for best performance. We also examine the use
of an inhibiting signal from an estimate of global ego-motion
to condition the local areamotion from theMLI dynamically.
Finally, the performance of this newly proposed model was
tested on a set of 20 diverse natural scenes. To discriminate
between the various BIV models used in this paper, hence-
forth the original BIV model (Wiederman et al. 2008a) will
be referred to as BIV ’08, the model with linear inhibition
(Melville-Smith et al. 2019) as BIV ’19, and the nonlinear
model presented in this paper as BIV ’22.

2 Materials andmethods

Figure2 shows the modified BIV model with the new lateral
connection linking themotion and target processing paths via
nonlinear signal conditioning. Modifications are outlined in
red with the tested inhibition locations denoted as A, B, C,
andD.Newandexistingmethodswere tested using simulated
data and their performance compared. The following sections
outline the methodology for the simulations, model tuning
and performance comparisons.

2.1 Input imagery

To test the robustness of the algorithms to a variety of
environmental settings 20 different real-world high dynamic
range (HDR) panoramic environments were chosen. The
HDR images ensured that the data being worked with was
representative of the real-world environment without any
quantisation or compression artefacts, which often occur in
images designed for human viewing (a creative process),
and exist in the majority of currently available datasets. This
allows the BIV’s native information enhancing compression
techniques of the PRC and LMC to be used to full effect.

The 20 natural images (having an intensity power and spa-
tial frequency relationship of 1

f 2
(Field 1987)) had varying

structural differences. 14 of the images were published in
(Brinkworth and O’Carroll 2007). The background images
were created by stacking multiple exposures and mosaicing
individual images into a panorama. The original panoramas
were 8000 × 1600 pixels, covering 360◦ horizontal field of
view and 72◦ vertical field of view. All image data was lin-

ear (no gamma or compression was applied) and each colour
channel was stored in a 32bit floating point container.

Eachbackgroundhad adifferent quantity of high-frequency
spatial clutter, which is hypothesised to be one of the main
effectors in pixel sized target detection. For this research,
only the green channel of the panoramas was used as this
closely represents the luminance in a scene and aligns with
previous work. 6 of the backgrounds were used as a training
set to find the best operating parameters for the feedback.
These 6 backgrounds plus 2 others for reference can be seen
in Fig. 3 (all 20 images used in this study can be seen in
Online Resource 1).

2.2 Target simulation

The background imagery was down-sampled to a size of
1000 × 200 pixels to keep the simulation processing time
manageable. 500 black squares (representing targets) were
inserted at random locations onto the full sized backgrounds
at a size that would occupy 1.2×1.2 pixels after decimation.
Minimum spacing between target centres was 10 pixels after
decimation (3.6 degrees), a separation that has been shown
not to cause significant cross-talk between target responses
(Melville-Smith et al. 2019). Both the background and targets
were animated separately with horizontal rotational motion
in the same direction, moving right to left. The target and
background rotational speeds tested on the down-sampled
imagery were combinations of 10, 17, 29 and 50 pixels/s
(corresponding to 3.6, 6.12, 10.44 and 18 degrees/s, or 0.1,
0.17, 0.29, and 0.5 pixels/frame) with a sampling frequency
of 100 frames per second (FPS). The imagery then had a
Gaussian blur applied so that when the imagery was deci-
mated the full-width half-maximum (FWHM)was 1.0 pixels
(initial testing showed this performed better than a FWHM
of 1.4 pixels, as used previously (Wiederman et al. 2008a)).
The imagery was then down-sampled using a nearest neigh-
bour approach. While target speeds of 10 pixels/s is outside
the tuned range of the model used here, we wanted to inves-
tigate if the operating range of the model could be extended
further. As such, any data presented does not include target
speeds of 10 pixels/s unless specified otherwise.

2.3 Computing the nonlinear inhibiting signal

The absolute local spatio-temporally averaged estimate of
optic flow from theMLIwas nonlinearly conditioned and fed
into multiple locations of the model target detection pipeline
(see Fig. 2). More specifically, a Naka-Rushton (Naka and
Rushton 1966) saturating nonlinearity was used to condition
the inhibiting signal (EMLI). The conditioned signal (EMLIci)
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Fig. 2 The camera motion adaptive biologically inspired vision model
proposed in this paper. The proposed building blocks and key modifica-
tions to the model (relative to Fig. 1) have been highlighted in red. The
local motion signal is taken from within the medulla lobula interneu-
ron (MLI), conditioned, and then used to inhibit the signal at different

locations in the small target detection model. The optional dynamic
feedback is also shown, taking the mean from the local area motion
and feeding it to the Naka-Rushton nonlinearity (note: the figure is best
viewed in zoom mode)

was calculated on a per-pixel (i) basis using Eq. 1:

EMLIci = min

(
G

EMLIi

EMLIi + c
, 1

)
(1)

yi = xi (1 − EMLIci) = max

(
xi c − xi (G − 1)EMLIi

EMLIi + c
, 0

)

(2)

Here, the initial constant (c) was chosen to be the mean
of the local motion output (0.05) at a background and target
speed of 29 pixels/s as it was expected this would provide an
initial operating point for all speeds (faster and slower). A
gain (G) was used to observe the effects of under- and over-
saturating the top end roll-off of the saturating nonlinearity.
The conditioned inhibiting signal was subtracted from unity
in order to produce a signal that approached 1when therewas
no recorded local motion and approached 0 when there was
a large amount of local motion, and hence higher probability
of false detections. This inhibition map was then multiplied
with the signal at the corresponding inhibition location (x)
to give the inhibited output (y) (see Eq. 2).

2.4 Determining inhibition locations

To find the best location for inhibition within the BIVmodel,
four locations were examined (see Fig. 2). These four loca-
tionswere selected as theywere each separated by a nonlinear
operation, meaning they were all distinct mathematically.
Inhibition at A was at the input to the RTC, before the
first nonlinearity, and had the ability to suppress informa-
tion before it was rectified, split into positive and negative
branches, and thresholds used tomake decisions about possi-
ble target signals. This is because the early stages of themodel
enhance information that could be useful for multiple pur-
poses,while latter stages,which aremore specialised, remove
information not necessary for specific purposes. Therefore,
inhibition at this location allowed more flexibility as all the
information still existed. The inhibition also only had to be
applied to a single channel as the RTC separates falling and
rising signals into two channels that flow through to the end
of the model. Therefore, inhibition at this point is more com-
putationally efficient.

Location B put the inhibition into the variable low-pass
filters (VLPF’s) of the RTC to adjust the derivative threshold
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Fig. 3 8 of the 20 high dynamic range panoramas used in this study.
a–f were used to find an operating point for conditioning the inhibiting
signal, MLI temporal filter and investigating the inhibition location. g,
h are examples of test images with high and low levels of high fre-
quency clutter, respectively. The images have been modified for ease of

viewing and adapted from (Brinkworth and O’Carroll 2007). Only the
green channel from each background was used to align with previous
literature. The images selected for the tuning process covered multiple
levels of clutter in order to find a general set of parameters for the BIV
’22 model

based on the local clutter level but before rectification at the
end of the RTC. Since location B served as an adjustment to
the thresholding operation, it was used in conjunction with
inhibition at locationA. As the inhibition at locationA could
suppress the signals, the change over time from a target may
no longer be large enough to trigger the fast adaptation for
rising signals due to the static threshold. To adapt to this,
adjusting the threshold using inhibition at locationB allowed
those smaller changes to produce the correct rising responses
through the RTC.

Location C placed the inhibition after the output of the
RTC and at the input to the ESTMD. This suppressed the two
rectified channels, differing from locationA as two impulses
that follow closely would interact at full strength, suppress-
ing any secondary impulse. Inhibition at A had the ability to
suppress the initial impulse before it interacted with the sec-
ondary impulse, reducing the amount of suppression on the
secondary impulse which may have been a target. At loca-
tionC the inhibition also has to be applied to the two rectified
channels separately, potentially reducing efficiency.

Location D applied the inhibition to the output of the
BIV model following the correlation of the two processing
branches, effectively a post-processingmethod, i.e. it acted as
a variable local threshold for determining what is a possible

target andwhat is not. Inhibition at locationDwas equivalent
to that used in (Wiederman et al. 2008b).

2.5 Dynamic signal conditioning

To add another level of control to the lateral inhibition, signal
analysis was performed (as shown in Eqs. 1 and 2) to find
a link between the global motion and the value of the satu-
rating nonlinearity, c. As previously stated, insects used the
LPTCs to calculate global motion. However, the implemen-
tation of this cell, as outlined in (Brinkworth and O’Carroll
2009; Wiederman et al. 2008b), is outside the scope of this
study. Instead, we used a simplification of the LPTC that
relies on the mean of the absolute local area motion over the
entire frame (Emli) to get an estimate of global motion.

Data from the global motion estimate and model per-
formance for different values of c were collected to find
a correlation between the two. Data was collected over
the 6 training backgrounds (see Fig. 3a–f) to give a range
of responses. Both the background and target speeds were
matched using the 4 speeds mentioned previously in Sect.
2.2 giving a total of 24 scenarios. This avoided the difficult
task of predicting target speed prior to observing it. The best
performing value of c was taken from each simulation and
used to calculate a function of best fit.
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2.6 Tuning theMLI temporal filters

Temporal filtering within the MLI, modelled using a first
order low-pass filter, is necessary to reduce fluctuations
and provide a smooth motion estimate. However, previous
studies (Melville-Smith et al. 2019) suggest that the tem-
poral low-pass filtering in the MLI can cause unwanted
side-effects in the estimation of local area motion for the
purpose of inhibition for target detection. These side effects
include leading edges insufficiently suppressed, and suppres-
sion from trailing edges extending too long. To help eliminate
these characteristics we tested corner frequency values from
0.453 to 6.0 Hz over the training set of backgrounds and all
speeds to find a better operating point. Increasing the corner
frequency (reducing the time constant) minimises temporal
blurring and delay, which enhances the inhibition signal for
the purposes of target detection at the cost of having a more
temporally variable signal.

2.7 Comparative methodology

To compare the performance of the proposed BIV ’22
model, the existing BIV ’08 and BIV ’19 algorithms were
used. Previous research has shown that under similar testing
methodologies to those used in this study, LCMperforms bet-
ter than STLC and RLCM (Melville-Smith 2021). For this
reasonwechose only to useLCMandFKRWfor comparison.
PBAS was considered; however, due to its poor performance
in moving frames of reference and binary output, which lim-
its the ability to use inhibition, results are not included here.

For model initialisation, 300 frames were used to allow
the BIV model’s filters to stabilise, with the following 100
frames then used to compare performance. For FKRW and
LCM only the last 100 frames were used as the models do
not require parameter stabilisation since they have no tem-
poral filtering components. For the FKRWmethod, as it was
designed to look for brighter targets, the input frames were
normalised between 0 and 1, then inverted (1-pixel intensity).
This made the dark targets bright and allowed the algorithm
to be used without further modification. This sequence was
repeated for all 20 backgrounds, 4 target speeds and 4 back-
ground speeds, for a total of 320 scenarios for each algorithm.
To observe the effects of inhibition on FKRW and LCM, the
statically conditioned inhibition signal was obtained from
the MLI, subtracted from unity, and then multiplied with the
method’s raw result on a frame-wise basis.

Strictly speaking, all algorithms used really performed
target enhancement, not target detection. A subsequent
thresholding operationwas required to take the saliencymaps
produced by the algorithms and determine what components
would be classified as targets. In order to perform this thresh-
olding operation a winner takes all algorithm was used with
a 7×7 kernel. This reduced the local clutter, leaving only the

local maximum for FKRW and BIV, and local minimum for
LCM (due to a negative local contrast on dark targets) to be
found. For FKRWand LCM, if targets were detectedwithin a
5×5 kernel centred on the original target position, then it was
declared a true detection, otherwise it was declared a false
detection. For the BIVmodels, as this method has a temporal
component and relies on the detection of the trailing edge of
a moving target, detections were considered a true detection
if they occurred within a 5×5 kernel with its centre shifted 1
pixel to the right of the original target position. As the direc-
tion of travel of all targets is right-to-left, this single pixel
shift would align the centre of the kernel with the trailing
edge of any target.

Tomeasure and compare the target detection performance
of the algorithms, the AUROC curve was used (Hanley and
McNeil 1982; Brown and Davis 2006). The value of the
AUROCs was found by integrating the respective receiver
operating characteristic (ROC) curves between FP values of
0 and 20, FP = 20 being chosen as a reasonable upper limit
for a real-world application.

3 Results

3.1 Detection performance versus clutter

The relationship between high-frequency spatial clutter and
the BIV 08’s median area under the receiver operating char-
acteristic (AUROC) performance for each background can be
seen in Fig. 4. This figure shows a high (negative) correlation
between the clutter measures and the performance of small
target detection using the BIV ’08 model. The methods used
for calculating the spatial clutter were the mean contrast per
pixel method, as described in (Skelton et al. 2019) and the
mean frequency magnitude for higher frequencies obtained
from a 2D fast Fourier transform. The observed relation-
ship between increasing clutter and decreasing performance
(increasing false positive rates) iswhy it is believed that using
local clutter estimations to alter the target detection process-
ing would result in increased target detection rates.

3.2 Model tuning

Initial results from the tuning data showed positive increases
in performance. Figure5 shows the results from the back-
ground ‘Lab’ with target and background speeds set to 29
pixels/s. Only results for G = 1.1 are shown for visual clar-
ity and because thiswas the best performing value. The figure
shows that all nonlinear settings present outperformbothBIV
’08 andBIV ’19 (up to 20 FPs). Particular attention should be
given to the early separation gains when fewer false positives
occur. For general performance, the training set showed the
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Fig. 4 The BIV ’08model’s (Wiederman et al. 2008a) median AUROC
performance for all backgrounds and speeds versus two measures of
clutter. This shows the negative correlation between the presence of
clutter and performance of the BIV ’08model. Clutter measures include
the mean contrast per pixel (MCPP) (Skelton et al. 2019) and the mean

frequency magnitude (MFM), which uses a Fast Fourier transform to
compute the mean magnitude of high frequencies from 1.044 to 1.389
cycles/degree (2–2.7 pixels/cycle). The lines of best fit are power func-
tions with parameters provided on the graph

bestmedian operating pointwaswithG = 1.1, and c = 0.02,
for a maximum of FP = 20 (see Fig. 6).

Separating the scenes with manufactured structures from
those without gave distinct operating points for best per-
formance. Scenes with manufactured structures received the
best AUROC score with G = 1.1 and c = 0.008. This low
value of cwas expected as indoor scenes typically have sharp
(high intensity, high frequency) edges that come from man-
ufactured objects such as walls and windows, while much
of the environment is uniform and flat, resulting in lower
local optic flow signals overall. Thus, to make the most of
the available dynamic range, a steeper slope on the condi-
tioningNaka-Rushton is required. Sceneswithoutman-made
objects performed best when G = 1.1 and c = 0.04. This is
because the outdoor environments have more consistency in
their high frequency elements across the images. This causes
the local motion estimates to be much higher than those of
indoor scenes and requires a flatter slope to make use of the
dynamic range of the inhibiting signal if clipping is to be
avoided. The common gain of 1.1 suggests that the introduc-
tion of clipping at the high end is beneficial, as it entirely
removes FPs in the most cluttered areas of the scene due to
the presence of hard saturation. From hereon in any mention
of BIV ’22 will refer to a value of G = 1.1 and c = 0.02,
unless specified otherwise.

3.3 Target and background separation

Without local optic flow estimations, the algorithms were
only able to separate targets from the background in a single
dimension, using a threshold on the salience maps. Introduc-

ing an inhibiting signal based on local area motion allowed
for a second dimension to help separate targets from the back-
ground. Figure 7a shows the output of BIV ’08’s ESTMD
without any inhibitionversus the original unconditioned local
area motion calculated on the pixel on which the targets or
background were detected.

Traditionally, all background and target detections would
exist on the x-axis, the cumulative distribution function
(CDF) for which can be seen in Fig. 7b. This shows that
without utilising the optic flow signal it is possible to detect
100–130 targets before any false alarms. Introducing the
local area motion estimation as a second dimension helps
to improve discrimination between the background and tar-
gets. Figure7c shows the results of conditioning the local area
motionwith the nonlinear transformandusing it as an inhibit-
ing signal at the start of the RTC (location A in Fig. 2). Often
this led to very clear separation between the majority of tar-
gets and the background,with false positive intensity reduced
and target intensity (true positives) largely unaffected or, if
diminished,much less-so than the false alarm rates. TheCDF
with nonlinear inhibition applied at location A can be seen
in Fig. 7d, where significant suppression of the background
has increased separation allowing over 250 true positive (TP)
detections before any false positives (FP) occur.

3.4 Inhibition locations

An examination of the pooled performance based on using
the different inhibition locations and the entire training set of
backgrounds showed that the best median performance was
obtained by applying inhibition at both locations A and B

123



Biological Cybernetics (2022) 116:661–685 671

Fig. 5 Performance of BIV ’22 compared to BIV ’19 (Melville-Smith
et al. 2019), and BIV ’08 (Wiederman et al. 2008a) on the background
‘Lab’ with background and target speeds of 29 pixels/s. A false positive
rate (FPR) of 1.0 represents 3582 false positives. The vertical black line
represents 20 false positives. All nonlinear inhibition conditions show
benefits for higher true positive rates (TPR) at lower FPR compared to
other methods. Unlike linear signal conditioning, nonlinear condition-

ing provided better target separation at low FPRs, with the inhibitory
drive more readily saturating with increasing levels of false positives.
The relative performance of the comparisonmethod, local contrast met-
ric (LCM) was so low in this test that it did not detect any of the true
targets until the false positive rate was almost 10x larger than the upper
false positive threshold

Fig. 6 Performance ofBIV ’22, up to 20 false positives, over all training
backgrounds and speeds. Values of G = 1.1 and c = 0.02 gave the high-
est median performance. A linear gain of 6 was found to perform best
for BIV ’19 (Melville-Smith et al. 2019) and is shown for comparison,

as is the facet kernel random walker method (Qin et al. 2019). Other
values ofG are not shown for visual clarity. Note the logarithmic y-axis
and the fact that the comparison method, facet kernel random walker
(FKRW), performed well over 10x worse than the BIV ’22 algorithms

together (see Fig. 8). Median performance for this combina-
tion was 2.8%, and 3.5% better than the individual locations
C, and D, respectively. Compared to location A alone, inhi-
bition at location A and B together had a minor increase in
median performance; however, A and B together had larger
25th and 75th percentile values. This suggests it can be ben-
eficial to use inhibition on the VLPF in the RTC (Location
B) to adjust the threshold which determines whether a tem-
poral change over a pixel requires a fast or slow adaptation
state whenever inhibition occurs earlier in the model. With-
out inhibition at locations A and B, some target signals were
suppressed to the point where they were smaller than the
required threshold for a fast adaptation state within the VLPF
and no longer produced the transients required for small tar-
get detection.

Using BIV ’22 with inhibition at location A and B as a
benchmark and comparing results for each condition, paired
t tests were performed on the results (see Table 1). The per-
formance of BIV ’22 with inhibition at location A and B
was significantly larger than all other methods (excluding
MLI tuned methods) except for BIV ’22 with inhibition at
location D, where no significant difference was measured.
However, the p value was only non-significant following a
Bonferroni post hoc correction indicating that there may be
a slight difference between the two. The mean difference
between the two datasets on a per-simulation basis, suggests
that the performance of BIV ’22 with inhibition at A and B is
generally larger than BIV ’22 with inhibition at D but further
investigation is required to determine if this difference has
any practical relevance.
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(a) (b)

(c) (d)

Fig. 7 Detection of targets against the background ‘Rubble’ with a tar-
get and background speed of 29 pixels/s. a Shows BIV ’08’s ESTMD
output (X-axis) and the rawMLI local area motion values (no nonlinear
conditioning) used as a second dimension (Y-axis) for added separabil-
ity. b Shows the cumulative distribution function of a using threshold
values (X-axis) to binarise the output of theESTMDand calculate detec-
tions. c Shows the ESTMD output of BIV ’22 with inhibition at point
A (X-axis) and the nonlinearly conditioned local motion feedback val-
ues from the MLI. d Shows the cumulative distribution function of c

(nonlinear inhibition model) using threshold values (X-axis) to binarise
the output of the ESTMD and calculate detections.. The total number
of false positives in b, d differ due to values in d being suppressed
below the minimum value on the graph. These figures show that the use
of inhibition has the ability to significantly increase target-background
discrimination as the ESTMD threshold separation between the false
and true targets (difference between the red and blue lines on the right
graphs) is much greater in d than for b

3.5 Dynamic signal conditioning

From individual training background results, a trend between
background speed and the value of c was observed. Figure9
shows the correlation between Emli and the best performing
c value with a G value of 1.1. The line of best fit is also
shown and resulted in Eq. 3, which allows for a dynamic

computation of c based on an estimate of global motion.

c = 0.013488 × ln(EMLI) + 0.05514 (3)

3.6 Temporal filtering in theMLI

Over the training backgrounds, tuning the MLI corner fre-
quency showed large performance improvements over the
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Fig. 8 Comparative
performance of BIV ’08, BIV
’19, and BIV ’22 with inhibition
at different locations (A–D) and
with a tuned temporal filter in
the MLI. The results are shown
for the training backgrounds
over all speeds. LCM and
FKRW performance are shown
for comparison with and without
inhibition. The 5th, 25th,
median, 75th, and 95th
percentiles are shown. Inhibition
at location A and B performed
better than other locations.
Tuning the temporal filter in the
MLI (corner frequency = 4 Hz)
further improved performance.
AUROC calculated by
integrating up to 20 false
positives. LCM and FKRW
performed significantly worse
than any of the BIV models

original published value (0.453 Hz). Performance improve-
ments began to taper off with a corner frequency value
between 3.0 and 4.0 Hz, to a 18% and 19% performance
increase from the original value, respectively. Figure10
shows the performance of different corner frequency values.
While this plateau in performance suggests that the tempo-
ral low-pass filter could be removed from the MLI, it would
result in reduced accuracy of optic-flow calculations (Skelton
et al. 2020). Having no low-pass filtering would cause larger
fluctuation in the feedback, possibly leading to instability.
Additionally, if the optic-flow stageswere utilised, a trade-off
may need to be made between target saliency improvement
and motion vector accuracy by means of the temporal low-
pass filters corner frequency. Due to these factors, we have
decided to keep the low-pass filter intact. Figure11 (bottom)
shows the conditioned nonlinear inhibition map with anMLI
corner frequency of 4 Hz. It can be seen that trailing edges
of objects (right hand side) have been reduced and leading
edges of objects increased compared to the conditioned non-
linear inhibition map with an MLI corner frequency of 0.453
Hz (middle). Henceforth, any mention of the tuned MLI will
correspond to an MLI with a corner frequency of 4.0 Hz.

3.7 Overall performance

The introductionof nonlinear inhibition showedgreat improve-
ment in detection performance, especially for backgrounds
containing physically large man-made features. Figure12
shows the detection performance for up to 20 FPs for a single
scene, target and background speed combination for BIV ’08
Fig. 12a, BIV ’19 Fig. 12b and BIV ’22 with inhibition at
locationA Fig. 12c. Both LCM and FKRWwith and without
nonlinear inhibition are also shown.

BIV ’08 obtained 108 TPs, while BIV ’19 obtained 142
TPs: a 31% improvement. BIV ’22 with inhibition at loca-
tion A further improved performance, obtaining 187 TPs: a
73% increase over BIV ’08 and 32% increase over BIV ’19;
and an insight into the effects using linear versus nonlinear
conditioning.

Figure12d shows BIV ’22 (without the tunedMLI tempo-
ral filter) with inhibition at locations A and B obtaining 189
TPs. The inclusion of the tuned MLI temporal filter (corner
frequency of 4.0 Hz) further improved the number of detec-
tions to 218 TPs: an 15% increase over BIV ’22 without MLI
tuning, and a 102% and 53% increase over BIV ’08 and BIV
’19, respectively.

Figure12f, g shows LCM without and with inhibition,
respectively. LCMwithout inhibition obtains 1 TP, while the
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Fig. 9 The correlation between best performing value of c for a given speed and background and mean of the local area motion over the entire
frame (G = 1.1). Equation3, the line of best fit, is also shown as this was used for dynamically adjusting the inhibiting signal

Fig. 10 Performance
comparison of different MLI
temporal corner frequency (CF)
values. Performance
improvements start to drop off
between a corner frequency of
3.0 and 4.0 for BIV ’22 with
inhibition at location A + B. No
meaningful performance
difference was observed
between models with the highest
CF values used
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Table 1 25th, 50th and 75th
AUROC percentiles for the
training backgrounds over all
speeds as shown in Fig. 8

Method 25th Median 75th Mean diff. Paired t test

Stat. diff. p

BIV ’08 0.0082 0.1710 0.5608 −0.1100 Yes < 0.005

BIV ’19 0.1251 0.3083 0.6545 −0.0194 Yes < 0.005

BIV ’22 (A) 0.1388 0.3363 0.6479 −0.0060 Yes < 0.005

BIV ’22 (A + B) 0.1429 0.3378 0.6652 – – –

BIV ’22 (C) 0.1349 0.3284 0.6666 −0.0060 Yes < 0.005

BIV ’22 (D) 0.1319 0.3260 0.6631 −0.0045 No 0.178

BIV ’22 (A + B + MLI) 0.1938 0.4016 0.6804 0.0303 Yes < 0.005

LCM 0.0025 0.0030 0.0038 −0.4041 Yes < 0.005

LCM Inhib 0.0101 0.0309 0.1150 −0.3363 Yes < 0.005

FKRW 0.0018 0.0133 0.0262 −0.3869 Yes < 0.005

FKRW Inhib 0.0015 0.0090 0.0204 −0.3877 Yes < 0.005

The mean difference between the method and BIV ’22 with inhibition at location A + B (method—BIV ’22
(A + B)) is shown, with the difference being calculated on matched simulations. Paired T test results are also
shown for each method compared to BIV ’22 (A + B), with a 95% confidence after a Bonferroni correction
for the 10 tests

Fig. 11 Inhibition maps for BIV ’19 (top) and BIV ’22 with the MLI
temporal corner frequency set to 0.453 Hz (middle) and with a tuned
temporal filter set to 4.0 Hz (bottom). Areas of dark red represent the
highest levels of inhibition, yellow modest levels, and blue the lowest.
The left and right columns show the responses for a background speed
of 10 and 50 pixels/s, respectively. Nonlinear inhibition increases the
overall amount of suppression (particularly in areas of mid-level optic
flow), reduces the amount of saturation, and produces smoother roll-off

between areas of differing clutter. The MLI tuning results in inhibi-
tion maps that are more condensed around the artefacts of clutter in the
images at the leading edges (relative to the direction of camera rota-
tion) while simultaneously expanding the amount of inhibition around
the trailing edges of clutter objects. This compresses the red-to-yellow
transitions towards the right hand side of clutter objects (the direction
of camera rotation is left-to-right) and stretches them on the left hand
side

use of inhibition increases the TPs to 90, a 900% increase.
Figure12h, i shows FKRW without and with inhibition,
respectively. Both methods obtained 4 TPs suggesting no
advantage from inhibition at the location it was applied.
FKRWwas only able to find 13 potential targets in this exam-
ple with 9 of them being FPs.

Comparing the maps of linear and nonlinear inhibition
(top vs. middle and lower images of Fig. 11), it can be
seen that nonlinear conditioning generates smoother falloff
between different levels of suppression than the linear con-

ditioning, which produces three distinct levels with little
in-between, i.e. the colour changes for the nonlinear inhi-
bition are more gradual. Also, nonlinear inhibition does not
saturate (completely suppress) large areas of image in theway
that linear inhibition does: more of the signals remain intact,
albeit reduced in amplitude. Consequently, more targets can
be detected because the falloff produces a more gracefully
decaying distribution of inhibition.

Figure13 shows the variability in performance for the
backgrounds ‘Lab’ (an example of a man-made scene)
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Fig. 12 ‘Lab’ input imagery with detection overlays for a fixed false
positive rate of 0.0056 (20 FP). Green circles show correctly detected
targets and red squares show false positives. Both the background and
target speeds were set to 17 pixels/s. Images from top to bottom repre-
sent: a BIV ’08 with 108 TP; b BIV ’19 with 142 TP; c BIV ’22 with
inhibition at location Awith 187 TP; d BIV ’22 with inhibition at loca-
tion A and B with 189 TP; e BIV ’22 with inhibition at location A and
B, and tuned MLI, with 218 TP; f LCM, with 1 TP; g LCM with inhi-
bition, with 90 TP; h FKRW, with 4 TP; i FKRW with inhibition, with
4 TP. FKRW was unable to find more than 13 targets in this example

and ‘Park’ (an example of a natural scene) under all tar-
get/background speed conditions. The faster the targets
moved relative to their backgrounds the easier they were to
detect. For ‘Lab’, BIV ’22 always performed better or as well
as BIV ’08 and BIV ’19. Similarly, for ‘Park’, BIV ’22meth-
ods performed better or as well as BIV ’08 and BIV ’19, as
long as the target moved no faster than the background. The
exception to this was BIV ’22 with dynamic inhibition which
outperformed or was equal to BIV ’08 and BIV ’19 under all
but two speed combinations.

BIV ’22 with dynamic inhibition performed better as well
as BIV ’22 with static inhibition on ‘Lab’, as long as the
targets moved slower or at the same speed as the back-
ground. This is because the dynamic feedback was derived
from the mean local area motion of the frame, upon which
the target motion has an almost negligible impact, i.e. there
is no knowledge of target speed. On ‘Park’ BIV ’22 with
dynamic inhibition outperformed linear feedback more fre-
quently than BIV ’22 with static inhibition.

Another point of interest is that the dynamic inhibition
performance is much better than that of the static inhibition
for Park compared to Lab. This is thought to be due to the
large amount of clutter inPark compared toLab, as this allows
a more accurate estimate of motion to be obtained and thus
a better estimate of c.

Performance of BIV ’08 was larger than FKRW, and
LCM under most conditions (see Tables 2 and 3), and for
almost all speed conditions (Table 2), BIV ’22 with either
static or dynamic inhibition generally outperformedBIV ’08.
For motion that fell outside of the operational range of the
model (a target speed of 10 pixels/s), the use of inhibition
increased performance significantly. However, within this
region FKRW was competitive often matching or outper-
forming the BIVmethods. This highlights the BIV’s reliance
on the temporal component of targets in imagery and the
importance of correctly tuned filters for different speed set-
tings. At these levels of motion a smaller value of c in the
feedback (a steeper remapping gradient) can be beneficial
as the background signals dominate the target signals. As a
result, an increase in suppression is more likely to reduce
FPs than TPs. However, in a real-world application it may
be difficult to know what the target speed is ahead of time,
making it hard to optimise such criteria. When targets are
moving much faster than the background, such as targets at
50 pixels/s and background at 10 pixels/s, BIV ’08 performs
best. This is because the temporal energy of the targets alone
is sufficient to separate them from the background. Under
this condition, BIV ’22 with dynamic inhibition performed
the worst out of all BIV methods due to its reliance on back-
ground velocity estimation.

For backgrounds that are minimally cluttered (e.g. Field),
BIV ’08 provided the best detection rates. This is because
the background signals interfere less with the target signals
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Fig. 13 Box and whisker plots (5th, 25th, median, 75th, 95th) for the
AUROC performance for up to 20 false positives for all speed scenar-
ios on the backgrounds ‘Lab’ (man-made elements) and ‘Park’ (natural
elements). Target detection in natural scenes is often more difficult due
to the continuous spatial clutter versus the high intensity local spatial

clutter of a scene with large man-made objects in it. FKRW and LCM
detected very few true targets and performed worse than all BIV model
configurations under all conditions except for target speeds of 10 pix-
els/s, which were below the detection tuning for the BIV models
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Table 4 AUROC performance
comparison for different
methods

Method Without targets at 10 pixels/s With targets at 10 pixels/s

25th Median 75th 25th Median 75th

BIV ’08 1.000 1.000 1.000 1.000 1.000 1.000

BIV ’19 1.005 1.503 4.266 1.021 1.665 5.663

BIV ’22—A 0.982 1.484 4.788 1.003 1.943 10.411

BIV ’22—A + B 0.990 1.504 4.889 1.015 1.977 10.740

BIV ’22—C 0.989 1.481 4.614 1.010 1.948 10.000

BIV ’22—D 1.010 1.524 4.684 1.042 1.852 7.543

BIV ’22—A + B + MLI 0.995 1.688 5.764 1.046 2.243 14.731

BIV ’22—Dynamic 0.956 1.855 6.428 1.010 2.294 14.385

LCM 0.007 0.018 0.174 0.009 0.045 0.833

FKRW 0.041 0.217 0.792 0.079 0.368 2.864

LCM w/ Inhibition 0.063 0.327 1.722 0.107 0.686 12.881

FKRW w/ Inhibition 0.032 0.224 0.770 0.069 0.369 2.408

Performance is normalised against BIV ’08, with performance for 10 pixels/s targets shown as excluded and
included

Table 5 25th, 50th and 75th
AUROC percentiles for the all
backgrounds and speeds

Method 25th Median 75th Mean diff. Paired t test

Stat. diff. p

BIV ’08 0.0161 0.1747 0.6722 −0.0995 Yes < 0.001

BIV ’19 0.1070 0.3276 0.6697 −0.0314 Yes < 0.001

BIV ’22 (A) 0.1164 0.3398 0.6427 −0.0291 Yes < 0.001

BIV ’22 (A + B) 0.1211 0.3451 0.6564 −0.0241 Yes < 0.001

BIV ’22 (C) 0.1117 0.3417 0.6599 −0.0274 Yes < 0.001

BIV ’22 (D) 0.1107 0.3391 0.6728 −0.0221 Yes < 0.001

BIV ’22 (A + B + MLI) 0.1603 0.4001 0.6689 – – –

BIV ’22 Dynamic 0.1731 0.4155 0.6484 −0.0046 No 0.1883

LCM 0.0029 0.0039 0.0053 −0.4240 Yes < 0.001

LCM Inhib 0.0140 0.0341 0.1328 −0.3491 Yes < 0.001

FKRW 0.0028 0.0353 0.0861 −0.3672 Yes < 0.001

FKRW Inhib 0.0023 0.0343 0.0984 −0.3627 Yes < 0.001

Themean difference between themethod and BIV ’22with inhibition at locationA+B+MLI (method—BIV
’22 (A + B + MLI)) is shown, with the difference being calculated on matched simulations. Paired T test
results are also shown for the each method compared to BIV ’22 (A + B + MLI), with a 95% confidence after
a Bonferroni correction for the 11 tests

when compared tomore cluttered scenes. In other words, any
BIV ’22 inhibition introduced likely suppressed the targets
more than the false positives. Nonlinear inhibition improved
performance most on scenes containing man-made elements
(Table 3), noting themedianAUROC for nonlinear inhibition
on man-made scenes is almost twice that for natural scenes.
The likely reason for this is the additional high frequency
information (texture) present in natural scenes.

In general, when not including target speeds of 10 pix-
els/s, BIV ’22 with dynamic inhibition performed the best.
When aggregating results for all backgrounds (Tables 3 and
4) BIV ’22 had a median AUROC 2.33 times greater than
BIV ’08, 1.25 times greater than BIV ’19, 10 times greater
than FKRW, and 104 times greater than LCM. The inclusion

of targets moving at 10 pixels/s reduces the median AUROC
significantly.However, this increases the relative benefit from
inhibition compared to the other BIV models. BIV ’22 with
dynamic inhibition performed 3.97 times greater than BIV
’08, 1.44 times greater than BIV ’19, but reduces the bene-
fits compared to other models, 7.4 times greater than FKRW,
and 76.6 times greater than LCM. Overall, while motion of
10 pixels/s is outside the operating range of the BIV model,
benefit can still be had using nonlinear inhibition. Further-
more, tuning the temporal and spatial filters to be sensitive
to a different range of target speeds is expected to improve
results for those speeds.

Overall, BIV ’22 with inhibition at location A and B with
MLI tuning performs significantly better than all other meth-
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Table 6 AUROC median performance, with 25th and 75th percentile, for FKRW and LCM with inhibition applied on individual backgrounds and
grouped backgrounds, over all speed configurations, up to 20 false positives

Background FKRW w inhibition LCM w inhibition FKRW improvement (%) LCM improvement (%)

25th Med 75th 25th Med 75th 25th Med 75th 25th Med 75th

All backgrounds 0.003 0.039 0.110 0.013 0.036 0.139 − 23.5 − 0.8 4.9 495.5 830.8 2165.0

Manufactured backgrounds 0.004 0.024 0.102 0.039 0.114 0.184 − 16.7 − 23.3 4.4 1693.0 2690.9 2585.8

Natural backgrounds 0.002 0.047 0.115 0.009 0.019 0.049 5.0 − 13.7 4.0 322.7 401.3 764.5

Field (n) 0.342 0.362 0.380 0.145 0.297 0.352 2.8 5.7 5.6 2276.2 3392.9 3101.1

Fountain (m) 0.168 0.196 0.216 0.130 0.156 0.172 − 7.8 1.2 6.1 3032.5 2386.9 2063.5

Rubble (n) 0.214 0.237 0.252 0.166 0.282 0.346 92.3 96.9 96.7 5013.1 6449.4 5788.1

Lounge (m) 0.014 0.017 0.020 0.067 0.160 0.312 − 20.6 − 14.9 − 14.0 3447.4 5245.0 7592.0

Walkway (m) 0.079 0.090 0.107 0.059 0.203 0.235 − 9.4 − 4.6 6.0 3351.5 6239.1 4910.1

Outdoor (n) 0.138 0.153 0.166 0.020 0.028 0.040 − 11.1 − 7.7 − 5.9 807.9 624.7 539.7

House (m) 0.064 0.073 0.086 0.008 0.019 0.031 − 17.3 − 14.3 − 10.3 − 10.3 68.9 113.7

Bluff (n) 0.078 0.092 0.105 0.017 0.036 0.057 − 2.9 8.3 16.3 1454.5 1210.9 1175.8

Library (m) 0.100 0.122 0.152 0.028 0.043 0.061 17.6 27.5 44.9 430.3 496.9 574.2

Hill (n) 0.073 0.090 0.100 0.014 0.016 0.020 − 18.3 − 9.0 − 5.4 300.0 187.7 119.3

Lab (m) 0.002 0.004 0.007 0.048 0.102 0.145 − 50.6 − 39.4 − 20.5 3325.0 5016.3 3774.7

Rock Garden (n) 0.089 0.096 0.104 0.029 0.058 0.077 − 0.5 − 0.9 0.5 1218.2 1669.7 1537.2

Park (n) 0.016 0.018 0.022 0.007 0.010 0.015 1.3 1.1 1.6 117.6 110.3 144.5

Bushes (n) 0.000 0.001 0.002 0.028 0.036 0.046 0.0 − 26.7 − 36.0 1246.3 1037.5 883.0

Shadow (n) 0.019 0.026 0.033 0.011 0.015 0.021 − 28.1 − 12.6 − 8.3 231.3 254.1 286.4

Tree (n) 0.002 0.002 0.004 0.009 0.014 0.018 − 15.8 10.0 8.1 615.4 537.2 365.8

Car Park (m) 0.000 0.002 0.003 0.167 0.210 0.230 − 100.0 − 24.0 − 13.2 9200.0 6169.0 5248.8

Botanic (n) 0.000 0.001 0.002 0.004 0.006 0.008 0.0 − 31.3 5.3 150.0 102.4 87.7

Creek Bed (m) 0.000 0.000 0.002 0.004 0.005 0.006 0.0 0.0 18.8 140.0 64.3 60.6

Classroom (m) 0.000 0.001 0.002 0.031 0.086 0.165 − 100.0 − 18.8 − 31.0 1707.4 2750.0 3522.5

Average improvement − 13.4 − 2.7 3.3 1902.7 2200.7 2094.4

Backgrounds are labelled as natural (n) or manufactured (m) to define which group they belong to. Performance improvement/deterioration of both
FKRW and LCM with feedback are shown as a percentage of their respective method without feedback

ods except for BIV ’22 with dynamic inhibition, for which
there is no significant difference in performance (see Table
5). This is likely due to BIV with dynamic inhibition hav-
ing larger variation in performance due to its dependence on
background speeds.

3.8 Inhibition applied to other methods

The use of optic-flow for inhibition was also shown to be
beneficial to the LCM technique, with average median per-
formance on a scene increasing by 22 times (Table 6). This
improved LCM performance above that of FKRW. LCM’s
performance on a per frame basis increased from a median
of 1.8% of BIV ’08 to 32.7% (Table 4).

FKRW did not show the same improvement, delivering
similar performance both with and without inhibition. The
absence of any improvement is thought due to the adaptive
threshold within the FKRW algorithm, which is applied after
the facet kernel. Many of the targets missed are within clut-

tered or darker areas, where contrast between the target and
background is lower; and it is believed that the FKRW adap-
tive threshold is being set to capture higher contrast targets,
such as dark targets against a bright sky. FKRW therefore
completely removes lower contrast targets. As the optic-flow
is most apparent in regions of clutter, the majority of sup-
pression will occur where the adaptive threshold has already
completely removed targets. This means that no further sep-
aration can be given to targets outside regions of clutter. As
a result, current performance does not improve.

For this reason, in order for optic-flow inhibition to be use-
ful, an algorithmmust be able to compute some formof target
probability (saliency). Unfortunately, FKRW does not retain
such information. That said, it is believed that using optic-
flow inhibition after the facet kernel, but before the adaptive
threshold, could produce better results. LCM’s improved
performance comes from every pixel having a probability
associated with it based on its degree of contrast, which
allows the inhibition to allocate higher probability to targets
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in areas of little clutter while reducing it for those in regions
of high clutter.

4 Discussion

Biological explorations have previously looked at global
motion feedback within the vision of insects (Egelhaaf 1985;
Warzecha et al. 1993); however no indication of local-
area feedback has been noted. Wiederman, Brinkworth and
O’Carroll (Wiederman et al. 2008b) took an engineering
approach to suggest local motion inhibition within the BIV
could offer advantages to real-world applications whilst still
being biologically plausible. Our previous work (Melville-
Smith et al. 2019) made modification to (Wiederman et al.
2008b) and showed the benefit of using linear local motion
inhibition earlier in the BIV model. This aided the BIV’s
pixel sized target detection performance, far exceeding the
capability of any other state-of-the-art methods by reduc-
ing sensitivity to potential targets in areas of clutter, thereby
reducing false positives in those areas.

In this study, applying a biologically plausible, dynamic,
nonlinear inhibition mechanism further improved the small
target detection capabilities of the BIV model relative to
our earlier work. The current model has a general median
AUROC 2.33 times that of BIV ’08 and 1.25 times that of
BIV ’19. Performance over other methods were consistent
with previous studies (Melville-Smith et al. 2019), with a
median AUROC 10 times that of FKRW, and 104 times that
of LCM.

For target speeds of 10 pixels/s, inhibition increased per-
formance significantly. This was most useful when the target
and background moved at the same speed, i.e. the targets
were effectively static within their environment, the cam-
era platform inducing all motion. This scenario represents
those tested in (Wiederman et al. 2008a, b, 2010), which also
showed a falloff in performance as target motion fell outside
the speeds for which the models were tuned.

For target speeds of 10 pixels/s, when the backgrounds
began to move faster than the targets, the performance of all
BIV methods dropped below that of FKRW. This highlights
the dependence of the BIV on temporal information. Spatial-
only methods, such as FKRW, do not suffer accordingly. As
a result, although in general its performance is lower than
that of the BIV, FKRW performed more consistently over
all speeds, while that of the BIV methods tend to fluctuate
according to the target/background motion or scene proper-
ties. To get around the BIV’s performance drop off outside
its tuned regime, multiple parallel models, each with dif-
fering tuning parameters, could be used and the outcomes
fused. This would increase performance over a wider range
of speeds.

The study shows that dynamic feedback can be benefi-
cial, with performance dependent upon the accuracy of the
global motion estimate. The method used to estimate global
motion in this study was sufficient to show such merit. How-
ever, results suggest that the estimate of global motion was
not terribly accurate for indoor scenes (see Lab and Lounge
performance in Table 3), where there is often a lack of spa-
tial features. It is believed that using the modified motion
pipeline implementation from (Skelton et al. 2019) could
provide more consistent motion estimates across all scenes
and thus offer more uniform improvements independent of
any scene characteristics. Other sensors, such as gyroscopes,
could be utilised in a real-world setting to get additional infor-
mation about the rotational velocity of the platform and help
inform the algorithm.

Initial tuning of the inhibiting signal found that for more
natural scenes a larger value of c (shallower slope) is pre-
ferred as this offers consistent global motion estimates over
the entirety of a scene. This suggests that, not only are the tar-
get speeds an important factor in the performance of the BIV,
but so too is the internal construction of a scene. Additional
analysis is needed to determine what in a scene’s structure
could be used to generate a more robust dynamic inhibition
signal. It may also be possible to obtain further performance
increases by modifying the spatial filter in the MLI. How-
ever, it is expected any such improvements would likely be
minor compared to tuning the temporal filter as smaller ker-
nels are expected to suppress targets more in areas of low
clutter while larger kernels may not create a feedback map
with sufficient detail to suppress smaller areas of clutter. As
this study focused on analysing inhibition locations and the
effects over entire scenes, further studies may also be war-
ranted to look at the inhibition location performance based
on localised areas of clutter. This could give a deeper under-
standing of what happens to the detection of both targets and
clutter in these regions, leading to new inhibition schemes.

Inhibition on other algorithms (such as LCM) can be
beneficial. However, this relies on it being applied before
decisions are made on what is or is not a target. In other
words, optic-flow inhibition could be applied to almost any
algorithm to provide improved performance so long as the
algorithm provides the probability of a target’s existence
(salience maps), and not just a binary outcome regarding
detection. Without this, inhibition will likely offer little or
no benefit.

5 Conclusion

This study investigated local motion feedback points within
the BIV model. It showed that performance gains could
be obtained by introducing inhibition concurrently into the
beginning of the RTC and the VLPF in the RTC (A + B). It
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also showed that combining these two feedback locations
offered greater performance over the individual locations
tested in this study. However, the performance difference
between BIV ’22 with inhibition at locations A and B and
BIV ’22 with inhibition at location D was not found to be
significant. Neurologically, both locations are be plausible;
however, further studieswould need to be undertaken to see if
evidence for either one is supported biologically. The authors
believe that BIV ’22with inhibition at locationsA andBmay
be the most logical location as all information is available at
the start of the RTC, allowing for more a higher degree of
sensitivity, whereas later in the model, decisions have been
made and information reduced.

Tuning the temporal LPF in the MLI further improved
performance by allowing a more accurate clutter/inhibition
map to be generated for regions surrounding larger, more
salient objects. The combination of the dynamically condi-
tioned optic-flow inhibition at locations A and B, and tuning
of the temporal LPF in the MLI provided a performance
increase of nearly 19% relative to BIV ’22 with just inhi-
bition at location A, 25% increase relative to BIV ’19, and
133% increase relative to BIV ’08.

The application of optic-flow inhibition to other algo-
rithms also showed that their performance can be improved
significantly, with LCM’s median AUROC performance
increasing by a factor of 22.

Overall, this work has shown that the combination of local
(as a measure of clutter) and global (as a measure of ego-
motion) optic flow can be nonlinearly processed and used to
suppress false positives when attempting to detect pixel sized
targets in cluttered scenes from moving platforms.
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