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Abstract
Retrieval of episodic memories requires intrinsic reactivation of neuronal activity patterns. The content of the memories is
thereby assumed to be stored in synaptic connections. This paper proposes a theory in which these are the synaptic connections
that specifically convey the temporal order information contained in the sequences of a neuronal reservoir to the sensory-
motor cortical areas that give rise to the subjective impression of retrieval of sensory motor events. The theory is based on a
novel recursive version of support vector regression that allows for efficient continuous learning that is only limited by the
representational capacity of the reservoir. The paper argues that hippocampal theta sequences are a potential neural substrate
underlying this reservoir. The theory is consistent with confabulations and post hoc alterations of existing memories.

Keywords Theta sequences · Episodic memory · Recursive support vector regression

1 Introduction

To retrieve episodic memories, brains need to elicit robust
internal sequences of neuronal activity patterns that are
linked to previous sensory-motor experiences. Thus, neu-
ral processes need to be in place that form such activity
sequences as well as link them to sensory-motor areas while
learning. Episodic memories are further known to be able
to change over time by reconsolidation (Sara 2000; Nader
et al 2000; Milekic and Alberini 2002; Alberini and Ledoux
2013), eventually even leading to false memories of events
that never happened (Loftus 1992;Hyman Jr. et al 1995). This
suggests that the architecture of episodic memory is versa-
tile and local in time in the sense that any pair of memory
items can be connected into a memory episode independent
of context.

Since electrophysiological recordings in animals prohibit
correlating activity sequences to introspective retrieval of
episodic memories, memory-related activity sequences are
typically studied in rodents in association with behavioral
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performance in navigational tasks (Lee and Wilson 2002;
Karlsson and Frank 2009). Activity sequences of hippocam-
pal place cells thereby have been reported to correlate to (Lee
and Wilson 2002; Dragoi and Buzsáki 2006; Foster and
Wilson 2007) and to causally explain (Jadhav et al 2012;
Fernández-Ruiz et al 2019) memory-dependent navigation.
Sequences have furthermore been found to exist even before
a specific spatial experience has been made by an ani-
mal (Dragoi and Tonegawa 2011, 2014; Farooq and Dragoi
2019), suggesting that, at least part of the learning process
is about establishing synaptic connections between existing
intrinsic neuronal sequences and the sensory-motor areas that
represent the content of the memory episode.

The idea that multi-purpose intrinsic neuronal dynamics
is used to represent time series of extrinsic events has been
invented multiple times under the names of echo-state net-
works (Jaeger and Haas 2004), liquid computing (Maass et al
2002) and reservoir computing (Jaeger 2005; Schrauwen et al
2007; Lukoševičius and Jaeger 2009) and has proven to be
both computationally powerful and versatile (Maass et al
2002; Sussillo and Abbott 2009), particularly, since multiple
output functions can be learned on the same intrinsic activity
trajectory (sequence) and played out in parallel.

There has been considerable previous work on how to
construct a dynamical reservoir via the dynamics of neu-
ronal networks (Haeusler and Maass 2007; Sussillo and
Abbott 2009; Lazar et al 2009). Also different learning rules
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for the synapses from the sequence reservoir to the output
neurons were successfully explored, such as the perceptron
rule (Maass et al 2002), a Hebb rule (Leibold 2020) or recur-
sive least squares-derived rules (Williams and Zipser 1989;
Stanley 2001; Jaeger and Haas 2004; Sussillo and Abbott
2009). The more general applicability of reservoir comput-
ing to neuroscience is, however, still limited because several
open questions remained, particularly about how to relate
reservoir computing ideas to neurophysiological data: For
example, can sufficiently rich reservoirs be realized with
spiking neuronal networks? How can be found out whether
reservoir spiking activity bears meaningful representations
in the sense of Marr’s second level—as opposed to just
being a “liquid” black box? Can a regression type learn-
ing rule be neuronally implemented using local Hebbian
principles? How can new information (including false mem-
ories) be added to an existing episode or specific memory
items be deleted? Can physiologically plausible models real-
ize the universal approximation property (Grigoryeva and
Ortega 2018) or are the limits of learning already imposed by
interference of weight updates at output synapses below the
capacity limit (Amit and Fusi 1994)? Particularly the latter
problem is of fundamental importance in applying reservoir
computing ideas to brain activity data, since available record-
ings (and also most models) are generally restricted to only
a relatively small number of neurons (limiting representa-
tional capacity), whereas a whole real brain has been close
to infinite capacity for all practical (here experimental) pur-
poses. Finding a representation of reservoir activity would
thus eliminate capacity limitations and allow for efficient
representation of a huge set of sensory-motor experiences in
the synaptic weights.

Here, I propose a neuronal implementation of recursive
kernel support vector regression as an efficient one-shot learn-
ing rule that is only limited by the representational capacity

of the dynamical reservoir and allows for importance scaling
(as compared to only graceful decay). Kernels thereby allow
reservoir activity to be interpreted as representations in the
sense of Marr (Hermans and Schrauwen 2012), which adds
to theoretical neuroscience by allowing for specific interpre-
tations of neural activity. For example, I will argue that theta
sequences of hippocampal place cells (Foster and Wilson
2007) implement a kernel that represents distance in time or
space and that the integration of auditory nerve activity at
different delays implements a kernel representing time for
acoustic stimuli in a cochlear frequency band. Below the
capacity limit, the learning rule implements the well-known
recursive (Gauss-Legendre) least mean squares (or FORCE)
rule (Sussillo and Abbott 2009) on the underlying neuronal
patterns, showing that FORCE-learning is only limited by
the capacity of the simulated or measured reservoir.

2 Results

Let us consider an episodic experience to be fully reflected by
the sensory-motor evoked summed postsynaptic potentials
y(k)
t at all involved neurons k for all points in time t . In order
to store the episodic experience as a memory, the synaptic
inputs y(k)

t need to be linked to a preexisting reservoir state
xt such that, whenever xt is present afterward, the learned
synaptic connections w(k) from the reservoir evoke the same
depolarizations

y(k)
t = xTt w(k) (1)

without the presence of the original sensory-motor activity
(Fig. 1), i.e., w(k) solve a regression problem with xt as
regressors. Considering only depolarizations y(k) in such a
one-layer feedforwardnetwork, onedoes not need to consider

Fig. 1 Conceptual overview. At any instance in time, let us consider q
to encode any sensory-motor experience of an agent (human, animal or
machine).Aneocortical representation y(q)of this experience is evoked
by the sensory afferents, andmotor efference copies. The current state x
of a reservoir (e.g., in the hippocampal formation) is linked to the tem-

porally coincident experience q by synaptic learning of the connections
W from the reservoir to the neocortex. The synaptic change is thereby
proportional to the error signal y − W x; see Eq. (5). During retrieval,
the reservoir state x previously associated with a real, or confabulated
experience q̂, evokes a corresponding neocortical representation y(q̂)

123



Biological Cybernetics (2022) 116:377–386 379

nonlinearities during spike generation and, with reasonable
approximation, the model is an effectively linear network.
It also should be noted that in this paper I do not intend to
explain the nature of the preexisting sequences xt , and just
assume that they exist. For the sake of simplicity, I further
drop the neuron index k, since all considerations trivially
generalize to multiple neurons.

Besides the scalar product in Eq. (1), biological feasibility
imposes two more constraints on how one models learning.
First, synaptic plasticity should be activity-dependent and
therefore the weights should be a superposition of existing
neuronal activity patterns,

w =
P∑

t=1

xt ut = X u (2)

with X = (x1, . . . , xP ) (see Sect. 4 on representer theorem).
Second, the learning rule needs to be recursive, i.e., new
input–output pairs (xP+1, yP+1) should be added such that
Eq. (1) holds for all previous patterns (no interference) until
the capacity limit and memory decay beyond the capacity
limit should be importance based. In short, the learning rule
is supposed to identify the loads u such that the outputs yt
are exactly recovered by the model,

y = XTX u . (3)

As long as the kernel matrix K = XT X is invertible
(below the capacity limit), the solution for u is exact and
straightforward. For non-invertible or badly conditioned K
(at or above the capacity limit), the standard approach would
be to use the pseudo-inverse K ∗ of K , which optimizes the
mean squared deviation between output y and model out-
put K K ∗ y and leads to the classical recursive least squares
(RLS) algorithm if applied recursively. RLS on the loads
u, however, has two main disadvantages. First, RLS makes
explicit use of time making it hard to modify memories by
post hoc insertion of new detail within an existing memory
sequence. Second, RLS on the loads u is hard to interpret
biologically.

I therefore suggest, as an alternative approach, to solve
the regression problem by maximizing

W(u) = −1

2
uT K u + yT u , (4)

which, for invertible K , yields the exact recovery condition
Eq. (3), therefore justifying the use of W as the underly-
ing objective function. Moreover, the maximization problem
from Eq. (4) can be derived as the dual problem of support
vector regression for ε-insensitive loss (see Sect. 3 and Vap-
nik 1995; Schölkopf and Smola 2002), further supporting the
interpretation of regression.

Since support vector approaches translate to nonlin-
ear models using the kernel trick Knm = xTn xm →
κ(n,m) (Vapnik 1995), the model also provides a foundation
for neural implementations of kernels, which can be consid-
ered as representations of the topological space spanned by
n and m. In the same sense as Marr saw representations to
be connected to the algorithmic level, the kernel represents
the space of n and m in a sufficient way to fully specify the
outlined regression algorithm, and thus, following (Hermans
and Schrauwen 2012), I suggest to consider it as being the
true neural representation of this space in contrast to con-
sidering representations as activity patterns in undersampled
cell populations.

MaximizingW results in an update rule for u (see Sect. 3)
that translates into a weight change �w = X�u of

�w = (yP − wT xP )︸ ︷︷ ︸
eP

N xP

xTP N xP
. (5)

with N = 1l − X K−1 XT, and an iteration rule

N ← N − (N xP ) (N xP )T

xTPN xP
, (6)

that is equivalent to RLSwithout forgetting (i.e., without reg-
ularization). The learning rule is one shot in the sense that,
for any new pattern, the update rules have to be applied only
once and it allows for the functional interpretation error (eP )
times novelty (N ): Because 1l − N is a projection opera-
tor (see Sect. 3), N xP will be 0 whenever xP equals one
of the previous patterns already included in X , whereas any
component of xP that is orthogonal to all patterns in X will
be unaffected by N . The action of N can thus be computa-
tionally interpreted as novelty detection. For a naive learner
(P = 0), the rule is plain Hebbian, since the error equals the
output and the novelty equals the input pattern. In Sect. 4,
I will suggest a biologically feasible implementation of N
and its learning as anti-Hebbian updates of a recurrent neu-
ral network. Importantly, the translation into neuron space
resulting in Eqs. (5) and (6) is only required to show how the
learning rule can be biologically implemented. In contrast to
RLS, it is not necessary to use these update rules for all ensu-
ing applications, which are only relying on the numerically
much more tractable update rule for the loads u presented in
Eq. (7) in Sect. 3.

As a first neuroscience application, I refer to hippocampal
theta sequences (Fig 2A): Roughly, one considers a subset of
place cells to fire in sequence in every cycle of the hippocam-
pal theta oscillation of the local field potential (about 8 Hz in
rodents). In the subsequent cycle, the starting neuron of the
previous cycle drops out of the sequence but a new neuron is
added at the end of the sequence. Thus the activity patterns of
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C
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E

Fig. 2 Episodic learning with theta sequences. (A) Spike raster plot of
the first 300 of N = 10, 000 neurons implementing theta sequences as
described in Sect. 3 Theta sequences (sparseness f = 0.01, sequence
length S = 10). In every theta cycle the sequence moves one neu-
ron upward. (B) Kernel derived as scalar product between population
patterns from the simulations shown in A (black dots) and theoretical
prediction (blue line). (C) Retrieval (red line) of a low-pass noise signal
(black) of length T = 100 from P observations (crosses; for P see
insets from left to right) using the theoretical kernel from B. The signal
was generated as a running average (50 time steps) of white noise. (D)
Same as B. Brightness signal for five example RGB channels from a
movie scene (P = 20, T = 111, N = 576 × 768 × 3). (E) Retrieval
of movie snippet (five example frames shown) from .re_potemkin, a
copyleft crowd sourcing free/open source cinema project (https://re-
potemkin.httpdot.net/). Original movie snippet and reconstruction are
provided as Videos S1 and S2

close-by cycles are similar, whereas they become more and
more distinct the further the cycles are spaced apart.

In the simple theta sequence model outlined above, the
overlap (scalar product) of activity patterns decays linearly
(see Sect. 3) implementing a kernel Kmn = κ(n − m) as a
function of the distance n − m of the two cycles (Fig. 2B).

Inserting the triangular linear kernel from Fig. 2B into the
learning rule derived by recursively maximizingW , one can
recover the original signal yt without simulating the under-
lying reservoir. Increasing detail of the original signal can be
retrieved the more pairs (xt , yt ) one takes into account for
learning (Fig. 2C). Since the kernel is a continuous function,
the capacity has become infinite, i.e., any function yt can be
recovered if the neuron number N becomes infinite.

As mentioned above, generalization to multiple neurons
is trivial, and to illustrate let us consider each output neuron
to reflect one RGB color channel of any pixel in a movie ( 1.3
million neurons). Using only 20 of 110movie frames already
allow for recovery of the movie snippet with a compression
below 20% (Fig. 2D, E).

By construction, the learning rule has no explicit depen-
dence on time; thus, the order in which pairs (xt , yt ) are
presentedmakes no difference to the final fit (Fig. 3A), which

A

B

Fig. 3 Post hoc addition of memory items. A Left: Retrieval (red) of
a low-pass noise signal (see Fig. 2C) of length T = 100 for P = 15
randomly positioned inputs (circles). Right: Same as left after 35 further
inputs (crosses) have been iteratively added to the learning process. B
Illustration of A for post hoc insertion of a movie scene. Top: original
movie sequence (P = 20). Bottom: Movie sequence after a new scene
has been inserted to the original snippet (P = 35). Movies are provided
in Videos S3 and S4

is not the case for the FORCE rule derived fromclassical least
squares.

Biologically, this means that any episode can be post hoc
modified by learning new pairs (xt , yt )with temporal contin-
gencies reflected in the kernel arguments, generating amodel
of false memories (Fig. 3B).

Every memory system is finite and the way of forgetting
fundamentally determines its usefulness for practical appli-
cations. A graceful decay of memories over time (Amit and
Fusi 1994) is already quite an advantage to catastrophic for-
getting in attractor networks (Hopfield 1982); however, the
behavioral relevance of a memory may not just depend on
how old or young it is. I therefore introduce an importance
scaling into the learning rule in that loads ut are multiplied
with some attenuation factor 0 ≤ at ≤ 1. Thus, if one
chooses at = λ(T−t), 0 < λ < 1 one retains a graceful
decay over time as in standard RLS. The resulting learning
rule that maximizes the modifiedW is then obtained by only
the small modification of replacing the kernel κ(n,m) by
κ(n,m) an am (see Sect. 3). The effect of importance scaling
is illustrated in Fig. 4A, B, where the learning rule is told
to pay more attention to a certain time interval at the cost of
worse reconstruction in other time intervals.

Importance may randomly vary over time and thus tem-
poral contingency in a values should not be a necessary
prerequisite for importance scaling. Applying the learning
rule in a scenario with random a values shows that retrieval
error is indeed largest for small a independent of time
(Fig. 4C). Post hoc increase of a could thus be considered as
a model of memory consolidation, post hoc decrease of a as
a model of extinction learning.

With importance scaling as a weighting mechanism at
hand, let us now revisit the original capacity question. In the
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Fig. 4 Importance scaling. A Retrieval (red) of a low-pass noise signal
(black; see Fig. 2C) for attenuation parameters at = λ|P∗−t | with λ =
0.999 and varying importance centers P∗ (see titles). B Illustration
using the movie snippet from Fig. 2 with importance in the beginning
(at = λt ,top) and in the end (at = λ110−t , bottom). In the image
sequence on top one stills sees an erroneous reflection of the glass in
the last three images, whereas in the bottom sequence the glass in the
first to frames shown erroneously displays the yellowish colors from
the end. Movies are provided in Videos S5 and S6. C Left: Retrieval
(red) of a low-pass noise signal (black) with N = 20, 000 time steps
(only shown between time step 6,000 and 6,500) and P = 500 patterns
(crosses) with random importance values a (cyan) between 0.5 and 1.
Middle: Reconstruction error (absolute difference between black an red
line) negatively correlates with a for all P = 500 patterns. Right: Error
has no dependence on time

language of the recursive updating rules from equations (7)
and (8) the memory and computational demand scale with
square of the number of patterns P . A straightforward choice
to limit the capacity is to introduce a cutoff dimension dc such
that only the dc patterns with highest importance values a are
stored in the algorithm and the other dimensions are set to 0.
In Fig. 5A, B I vary dc for low-pass filtered noise signals of
different length with linearly increasing importance toward
the signal end and observe that for low dc, the reconstruction
error increases relatively soon, whereas for dc � 300 recon-
struction worked well even for signal lengths up to 10 times
larger than dc, which reflects that the geometry of the kernel
fits the correlational structure of the signal.

The need to adjust the kernel length to the time scale of
signal fluctuations suggests that more specific signal prop-
erties require more specifically designed kernels. In most
neuroscience applications, sensory signals are not random
but reflect physical constraints of the environment or the
sensory periphery. As a next example I therefore consider
functions with bandpass characteristics similar to cochlear
frequency channels. Knowledge about the preferred local
structure of a function (oscillations with a certain frequency)
suggests a kernel with similar bandpass characteristics (see
Sect. 3 and Fig. 6A). In contrast to the triangular linear ker-
nelwhich only represents temporal distance, the band kernels
represent temporal distance (by their decay) and frequency.

Learning is then performed on each cochlear frequency
channel separately and the fitting benefits from both recover-

A B

Fig. 5 Capacity.AExample reconstructions (green) of a signal (orange)
for smaller (top) and larger (bottom) cutoff dimensions (dc = 100 and
300, respectively). Sample points used for reconstruction (signal length
p = cycles / 2) are shown in blue. For the left panels the signal length
equals the cutoff dimension. On the right the signal is 10 times longer
than the cutoff (only 1000 data points shown). B Reconstruction error

(rootmean squared) for different cutoff dimensions (colors as indicated)
as a function of signal length (solid lines indicate mean from 20 rep-
etitions, shaded areas the 90 percent quantile). The results are derived
from a low-pass noise signal with a running average over 100 time steps
and a triangular kernel with length 25 time steps
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A

B

C

Fig. 6 Sound reconstruction. A Kernels representing time in a fre-
quency channel with center frequency on top (see Sect. 3 Frequency
kernels). B Retrieval (red) of the signal (black) in five of the fre-
quency channels (crosses mark memory items). C Reconstruction
(red; moved upward for reasons of illustration) of the original sound
signal (black; the beginning of the song http://ccmixter.org/files/
texasradiofish/63300, CCBYNC) by summing over the filter-weighted
channel components (see Sect. 3 Frequency kernels). Reconstructed
sound file is provided in Audiofile S8, well as the identically filtered
original sound wave (Audiofile S7)

ing the function values at a few points and the fine structure
of the kernel. A post hoc synthesis across frequency chan-
nels recovers the original soundwave with high fidelity
and smaller memory demand as the original sampling (see
Sect. 3 Frequency kernels).

3 Methods

Recursive support vector regression

Linear support vector regression with ε-insensitive loss
(Schölkopf and Smola 2002; Vapnik 1995) is derived from
minimizing the squared L2-norm 1

2‖w‖2 of the weight vector
of the linear model f (x) = wT x + b under the inequality
constraints−(ε+ζn) ≤ yn − f (xn) ≤ ε+ζ ∗

n , with ζn, ζ
∗
n ≥

0, and including the sum of slack variables
∑

n(ζn + ζ ∗
n ) as

a regularizer.
The classical work has shown that the resulting optimal

solution yields a weight vector of shape

w =
∑

n

(α∗
n − αn) xn

that maximizes the dual problem

W(u, v) = −1

2
uT K u + yu − ε

∑

n

vn

with Knm = xTn xm , un = α∗
n −αn , vn = (α∗

n +αn) under the
constraintsα, α∗ ≥ 0. Hence, for every localmaximumofW
regarding u, there is a combination of αn, α

∗
n that minimizes∑

n vn , i.e., αn = 0 if un > 0 and α∗
n = 0 if un < 0.

For ε → 0, the maximum in (u, v) converges to αn = 0
or α∗

n = 0, and thus, in this limit, one can drop v from the
equations.

Here, a recursive learning rule is derived such that W
remains at this maximum if a new observation (yp, xP )

is added. One therefore denotes uT = (ũT, uP ), yT =
( ỹT, yP ), and X̃ = (x1, . . . , xP−1) and finds the optimum
of

W
(
(ũT, uP )T

)
= −1

2
ũT K̃ ũ − uP xTp X̃ ũ

−1

2
u2P KPP + ỹũ + yP uP

by

0 = ∂ũW = −K̃ ũ − uP X̃TxP + ỹ →
ũ = K̃−1 ( ỹ − uP X̃T xP )

and

0 = ∂uPW = −xTP X̃ ũ − KPP uP + yP

0 = yP − xTp X̃ K̃−1 ỹ − uP (KPP − xTP X̃ K̃−1 X̃TxP )

If one denotes the optimum loads of the previous P−1 inputs
by ũ′ = K̃−1 ỹ, one can express the optimality conditions
using xTP X̃ ũ′ = xTP w, as

uP = yP − xTP w

KPP − xTP X̃ K̃−1 X̃T xP

ũ = ũ′ − uP K̃−1 X̃T xP (7)

The update rules for u from Eq. (7) require computation
of the inverse of K̃ , which, a) is computationally costly and,
b) biologically not straightforward. I therefore derived an
iteration rule using the Sherman–Morrison–Woodbury iden-
tity (Nocedal and Wright 2006), which yields an iteration
equation for K−1 from the P − 1st to the Pth pattern

K−1 =
(
K̃−1 0
0T 0

)
+ C−1

P

(
Q̃ Q̃

T − Q̃

− Q̃
T

1

)
(8)

with Q̃ = K̃−1 X̃T xP and CP = KPP − xTP X̃ K̃−1 X̃T xP .
The iteration equation (8) can be proven by elementary alge-
bra (K−1 K = 1l).
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Remarks

• Translation of update rules fromEq. (7) toweight updates
�w = X�u is straightforward:

�w =
(
X̃ , xP

) (
ũ − ũ′
u p

)
= (−X̃ K̃−1 X̃T + 1l) xP uP

= (yP − x̃Tp w)
(1l − X̃ K̃−1 X̃T)xP

xTP (1l − X̃ K̃−1 X̃T)xP
;

see result from Eq. (5).
• 1l − N := X̃ K̃−1 X̃T, and N are projection operators,

since [1l − N ]2 = [1l − N ] and N 2 = N .
• If P − 1 ≤ N and patterns are linearly independent, K̃
is a Gramian and, hence, invertible.

• For P − 1 exceeding N , K̃ can no longer be exactly
inverted. Formally this is not necessary using a kernel
representation, since the kernel operates on an infinite-
dimensional Hilbert space. Biologically, for a finite
number N of neurons, approximate inversion can be
obtained by importance scaling (see below).

• Recursively adding data points continuously increases
the dimensions of the matrix K−1 and, hence, memory
and computational costs. A brute force strategy to avoid
this numerical divergence is to introduce a cutoff dimen-
sion, after which one removes the patterns with lowest
importance values a. For all figures except Fig. 5, in
whichwe explicitly study this parameter, we used a cutoff
dimension of 300.

Importance scaling

Importance is introduced by attenuation factors 0 ≤ at ≤ 1
that scale the inequality constraints of support vector regres-
sion: −(ε + ζn) ≤ an [yn − f (xn)] ≤ ε + ζ ∗

n . If an is small,
slack variables can also be small and the pair (yn, xn) con-
tributes little to the loss via the regularizer. The resulting
optimal solution is very similar to the one without attenua-
tion factors, only the weight vector are now

w =
∑

t

ut at xt

which, in the computation of the recursive learning rule,
requires to replace

κ(n,m) → κ(n,m) an am .

Biologically, this rule maps to an attenuation of the inputs
xt → at xt . Thus, patterns with low at are treated as more
different to patterns with large at , even if they have similar
structure.

The scaling of the kernel also has interesting consequences
for situations in which the K is no longer invertible (P > N )

if constructed from a finite population of neurons. In this
case, one nevertheless, can apply the iteration equation (8);
however, patterns with small an will contribute only little to
Q̃ as the respective rows are scaled down in X̃T. The resulting
matrix is hence no longer an exact inverse, but the patterns
for which the “inversion” fails mostly are those with low an .
This is best illustrated by assuming an = 0, in which case
the pattern x has no contribution to Q̃ and hence K−1, as if
it would not have been used for learning. Functionally mod-
ulating plasticity with a also allows a post hoc improvement
in an existing episodic memory, by setting higher importance
an to this pattern if the episode is presented as second time.

Theta sequences

Sparse binary random patterns ξn with Prob(ξ (k)
n = 1) = f

are assumed to represent hippocampal ensembles that fire
together at a specific phase of the theta cycle. Given that S
of those ensembles are activated in sequence during a theta
cycle the population pattern in cycle t equals

xt =
S−1∑

k=0

ξ t+k

For a population of N neurons, the overlap of two such pat-
terns can be computed as

Knm =
∑

kk′
ξTn+kξm+k′ →

N→∞[S − |n − m|]+〈ξ2〉 N

+(S2 − [S − |n − m|]+)〈ξ 〉2 N .

For independent binary random variables, one finds 〈ξ 〉 =
〈ξ2〉 = f , and thus the overlap is a linear triangular kernel

Knm = K (|n − m|)
= N

(
[S − |n − m|]+ f (1 − f ) + (S f )2

)

as depicted in Fig. 2.

Frequency kernels

The cochlea separates a sound s(t) into frequency channels
that roughly act as band-pass filters and can thus be charac-
terized by a filter kernel γ f (t), with f denoting the center
frequency of the cochlear channel. If one assumes multiple
(k = 1, . . . , K ) auditory nerve fibers to connect to such a
frequency channel the linear response of each of those fibers
can be modeled as x (k)

t = c f (t −
(k)) = (γ f ∗ s)(t −
(k))

with a fiber-specific delay 
(k) that may reflect differences
in fiber lengths, diameters or myelination.
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For a large number K of fibers the resulting kernel can be
computed as an integral

∑

k

x (k)
t x (k)

t ′ ≈
∫

d
 c f (t − 
) c f (t
′ − 
)

=
∫

du c f (u) c f (t
′ − t + u) = κ(t ′ − t) ,

which corresponds to the autocorrelationof cochlear response,
and for long broadband signals s equals the autocorrelations
of the filters γ f . The exponentially decaying kernel used in
Fig. 6 reflects exactly such a prototypical autocorrelation.

Specifically, a sound signal (the beginning of the CC BY
NC song I’ll be your everything by Texas Radio Fish, http://
ccmixter.org/files/texasradiofish/63300) was passed through
a gamma tone filterbank consisting of seven channels (center
frequencies 2k ×200 Hz, k = 0, . . . , 6) with width constants
2.019ERB (Glasberg andMoore 1990). In each of the chan-
nels ρk data points per cycle (equally spaced) were selected
for learning. The parametersρk where channel (k-)dependent
and equaled 6, 4, 3, 3, 1.5, 1, .25 for k = 0, . . . , 6. The
recursive KSVR was fitted in each channel independently
in chunks of 500 data points.

For full audio reconstruction, the reconstructed signals
were Fourier-transformed in each band and divided by the
Fourier transforms of the respective gammatone filter kernel
omitting frequencies below 10 Hz and above 20 kHz. These
filter-corrected components were backtransformed, summed
and rescaled to the root mean square level of the original
signal.

4 Discussion

Kernel support vector regression (KSVR) is a powerful tool
for function fitting. Here, I presented a biologically plausible
neural implementation of recursive KSVR that enables stor-
ing episodic memories as temporal sequences of retrieved
sensory-motor activity patterns yt (i.e., fitting yt ). The ker-
nels can be biologically interpreted as scalar products of
activity patterns xt of a reservoir and provide a neural repre-
sentation of temporal distance.

Hippocampal theta sequences provide a well-known
example that realize exactly such a reservoir. However,
already in the hippocampus, neuronal activity not only
consists of sequence-type activity, but also exhibits ratemod-
ulations induced by changes in the sensory environment
generally known as remapping (Muller and Kubie 1987;
Leutgeb et al 2005; Fetterhoff et al 2021). Thus, behavior-
related neuronal activity may always contain both reflections
W xt of the reservoir and feedforward sensory motor drive,
thereby balancing expectations (i.e., reservoir-driven activ-
ity) and sensory reality. This combination of top-down and

bottom-up input streams is widely considered to be a gen-
eral design principle of the neocortex (Douglas and Martin
2004; Larkum 2013), resulting in sensory-motor activity pat-
terns yt at the same time reflecting stimulus-driven responses
and intrinsic dynamics as, for example, reflected by synfire
chains (Abeles et al 1993).

While the view of neocortex as a hierarchical combination
of sensory-motor prediction loops (Ahissar and Kleinfeld
2003) is probably a good proxy of the neurobiological
substrate, it is not widely explored in classical artificial neu-
ral network research. There, the universal approximation
theorem, as a hallmark result, states that neural networks
can approximate any function to arbitrary degree of preci-
sion (Cybenko 1989;Hornik 1991)which rather views brains
as feedforward function fitting devices. The field of reser-
voir computing has extended this idea toward the temporal
domain by suggesting intrinsic neural dynamics to repre-
sent a time axis as the independent variable of function
fitting (Jaeger 2005) and thereby allows neural networks to
generate predictions varying with time. However, to be able
to operate on a continuous streamof sensory inputs, the learn-
ing rules for the output synapses of the reservoir need to be
able to recursively update (Williams andZipser 1989; Stanley
2001; Sussillo and Abbott 2009), which requires a biologi-
cal interpretation of the common least-mean square derived
ideas.

Here, I suggest that the iterative update of the projection
operationN that only requires anti-Hebbian type outer prod-
ucts can be implemented as anti-Hebbian learning of a simple
recurrent neuronal network: In the neural space of synaptic
weights, X K−1 XT = 1l−N is of outer product form as seen
from Eq. (8). The matrix N = 1l − X K−1 XT can thus be
interpreted as the connectivity of a recurrent neural network
that is learned by anti-Hebbian updates, i.e.,

N = 1l −
P−1∑

t=1

r t rTt (9)

with r P = N xP/

√
xTPN xP . Since X K−1 XT is a projec-

tion matrix (see Sect. 3), one furthermore can write r t =
x⊥
t /‖x⊥

t ‖ with x⊥
t being the component of xt that is orthog-

onal to all previously learned patterns.
This leads to the following interpretation of r as the activ-

ity of a neural network in discrete time s

r(s + 1) = φ[δs,0 x + N r(s)] ,

where the network is initialized at r(s = 0) = 0, the input
x is present only at time step s = 0, and φ(z) = z/‖z‖. As
a result of this dynamics r(s) = x⊥

t /‖x⊥
t ‖ for all time steps

s > 1. This dynamical fixed point state will then produce an
anti-Hebbian weight update from Eq. (9).
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A further drawback of RLS-derived rules was their lack-
ing theoretical foundation since they made explicit use of the
reservoir patterns that, for technical reasons, were limited to
a small subsample of neurons. Here, I use the generalized
representer theorem (Schölkopf et al 2001) to translate the
weight update into anupdate rule for the loads (coefficients) u
of the input patterns X and thereby avoid an explicit represen-
tation of the neural feature space xt and instead only require
a kernel representation (Hermans and Schrauwen 2012). For-
mulation of the learning rule on the loads allows analytical
insights for reservoirs of size N → ∞, but also reduces the
computational demand of simulating (or recording) from a
large number of neurons.

Importantly, this paper considers reservoir activity only
in the context of memory retrieval but not replay of reser-
voir sequences. Replay in the context of reservoirs has often
been used to improve performance and stability (Mayer and
Browne 2004; Jaeger 2010; Sussillo and Abbott 2012; Rein-
hart and Jakob Steil 2012; Laje andBuonomano 2013; Jaeger
2017; Leibold 2020). However, changing reservoir patterns
would require to also change the readout-matrix to maintain
the originally learned memory traces yt (Sussillo and Abbott
2012; Reinhart and Jakob Steil 2012; Jaeger 2017). In the
context of the model presented here, relearning is not nec-
essary as long as the kernel remains fixed, i.e., the topology
of the space is constant. Neurobiologically, however, such a
trick would require to change the weights w by replacing the
matrix X .

I presented two neurobiological examples of how kernel
representations are or may be implemented, hippocampal
theta sequences and auditory nerve fiber populations. Tempo-
ral sequences of activation patterns, however, are ubiquitous
in sensory-motor systems and occur on multiple time scales.
Thus the proposed theory may also apply to a multitude
of other examples. A prerequisite is to find a continuous
representation of time in the population patterns that then
translates via a scalar product into kernels with continu-
ous time dependence. Further such examples could be the
long-term changes of the hippocampal rate code of place
cells (Mankin et al 2012;Ziv et al 2013), activationof cerebel-
lar purkinje cells during limbmovements (Hewitt et al 2011),
or olfactory-driven activity that evolves along fixed trajecto-
ries after odor presentation (Stopfer and Laurent 1999).
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