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Abstract

Natural phenomena can be quantitatively described by means of mathematics, which is actually the only way of doing
so. Physics is a convincing example of the mathematization of nature. This paper gives an answer to the question of how
mathematization of nature is done and illustrates the answer. Here nature is to be taken in a wide sense, being a substantial
object of study in, among others, large domains of biology, such as epidemiology and neurobiology, chemistry, and physics,
the most outspoken example. It is argued that mathematization of natural phenomena needs appropriate core concepts that are
intimately connected with the phenomena one wants to describe and explain mathematically. Second, there is a scale on and not
beyond which a specific description holds. Different scales allow for different conceptual and mathematical descriptions. This
is the scaling hypothesis, which has meanwhile been confirmed on many occasions. Furthermore, a mathematical description
can, as in physics, but need not be universally valid, as in biology. Finally, the history of science shows that only an intensive
gauging of theory, i.e., mathematical description, by experiment leads to progress. That is, appropriate core concepts and

appropriate scales are a necessary condition for mathematizing nature, and so is its verification by experiment.

Keywords Mathematization - Core concepts - Scales - Scaling hypothesis

1 Introduction: What is the question?

The key question whose answer we want to analyze in this
short essay is how the mathematization of nature works. That
it works is clear, as many concrete, even famous examples
show, but how is it done? In answering this question, we will
restrict ourselves to the natural sciences.

Mathematization of nature means that we can mathemat-
ically describe natural phenomena at hand and quantify the
processes we analyze. In short, numbers in, numbers out.
Only mathematics allows us to do so. Since four centuries,
physics has shown that mathematization works in the sense
that it is highly successful. Far more important, however,
is the fact that without its mathematization the impact of
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physics would have been minor because making quantita-
tive predictions that can be verified experimentally not only
allows an internal check that speeds up progress in under-
standing (through feedback) but also gives rise to applications
that can be precisely tailored to the situation at hand. Dijkster-
huis (1961) brilliantly described the significant contributions
of Johannes Kepler, Galileo Galilei, and Simon Stevin to the
mechanization of our (physical) world picture that reached
its final foundation, its crowning achievement, in the work
of Isaac Newton (1687).

For Dijksterhuis (1961), mechanization meant the devel-
opment of physics in general, since until the seventeenth-
century mechanics was its dominant part. Hence, his focus
was on mechanics. His classic (Dijksterhuis 1961) shows
that mathematization as mathematical description of phys-
ical reality concretized as late as about 1600 with Galileo
and Stevin, though the first ideas about mechanics already
appeared two millennia earlier.

We will take advantage of some concrete but simple exam-
ples to illustrate the essential role that core concepts play in
reaching such a mathematical description of natural reality.
(In the present context, core concepts were also called key
concepts but from now on the expression core concepts will
be used. A key opens a door and a core is the central part car-
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rying the full weight.) After having consolidated our common
understanding, we will turn to verifying how core concepts
in conjunction with suitable scales play their essential role in
the success of a few but much acclaimed examples taken from
Biological Cybernetics, the world’s oldest journal in compu-
tational neuroscience. The journal dates back to 1961/63. For
instance, Horace Barlow (Cambridge University) and Nor-
bert Wiener (MIT; Cambridge, MA) belong to its founding
fathers (van Hemmen 2009). A short outlook will gather the
insights we have gained.

Science is a quest, a reconnoitering expedition to find so-
called logical explanations of phenomena occurring in the
world around us. Such a quest is akin to looking for points of
orientation and then tracing the outline of an as-yet-unknown
landscape. It should be constantly borne in mind that many
erudite and learned arguments fill the pages of books on the
history and philosophy of science but that here we will sim-
ply skip these and pick a few masterpieces or introductions
as sign posts in a fascinating landscape. As for the history
of mechanics as it leads through many loopholes to New-
ton’s laws (1687), the classic The mechanization of the world
picture of Dijksterhuis (1961) will provide the reader with
practically all the details needed, and many more. From a
more general perspective, the monograph of Simonyi (2012)
paves the way to a grandiose overview of more recent times.
For the present purposes, Okasha’s booklet (Okasha 2002)
suffices as a nice, succinct, philosophical-background refer-
ence, also mentioning useful supplementary literature.

2 The solution: core concepts and scaling
hypothesis

It is time to delve into the rich soil of concrete examples
that illustrate the relevance of core concepts in the context
of the scaling hypothesis (van Hemmen 2014). We discuss
a few core concepts as they play their key role. First, we
turn to Newton’s second law because nearly everyone knows
this example and can now recognize it as a paradigm. Next,
we quickly analyze three examples taken from theoretical
neuroscience, viz. a neuron as threshold element, STDP as a
canonical learning paradigm, and the population vector code
as determinant of motion. All four examples are only valid
on a certain scale, which naturally leads us to the scaling
hypothesis.

2.1 Core concepts
We embark on analyzing four core concepts. We will then

discover that there is a natural scale beyond which our natural
laws do not hold.
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Momentum & Newton’s laws Many people may remember
the cannonball problem from their days in high-school or
grammar school: A cannon is placed on a tower of height &
and, at time + = 0, a cannon shoots a cannon ball of mass
m and velocity vector v = (vy, v, v3), pointing upward in
some direction. Now solve the problem of determining the
ball’s orbit after leaving the cannon and neglecting friction.
As we live in a three-dimensional world, the velocity v and
a direction have three components; though accidental, for
the present problem two will do as the ball moves in a two-
dimensional, vertical, plane spanned by the tower and the
direction vector. The reader may remember that, neglecting
friction, a parabola was the orbit one was looking for and that
this result followed from Newton’s second law. How did that
work?

Newton (1687) formulated his three laws in a monumen-
tal work with far-reaching consequences, also for planetary
motion. For background information, see the classical work
of Dijksterhuis (1961). Newton’s second law—commonly
known as “force equals mass times acceleration”—describes
how a particle with mass m and velocity v moves in three
dimensions under the influence of a force F. Three ingredi-
ents are to be noted. First, the force Fis, like v = (vy, vy, v3),
a vector F = (Fy, F», F3) with three components since the
space in which we live has three dimensions.

Now we need a totally new concept, a core concept, viz. the
momentum p = mv, which took physics two millennia to dis-
cover (Dijksterhuis 1961). It was Simon Stevin (1548-1620)
who discovered—almost a century before Newton—the
importance of momentum (Dijksterhuis 1970) in his colli-
sion experiments on a frictionless table: The total momentum
is conserved. That means that for two (round) disks with
momentum p the sum p; + p> is the same before and after
the collision; i.e., it is conserved.

Imagine you were an unprejudiced observer around 1600.
Along comes Stevin who joyfully tells you that total momen-
tum is conserved in collision experiments. You would turn up
your nose and ask yourself: What does this nonsense mean?
Mass m has dimension kg and I now need to multiply m by a
weird vector v of dimension m/s in order to get the momen-
tum p = mv. Then, along comes Newton (1687) who brings
in a force F and gives the whole thing a meaning by pos-
ing F = dp/d¢, Newton’s second law, where (a la Leibniz)
d/dr means differentiation with respect to the time #, a new
mathematical idea he brought up independently of Leibniz.

F = dp/dr is what most people know but need not be
aware of yet because for a particle with mass m, position
vector X = X(t), where x generally depends on the time ¢, and
velocity vector v = dx/d¢, we get F = dp/dt = mv/dt =
ma, mass times acceleration a = d?x/dr? with p = mv and
the mass m constant. Newton’s second law is a universally
applicable law of nature. That is, there is no exception...as
long as v/c < 1 where v = ||v|| is the particle’s velocity (in
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m/s) and c is the velocity of light. Already here is the scale
disguised as relativity theory lurking in the background.

Itis worth noting that, simply put, F = dp/dt describes the
change in momentum p under the influence of a force F over
time. Mathematics allows us to solve the differential equation
F = dp/dr; rarely explicitly, but always numerically. The
equation F = dp/dr immediately gives the solution to the
cannonball problem as F = (0, 0, —g) where g = 9.81 m/s?
is the gravity constant and x(0) = (0, 0, &) because the can-
non was standing on a tower of height 4. Newton’s second
law also explains the conservation of momentum as Newton
postulated his third law as well: actio = —reactio during col-
lisions. The sum Fyq, of all forces on and, for the collision,
in the plane of the (frictionless) table therefore = 0 so that
d(p1 + p2)/dt = Fiota1 = 0 and p; + p2 is conserved. That
is, the conservation of momentum follows.

Neuron as threshold element It is time to turn to biology.
More in particular, to computational neuroscience. Let us
first focus on one of the, also historically, first core concepts,
the neuron as threshold element. At the axon hillock, the
axon “leaves” the neuron so as to deliver a neuron’s out-
put to elsewhere. Dropping nearly all historical and other
details (Ermentrout and Terman 2010; Koch 1999), we sim-
ply state as an experimental fact that once the membrane
potential V (¢) exceeds a certain threshold 6, i.e., as soon as
V(t) > 0, the neuron produces a spike, a huge—as com-
pared to the usual mV fluctuations—positive potential jump
of about 0.1 V amplitude as compared to the resting potential
and lasting for about 1 ms.

Action potentials, or spikes for short, are generated
through the coordinated activity of many ion channels
(Ermentrout and Terman 2010; Koch 1999). There is little
doubt that single ion channels can be described in surprising
detail in the context of biological physics. However, a con-
certed action of hundreds of ion channels generating a spike
is still beyond the horizon of theoretical neurobiology and
theoretical biophysics. Accordingly, our scale (sic) is here
the neuronal and not the ion-channel one, and we focus on
the neuron as a threshold element, meaning that it produces
an action potential once its membrane potential V exceeds a
certain threshold 6, the core concept.

A neuron was treated as abstract notion of threshold
element as early as McCulloch and Pitts (1943). McCulloch—
Pitts neurons operate in discretized time with 1 ms time bins
and outputting either a 1 for an active state, meaning spike
emission, or O for an inactive state. (The McCulloch—Pitts
paper has been quoted by many but read by hardly anybody
as the arguments are embedded in the heavily formal lan-
guage of logic.)

The threshold behavior in conjunction with the spike,
which they called the “overshoot,” has also motivated
Hodgkin and Huxley to perform their now famous experi-

ments (Hodgkin and Huxley 1952; Huxley 2002; Meunier
and Segev 2002). Their work, which was both experimental
and theoretical, earned them the Nobel Prize and initiated an
overwhelming plethora (Ermentrout and Terman 2010; Koch
1999) of highly detailed neuron models describing many
different situations, all outputting different spike shapes,
but—and that is the cardinal issue—exhibiting threshold
behavior for the potential V. Their system of four coupled
nonlinear differential equations that contains the threshold
only implicitly is the result of their brilliant fitting work, dat-
ing back to the early fifties, when computers were still in
statu nascendi. This is an intellectual achievement that the-
oreticians can hardly overestimate.

Spike-timing-dependent plasticity (STDP) and its learning
window The barn owl (Konishi 1993) is a nocturnal preda-
tor that azimuthally localizes its prey in the woods with a
precision of 1°—2°. Azimuthal sound localization uses the
time difference between left and right eardrum as direction
coding, which therefore depends on the interaural distance
L between the two; at present, L ~ 6 cm. This time differ-
ence is washed out strongly by a wide distribution of delay
times before the spikes stemming from left and right eardrum
finally meet the neurons at the laminar nucleus, where the first
map is to be built through synaptic learning, unless genetic
coding would reach such a spatial ps precision, which is
beyond scientific imagination, to phrase it friendly.

The usual precision one expects from a bird of which the
neuronal system operates with spikes is in the millisecond
range but a simple calculation shows that in azimuthal sound
localization a barn owl reaches a precision in the ps range,
three orders of magnitude better than the ms = millisecond
one expects. This is the Konishi paradox. To solve it, spike-
timing-dependent plasticity (STDP) was invented (Gerstner
et al. 1996). Its experimental verification (Markram et al.
1997) appeared more than a year later and illustrates that
theory may well precede its experimental confirmation. It is
far more important, however, that a theory, mathematical (or
not), does allow experimental verification, which need not
always be the case (Smolin 2006).

The STDP basics is simple to explain (Kempter et al. 1999;
van Hemmen 2001) and goes as follows. Experimentally, it
is known that the young barn owl, once it is able to leave the
nest three weeks after hatching, cannot perform the azimuthal
sound localization to a precision of 1°—2° it would need
to survive. After two more weeks, however, it can. What
happens during these two weeks?

Synapses need time to develop, to “learn,” which in the
barn owl happens during these two critical weeks. In the barn
owl’s laminar nucleus, axons stemming ultimately from left
or right cochlea and carrying the interaural time-difference
(ITD) code through a certain time delay meet for the first
time. Let the interaural or, more precisely, the inter-tympanic
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distance be L and the direction of the sound source with
respect to straight on be 6 so that straight on means 6 = 0,
then the ITD equals (L/vs) sin @ where vy is the velocity of
sound, about 330 m/s. The time code of the prey (or predator
in case of the barn owl’s meal) direction is then contained
in L sinf. No more, no less. And the brain has to decode
this and tell the animal what to do. In other words, the brain
apparently converts the time code contained in 6 into a place
code by letting neurons fire when they get their maximal
input, i.e., simultaneously from left and right ear. (As the
cochlea is in between, this always means modulo the period
T of the oscillation.) This is what the anatomy is going to do.
The original, so to speak theoretical, idea of converting time
code to place code is due to Jeffress (1948), who published it
long before its anatomical confirmation appeared (Carr and
Konishi 1990).

Returning to the anatomy that is depicted schematically in
Fig. 1, the (vertical, fast) axons turn left or right, so to speak,
so as to run parallel to each other with the spike speed now
being slowed down and contacting about 20 neurons in a row
through excitatory synapses. One needs to keep in mind that
here there is no inhibition. The whole anatomical construc-
tion is genetically predisposed, though only on a global level,
but the barn owl’s us precision is not. By construction, the
growth of this anatomical construction depends among oth-
ers on available food, which fluctuates from day to day, and
growth of thousands and thousands of axons connected to the
cochlear frequency decomposition, so that genetic coding is
out. Now STDP with its learning window W as core concept
comes in.

sound source

}

left ear : right ear

delay Nucleus Laminaris

coincidence
detector
neuron

Fig. 1 Jeffress model. Schematic anatomy of the barn owl’s laminar
nucleus, the first station where axons from left and right ear come
together. The figure shows the Jeffress (1948) idea of converting a time
code into a place code: Depending on the direction, different neurons
as threshold-coincidence detectors simultaneously get input from left
and right so that different directions “ignite” different neurons. The
latter are positioned in a one-dimensional row, as are the directions.
In reality (Carr and Konishi 1990) there are many more (i.e., about 20)
neurons than the 5 shown here and many more axons, all parallel to each
other, coming from left and right and accidentally connecting each other
though synapses that are “in between,” as indicated above

@ Springer

We focus on synapse i with efficacy J; and positioned
on a certain neuron in the row shown in Fig. 1 and specify
how it will change depending on the arrival time #; of a
spike at the synapse and the firing time " of the postsynaptic
neuron it is on. This specification, namely, is the learning
window W, a function that can assume either positive or
negative values. It is the key to understanding the benign
influence of W on the formation of the barn owl’s extremely
precise azimuthal map. The speed of this kind of learning can
be tuned mathematically by a prefactor 1 so that the actual
change is described by AJ; = nW. The learning window
W = W(s) with s = tl.f — t" has a shape as specified by
Fig. 2. For now its precise shape is not important. Only its
qualitative appearance counts. That is, W (s) > 0 is positive
for s = (tl:f -t < 0<% tif < t" so that the presynaptic
spike arrives before the postsynaptic neuron fires. On the
other hand, W(s) < O is negative for s = (tl:f —t") >
01 < tl.f so that the presynaptic spike arrives after the
postsynaptic neuron has fired. Colloquially, those who come
too late shall be punished.

During map formation, many synapses on a neuron in the
laminar nucleus are steered by coherent input of a specific
frequency stemming from the frequency decomposition per-
formed by the cochlea of left and right ear(drum)s. For a
specific rotation angle 6 of the head, the time delay between
left and right eardrum is fixed but at the start of the crit-
ical period of two weeks for synaptic learning in the barn
owl’s brain there is a huge scatter in time delays along dif-
ferent axons. In general, this wetware cannot change but the
synapses can. Figure 3 shows what happens as time proceeds:
The “good” ones among the synapses are strengthened and
the “bad” one are weakened, which is due to the positive and
negative part, respectively, of the learning window W.

Because in the barn owl phase locking of the cochlear
neurons happens up to 9 kHz, the temporal resolution is far
better than in, say, human ears. (Though phase locking in
humans and most other vertebrates is restricted to < 1.5 kHz,
humans have more brains, through which they compensate
their wetware deficit and become as good as barn owls, with a
spatial resolution of 1°—2° for azimuthal sound localization.)
Though in the case of the barn owl’s laminar nucleus all
synapses are excitatory, in the auditory system of mammals
inhibition plays a role as well and STDP can be adapted
accordingly; see, e.g., Leibold and van Hemmen (2005).

Not only does STDP describe the learning dynamics of
individual synapses in that it tunes them so as to fit their
spatiotemporal surroundings but, as Fig. 3 shows for a sin-
gle neuron, it also governs how many synapses and which
ones operate in concert so as to build a topographic map. To
obtain a full map, however, synapses on different neurons
also need—so to speak—to tell each other what they are
doing, through a kind of retrograde signaling (Fitzsimonds
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Fig.3 Evolution of synaptic strengths and “survival of the fittest” in the
young barn owl’s laminar nucleus during its critical period. a Before
learning, there are 600 synapses with a Gaussian distribution (2.5 £
0.3 ms) of the synaptic strengths connected to a single neuron, binned
as a function of the signal-transmission delays w.r.t. arrival at left and
right eardrum. b After a learning session from a stimulus of 2 kHz,
only 105 synapses survive. They have delays that differ by multiples
of the period 7" = 500 s (scale bar); phrased differently, modulo the
period T everything in an oscillation is identical. The output spikes
exhibit phase locking with a vector strength (van Hemmen 2013) of
0.97 corresponding to a temporal precision of 20 us. ¢ Analogous to b
but now for an input frequency of 5 kHz. Figure and data taken from
Gerstner et al. (1996), Fig. 2, who also show how in subsequent nuclei
the temporal precision can be increased by an order of magnitude
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Taken from Kempter et al. (1999). B. Experimentally obtained learning
window of a cell in rat hippocampus; reprinted by permission (Zhang
etal. 1998). The similarity to the left figure is evident. It is important to
realize that the width of the learning window is to be in agreement with
other neuronal time constants. In the auditory system, for instance, these
are nearly two orders of magnitude smaller than, e.g., in hippocampus
so that the learning window’s width scales accordingly

and Poo 1998). In the barn-owl case (Kempter et al. 2001),
this means that along the string of parallel axons coming
from left and right ear the synapses connected to the very
same presynaptic axon communicate their positive or neg-
ative change to their neighbors and in this way influence
each other, a mechanism called axon-mediated synaptic lean-
ing (AMSL). That is, given a suitable anatomy an ITD map
with the required topographic precision emerges from a com-
bined action of homosynaptic spike-based Hebbian learning
through STDP together with AMSL as its propagator along
the presynaptic axons.

As a final note, STDP also gives rise to (Wenisch et al.
2005) a full explanation of how direction-selective spatiotem-
poral maps come about in primary visual cortex V1. The
interplay of the anatomy of excitation and slightly longer-
ranged inhibition and STDP is essential to giving rise to a
spatiotemporal map. This fact shows again the potency of
STDP as core concept in synaptic learning and map forma-
tion (van Hemmen 2006). As shown by Wenisch et al. (2005),
map formation in V1 is mainly a matter of self-organization
based on specific neuroanatomy in conjunction with STDP
that then gives rise to the spatiotemporal receptive fields from
which the whole map arises, as confirmed by experiment.

Population vector code The population vector code relates
directional tuning of single cells to global, directional motion
induced by an assembly (Hebb 1949) of neurons. The scale
we now focus on is that of an assembly of neurons; in this
case, in motor cortex (Georgopoulos et al. 1986; van Hem-
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men and Schwartz 2008). The underlying geometric idea is
appealingly simple and its predictions are extremely pow-
erful. Let us assign to each motor neuron with label i its
preferred direction e;, a unit vector. It is a priori not evident
that one can assign such a vector but experimental evidence
has shown one can (Georgopoulos et al. 1986; van Hem-
men and Schwartz 2008). For an assembly (Hebb 1949) or
population of motor neurons {1 < i < N} with momentary
firing rate v; = v;(t), the weighted vector sum, the so-called
population vector n

N
nzve:Zviei, (1)

i=1

encodes the direction e of movement resulting from an
assembly of motor neurons, while v, the length of the popu-
lation vector n, is proportional to the instantaneous speed of
the drawing motion we focus on.

That is, n predicts the grasping direction or the direction
an animal would like to choose (van Hemmen and Schwartz
2008) for catching its prey, be it the barn owl (7yfo alba), the
back swimmer (Notonecta undulata) or the sand scorpion
(Paruroctonus mesaensis). In fact, for all these animals it has
been shown that the population vector applied to the sensory
instead of the motor system of the animal already predicts
its prey-catching behavior (Stiirzl et al. 2000; van Hemmen
and Schwartz 2008; van Hemmen 2014). In other words, the
population vector code functions as a neuronal actuator. An
extra advantage is that sensory and motor system would use
the same coding, which makes this correspondence principle
even more plausible.

2.2 Scaling hypothesis

The scaling hypothesis (van Hemmen 2014) formulates what
is known from many examples, but since a definitive proof
cannot be provided we are forced to formulate it as hypoth-
esis: There is a scale on and not beyond which a specific
description holds. Different scales need different concep-
tual and mathematical descriptions. We have just seen a few
examples as illustration in that the previous core concepts
only function on a certain scale. The population vector code
functions on the population level is three orders of magni-
tude larger than the neuronal one of threshold principle and
STDP.

The most outspoken examples of the correctness of the
scaling hypothesis are still provided by physics. It is mean-
while known that Newton’s second law F = dp/dr only
holds for (i) velocities |v|/c < 1 and (ii) spatial scales down
to 0.1 pm. Six orders of magnitude smaller than our macro-
scopic world (of 1 m), i.e., in the nm range, dynamics is
governed by quantum mechanics, which has some relations
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to our macroscopic world but also needs new and totally dif-
ferent principles such as its probability interpretation that
have no resemblance to what we are macroscopically used
to. That is, these principles cannot be derived but must be
taken as “naturally” given, as is Newton’s law. Adding rela-
tivity one obtains an even richer structure. Again six orders of
magnitude smaller, we arrive at quantum chromodynamics
(QCD) and the so-called standard model, viz., of elementary
articles and quarks, their mathematical description stemming
from quantum field theory. What is beyond, be it space or time
(think of origin of the universe) is a heavily debated domain
of research.

2.3 Core concepts are—usually—only valid on a
certain scale and stand by themselves

Itis time for a tentative summary. We have seen that core con-
cepts are a necessary condition for the mathematization of
nature. They need to be “rightly” chosen, which may take
time; even lots of time (Dijksterhuis 1961). Furthermore,
their validity is bound to a certain scale in space and/or
time, beyond which they do not hold. It may also take lots of
patience (Simonyi 2012) to discover such a scale. One really
outspoken example may do for now.

More than a century ago physicists discovered in the con-
text of radiation—think of Max Planck’s 1900 introduction
of his novel constant & = 27 i—that Newton’s mechanics
apparently does not hold on the scale of atoms and molecules.
The question of what could replace classical mechanics tanta-
lized physics for three decades before a novel kind of physics,
since then called quantum mechanics, was discovered dur-
ing the years 1927-1929. The corresponding probabilistic
interpretation, most notably, the highly successful one due
to the Kopenhagen School of Niels Bohr, has been con-
firmed experimentally in all details, but nevertheless even the
genius of Einstein was not able to accept it (mainly because
of his misinterpretation of the notion of chance). As noted,
beyond quantum mechanics, on a scale six orders of magni-
tude smaller, we enter the QCD domain. Each domain has
its own rules, which cannot be derived from the “coarser”
one, despite having relations with it. That is, the rules exist
in their own right.

Neuroscience also has many scales, viz. that of ion chan-
nels, that of neurons, that of assemblies of neurons,.... Their
scales are separated by orders of magnitude. There are rela-
tions, maybe even intimate ones, between the descriptions on
different scales. Here we do not aim at ‘scales’ in the tech-
nical sense of nonlinear dynamics but at those as they exist
for instance between classical mechanics a la Newton and
quantum mechanics; see, e.g., van Hemmen (2014). These
different scales have descriptions in their own right. They
cannot be derived fully from theories that are valid on a larger
or smaller scale, be that in space or time. This is what one may
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call the ‘principle of scientific independence’ or, for short,
the independence principle.

For example, the probabilistic interpretation of quantum
mechanics exists in its own right. Einstein may have grum-
bled “God does not play dice” but the simple reply is: Why
not? Deciding that is neither up to Einstein, nor to you, nor
to anybody else. Only experiment decides. End of the dis-
cussion.

From the present point of view, (many of) the “laws”
of psychology exist in their own right and there is little
hope that they will ever be straightforwardly “derived” from
neuroscience, which focuses its attention on much smaller
scales. That is, there are doubtlessly many relations between
phenomena on the neuronal and, hence, also on the macro-
molecular level—c.f. neuromicrobiology—and the behavior
of humans, and other animals, but psychology has several
independent(ly existing) notions describing behavior that
only exist by themselves—on the macroscopic scale of psy-
chology. Freud sends greetings.

3 More core concepts from theoretical
neurobiology

It is now time to harvest core concepts while noticing the
appropriate scales. We do so by analyzing some highly
acclaimed papers that have appeared as ripe, tasty, fruits in
Biological Cybernetics, the world’s oldest journal in com-
putational neuroscience, which has meanwhile reached the
respectable age of 60 years and 115 volumes. Nearly all of
these examples exhibit a core concept and do so in the context
of a specific scale. For additional comments, see Koenderink
(2021), Kelso (2021), Wilson and Cowan (2021), Baccala
and Sameshima (2021), Humphries and Gurney (2021), von
der Malsburg (2021) and Abarbanel (2021).

Scale space Eyes behold the three-dimensional world
through a two-dimensional projection onto the retina, an
image. Images may be blurred or distorted, for instance,
because of unlucky illumination of a scene, or bad quality of
the eye lens, or noise, or a combination of all together. Since
the mathematical theory of image processing is of funda-
mental importance—not only to vision!—Koenderink (1984)
apparently chose Biological Cybernetics (BC) for publishing
his essay “The structure of images.”

Here he implemented—cf. Koenderink (2021)—the core
concept of scale space that Witkin (1983) had introduced the
year before. In doing so, he noticed how important Gaus-
sian were in this game and realized that Gaussians have
a unique property that comes in a minute. Introducing the
mathematical framework of the diffusion equation for func-
tions defined on the plane R2, he developed a full-blown
theory incorporating and explaining, and in this way inte-

grating, many experimental facts that were already known.
His bright observation was that a Gaussian is the Green’s
function of a two-(or n)-dimensional Laplacian, so to speak
the infinitesimal generator of blurring. [A Green’s func-
tion or fundamental solution (Evans 2015, §2.3, Eq. (13))
is an integral kernel ® providing an explicit solution to, e.g.,
(0; — A)u = f with initial condition u(t = 0) = 0 through
u(x,1) = [dyds @(x —y, 1 —s) f(y,s).]

In summary, here the core concept is ‘scale space’ and the
scale of image analysis is macroscopic, R2 or, if you like, the
retina plane.

Haken, Kelso, Bunz & the HKB model The best you can do in
getting famous or at least well known in science is inventing
a model that carries your name. Good papers in BC need a
while to take off, meaning that their content is novel, but they
then fly quite long, which in fact is a proven characteristic of
many BC papers.

Haken et al. (1985) invented a model that now carries their
names, viz., HKB. They did not derive but simply posed it so
as to mathematically describe hand movements. It is a math-
ematically simple looking model of two coupled nonlinear
ordinary differential equations of the oscillator type, with a
bit of noise to incorporate many unknown, external, influ-
ences, and describing hand movements; it can be reduced to
a single equation for the relative phase between two fingers.
The HKB equations contain some cleverly chosen param-
eters that allow reproducing some experiments that Kelso
and coworkers had performed and published a few years ear-
lier. Many more experiments followed, a few of which are
described and commented by Kelso (2021).

Clearly, the scale is macroscopic and so is that of the
equations. The question of how to derive equations of the
HKB type neuronally is still a challenge but, as argued in
Sect. 2.3, this may, but need not, happen. What then remains
is a valuable quantitative description on a certain scale, the
macroscopic scale of hand movements.

Wilson—Cowan equations and the continuum limit Neurons
are discrete entities in a three-dimensional continuum. On
the other hand, continuum descriptions allow application of
powerful mathematical techniques related to the mathematics
of pattern formation (Hoyle 2006). The Wilson and Cowan
(1973) equations offer a continuum description of neuronal
reality consisting of continuum variables that describe two
populations of excitatory and inhibitory neurons. As such
they are meanwhile well-known and widely used. As Wil-
son and Cowan (2021) confessed, they aimed from the very
beginning to, among others, traveling waves as possible
solutions—in view of nature, rightly so. The scale is, say,
neuronal and so are the equations.

Hallucinations, a popular topic in the seventies, provide a
nice example and the Wilson—Cowan equations were shown
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(Wilson and Cowan 2021) to allow the typical hallucinatory
patterns as solutions. One need to admit, though, that the con-
tinuity of space is immaterial as a lattice of discrete neurons
allows the very same patterns as solutions (Fohlmeister et al.
1995).

Neurons being discrete entities, a far more fundamental
question is whether the popular Wilson—Cowan equations
could be mathematically derived from a discrete model
through a continuum limit. There are examples in applied
mathematics, as tour de force far beyond the present context,
that allow such a limit. Nevertheless, an early ansatz in this
direction of a rigorous proof already exists since long (van
Hemmen 2004).

Partial directed coherence = PDC Uncovering coherence
such as the simultaneous, i.e., within a small time window,
spiking of many neurons has been proven invaluable to neu-
roscience for understanding collective behavior under the
influence of homogeneous (e.g., a pure tone) or correlated
input. One does so by analyzing many-neuron time series
of very many spikes that are considered as point events.
Machine learning and, thus, high computer power are mean-
while essential in sorting the huge amounts of spike data.

Because of the inherent uncertainty that experimental data
contain, statistics comes in as well. And one needs sorting cri-
teria. Granger (1969) was one of the first to perform such an
analysis. He introduced a statistical hypothesis test within the
context of economics; see also his later comments (Granger
1980). It was within the Granger context that Baccald and
Sameshima (2001) introduced their novel core concept of
‘partial directed coherence’ (PDC) ensuing from their mul-
tivariate time-series analysis based on a decomposition of
multivariate partial coherences. Hence, the name PDC.

This makes sense because, as Granger (1980) also pointed
out himself on a later occasion, instead of talking about
causality, i.e., X causes Y, the Granger causality actually tests
whether X forecasts Y. Causality—what is that precisely?—
implies prediction but probability is always dangling in the
background. Neuroscience sends greetings to economics.
The core concept as introduced by Baccald and Sameshima
(2001) and reconsidered by Baccald and Sameshima (2021)
is now ‘partial directed coherence’ and, for time series of
spikes, the scale is neuronal.

Basal ganglia and the GPR model GPR stands for three
authors, Gurney, Prescott, and Redgrave who published an
anatomy-based model of action selection in what Humphries
and Gurney (2021) aptly called “the dark basement of the
brain,” the basal ganglia [for a clear sketch of the anatomy,
see Fig. 1 of Humphries and Gurney (2021)], where an essen-
tial part of the motor program is “written.” The GPR paper
does what a modern theoretical-neuroscience paper should
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do: Specifying the essential part of the anatomy so as to make
the mathematical model, and doing the job.

Orientation selection in primary visual cortex V1 as a self-
organizing process Focusing on primary visual cortex V1 of
primates, von der Malsburg (1973) asked how its orientation
map might come about. He devised a concrete model with
338 neurons that are described by a rate and not by a ms-
time code and getting input from a “retina” of 19 cells that
encode a direction. The interaction structure was patterned
after the V1 anatomy in that the range of the excitatory near-
neigbor interactions was shorter than that of the inhibitory
interactions engulfing them. Finally, learning was going to
happen in the original Hebbian sense (Hebb 1949, p 62),

When an axon of cell A is near enough to excite a cell
B and repeatedly or persistently takes part in firing it, some
growth process or metabolic change takes part in one or both
cells such that A’s efficiency, as one of the cells firing B, is
increased.

Hebb continued by suggesting “synaptic knobs develop.”
The synapse being at an end of an axon stemming from neu-
ron A, it has a presynaptic part and a postsynaptic part at the
other side of the synaptic cleft, sitting on neuron B. So it all
fit. Therefore von der Malsburg (1973) took A’s firing rate.
We note, though, that timing played no role in Hebb’s pro-
posal, whereas it is essential in STDP (Gerstner et al. 1996;
Markram et al. 1997; Zhang et al. 1998). Neither does the
decrease of synaptic strength for those spikes that “come too
late,” after the postsynaptic neuron has fired.

Given the, from the present point of view, tiny size of com-
puters at that time the project was courageous because only
through numerical simulations could even a qualitative orien-
tation map be shown to exist. Given the relatively simple but
clearly structured theoretical setup, the result was astounding
in that it sufficed to generate self-organized orientation-map
formation a la Hubel and Wiesel (1962, 1963). The main
contribution of von der Malsburg (1973) can be described
succinctly by the title “Towards understanding the neural
code of the brain” of his recent paper (von der Malsburg
2021).

Mathematically showing self-organization on the basis of
known anatomical structures and mechanistic principles was
an early (1973) stimulus for many and showed that math-
ematization works, leading to a far deeper understanding of
the phenomena one wants to explain. The point is that, once
a structure such as an orientation map has been shown to
arise out of the chosen setup, one can quantitatively verify the
influence of varying different parameters representing differ-
ent aspects of the underlying structure. Assigning numerical
values to parameters, the fewer the better, in a responsible
manner is a technique by itself but not an issue here.
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4 Outlook

The above examples show both that mathematization of
nature works and how it is done. Examples only sample and
never depict all of natural reality, nor how scientists analyze
it. After all, science is not made by abstract names but by
humans. The story of Abarbanel (2021) highlights how per-
sonal interaction between the different actors in a specific
domain are essential in moving the carriage of science for-
ward. Furthermore, an intensive interaction between theory
and experiment is essential to increasing our insight. Just
remember Galileo’s famous, maybe even fabulous, experi-
ment of dropping two masses of different weight from the
Tower of Pisa. They arrived simultaneously at the ground
and in this way refuted all previous theories.

The present paper has tried to indicate what scientific
insight in the sense of mathematization of nature means:
uncovering core concepts and the scale on which they act.
The rest has to be filled out by the actors of science.
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