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Abstract
The Wilson–Cowan equations were developed to provide a simplified yet powerful description of neural network dynamics.
As such, they embraced nonlinear dynamics, but in an interpretable form. Most importantly, it was the first mathematical
formulation to emphasize the significance of interactions between excitatory and inhibitory neural populations, thereby incor-
porating both cooperation and competition. Subsequent research by many has documented the Wilson–Cowan significance
in such diverse fields as visual hallucinations, memory, binocular rivalry, and epilepsy. The fact that these equations are still
being used to elucidate a wide range of phenomena attests to their validity as a dynamical approximation to more detailed
descriptions of complex neural computations.

1 Introduction

Astronomy and physics were the first of the natural sciences
to be enriched by an intricate link to mathematics. Biology,
although developing exceptionally powerful theories such as
Darwinian evolution, lagged far behind historically in incor-
porating mathematics as an integral, predictive approach
in its own right. However, mathematics was beginning to
encroach on biology, and particularly neurobiology, in deep
ways. Hodgkin and Huxley (1952) solved the dynamics of
the action potential by introducing nonlinear dynamics in
four coupled equations. This was rapidly recognized to be
brilliant, and they received the Nobel prize in 1962.

Upon finishing my PhD in theoretical chemistry at The
University of Chicago in 1969, I (Wilson) was extremely for-
tunate to be offered a postdoctoral fellowship by Jack Cowan
at the university. He informed me that nonlinear dynamics
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were beginning to have a major impact on neuroscience, and
he encouraged me to start working on this subject. That was
the beginning of the work that produced the Wilson–Cowan
equations.

The intellectual background must begin with the Hodgk-
in–Huxley equations (Hodgkin andHuxley1952). These four
nonlinear differential equations are acknowledged to explain
action potentials, key to all neural computation. As empha-
sized previously (Wilson 1999), nonlinear dynamics was the
essential ingredient in providing a convincing explanation.
The experiments, upon which the Hodgkin–Huxley equa-
tions were based, required poisoning various ion channels
selectively. Thus, Hodgkin and Huxley had at their disposal a
measured action potential plus different ionic flows following
poisoning of various channels. The glue that put the pic-
ture together convincingly was nonlinear dynamics, which
definitively showed that combination of the independent ion
channel results did indeed generate an exceptionally accurate
squid action potential. It should be noted that the differ-
ential equation computations were performed on an adding
machine and took eleven days of computation just to predict
one spike.

Given this background, Beurle (1956) noted the mathe-
matical complexity of the Hodgkin–Huxley equations and
sought a more simple approximation. Specifically, he intro-
duced the concept of neural populations, which could nat-
urally be described by the fraction of active neurones at
any given point and time. As a physicist, he developed
equations that described the propagation of neural activity
waves across a one-dimensional tissue. Simplified nonlinear
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dynamics were manifest in his formulation, and this led him
to an analytical travelling wave solution for neural activity
of the form:

F(x − vt) � M

2 cosh2(k(x − vt))
(1)

where v is the velocity of the wave (to the right here) and F is
the proportion of neurones active during passage of the wave.
M and k are constants.Beurle acknowledged that this solution
was unstable, as initial excitation to an amplitude slightly
greater than that for Eq. (1) led to a transient increase in wave
amplitude to saturation,whereas initial excitation to a slightly
lower amplitude led to attenuation. In fact, the solution to
Beurle’s equation, termed a soliton, is also a solution to the
Korteweg–De Vries equation that describes propagation of
water waves in shallow channels (Korteweg and De Vries
1895). It is a soliton that conserves an infinite number of
quantities.

Although providing several major insights, Beurle (1956)
made a number of errors. First, he modelled the cortex as an
unstable system that must be delicately balanced to remain
plausible. Under these circumstances, he produced a system
that was conservative, rather than dissipative, as the brain is
known to be. Finally, and perhaps, the root cause of these
problems was the omission of inhibition as a co-equal factor
in brain function.

2 Wilson–Cowan equations

We designed the Wilson–Cowan equations to directly reflect
the nonlinear dynamics inherent in excitatory–inhibitory
interactions in cortical tissue. In addition, these equations
were intended to be simpler than the Hodgkin–Huxley equa-
tions (1952) so that the dynamics of much larger populations
of neurones could be explored.GivenBeurle’s (1956) insight,
we chose to describe the activity of localized populations of
neurones rather than the spiking of single neurones.However,
it was clear that unstable soliton solutions could not effec-
tively describe neural dynamics, so we developed equations
that could produce travelling waves only under pathological
conditions, such as epilepsy. Crucially,we argued that studies
of neural activity must focus on the balance between exci-
tatory and inhibitory activity in cooperating and competing
neural populations. Our first results examined local temporal
interactions of local neural populations (Wilson and Cowan
1972). Using phase plane techniques, it was shown that these
equations could produce asymptotically stable excited states
suggestive of short-term memory, limit cycle oscillations
suggesting periodic motor control, and several more com-
plex behaviours.

Fig. 1 Sigmoid function used in the original Wilson–Cowan equations
(dashed line) compared with a sigmoid (Naka–Rushton function, solid
curve) designed as a more accurate approximation of cortical dynamics

Within a year, this local model was extended to include
interactions among excitatory (E) and inhibitory (I) neural
populations across space (Wilson and Cowan 1973), and
this was published in Kybernetic, the parent of Biological
Cybernetics. The original equations for the E(x,t) and I(x,t)
populations are:

τE
∂E

∂t
� −E + (1 − r E)SE (βEE (x) ⊗ E − βI E (x) ⊗ I + P(x, t))

τI
∂ I

∂t
� −I + (1 − r I )SI (βE I (x) ⊗ E − βI I (x) ⊗ I + Q(x, t))

(2)

where τE and τ I are the respective time constants on the
order of 10–15 ms, r is the refractory period, S is a sigmoid
function increasing monotonically from its minimum at−∞
to its maximum value at + ∞, and P and Q describe exter-
nal inputs to the respective populations. A logistic function
was originally used for S, but as the exact mathematical form
of sigmoid does not change the qualitative dynamics, other
forms have more recently been used based on the experimen-
tal literature. For example, responses of cortical neurones
have been described by a Naka–Rushton equation (Naka and
Rushton 1966) with an exponent of approximately 2.4 (Sclar
et al. 1990). A Naka–Rushton function with an exponent of
2 has also been used to facilitate mathematical solutions for
equilibrium states (Wilson 1999). It is described by Eq. (3)
and is plotted in Fig. 1.

S(x) � M ·x2
σ 2+x2

, x ≥ 0
S(x) � 0, x ≤ 0

(3)

In this equation, M is the maximum firing rate, while σ

defines the semi-saturation level, as when x � σ , S � M/2.
Values ofM � 100, σ � 25 are shown in the figure.
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The network inputs to each population are defined by spa-
tial convolutions, denoted by ⊗ in Eq. (2). In the original
formulation the kernels were all functions of distance, and
data available then suggested that they should be decaying
exponentials of distance (Sholl 1956). Thus, the first convo-
lution in Eq. (2) took the form:

βEE (x) ⊗ E(x) �
∞∫

−∞
e
−∣∣x − x ′∣∣/

ωEE E
(
x ′)dx ′ (4)

which describes recurrentE toE connections. The remaining
three convolutions similarly describe all possible connections
among the E and I populations. For different neural popula-
tions, different space constants can produce different ranges
of interaction, thus permitting recurrent, long-range inhibi-
tion. More recent data have suggested the use of Gaussian
kernels rather than decaying exponentials of distance, but this
does not change the dynamics qualitatively.

Finally, it rapidly became apparent that the refractory
period r mainly reduced the maximum firing rate but did
not affect the dynamics substantially. Thus, most subsequent
studies have set r � 0, thereby eliminating the term before
the sigmoid input function. We should also emphasize here
that values of parameters have largely been omitted below
to emphasize major conceptual developments in the evolu-
tion of these equations. Details are available in the original
references.

In this form the Wilson–Cowan equations exhibit a
substantial range of dynamical modes, depending on the
parameters chosen, that suggested explanations of a variety
of cortical phenomena. The model could produce spatially
stable inhomogeneous steady states that stored information
dynamically and suggested a basis for short term memory.
This is illustrated in Fig. 2, where the asymptotic E (red)
and I (blue) activity is shown following brief activation at
the two loci marked with arrows. Recurrent E–E connec-
tions cooperatively maintain neural activity, while longer
range I–E connections maintain the localization. Another
parameter regime produced spatially localized limit cycle
oscillations with likely relevance to motor control. In addi-
tion, yet another set of parameters resulted in the generation
of travelling waves, which were suggestive of epilepsy.
Details of both the local computations, in which the con-
volution in Eq. 4 is replaced with simple multiplication by a
weight constant, plus the one-dimensional spatial equations
incorporating convolution, can be found in the original arti-
cles (Wilson and Cowan 1972, 1973). MATLAB scripts for
many simulations along with parameter values are available
elsewhere (Wilson 1999).

Although all of the applications of Wilson–Cowan
described below have resulted from simulations, it is impor-
tant to note that closed-form analytic solutions have very

recently been obtained using specific forms of the sigmoidal
nonlinearity and particular parameter values (Cowan et al.
2021). For these particular cases, travelling soliton waves of
the basic form of Eq. (1) have been obtained. This is true
even with the extension of Beurle’s formulation to include
inhibition. These, of course, are solutions under particu-
lar functional conditions and do not encompass the much
broader range of Wilson–Cowan dynamics as applied to par-
ticular areas of cortex.

In the years since the original publication of the
Wilson–Cowan equations inKybernetik, computer power has
increased phenomenally. Relative to the Digital Equipment
Corporation PDP8 on which the original simulations were
done, a desktop iMac Pro runs more than 107 times faster
(Wilson2019)!This has engendered twomajor developments
in neural modelling. First, much larger two-dimensional
and multi-layer network simulations have become possi-
ble. Furthermore, these have incorporated more than just the
two original E and I populations, thereby reflecting greater
accuracy in describing cortical networks. In parallel, vastly
more detailed simulations of individual neurones have been
developed, some incorporating more than 1000 differen-
tial equations (Mainen et al. 1995). This reflects a trade-off
between network complexity and single unit complexity con-
strained by available computer power. As theWilson–Cowan
equations emphasize the network approach, we shall focus
on salient applications of this approach below. Details of
parameter values are seldom given, as they are available in
the original references.

3 Visual hallucinations

Drug-induced visual hallucinations frequently display one
of a small number of geometric spatial patterns: concentric
circles, radial spokes or arms spiralling outward from the cen-
tre (Siegel 1977). The natural question this raised was: what
neuronal activity in the visual cortex might generate this per-
cept in the absence of appropriate stimulation? The critical
insight of Ermentrout and Cowan (1979) was that halluci-
nations could be explained by the spatially inhomogeneous
steady states of the Wilson–Cowan equations if two addi-
tional factors were incorporated. First, the equations must be
extended to two dimensions to represent the surface of visual
cortex. The second key insight for explaining hallucinations
was that the gradient of ganglion cells in the retina, rang-
ing from densest in the fovea to very sparse in the periphery,
meant that there must be a nonlinear mapping from the retina
to the cortex. This mapping was shown to be well approx-
imated by a complex logarithm in polar coordinates for the
left and right half visual fields (Schwartz 1977, Schwartz
1980). If the retinal location of a stimulus point is described
in polar coordinates as radius r and orientation ϕ, then the
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Fig. 2 Dynamical response of
the Wilson–Cowan equations to
brief stimulation by sufficiently
strong pulses at the points
marked by the vertical arrows.
Due to recurrent excitation,
network activity moves to two
saturated peaks of E population
activity (red curves), but these
activity peaks are prevented
from spreading by the spatially
broader inhibition (blue curve).
As multiple peaks can be thus
stabilized, this was interpreted
to provide a basis for short term
memory
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corresponding point of cortical projection in x, y coordinates
is:

x � ln(1 + r)

y � φ (5)

This mapping to one hemisphere is illustrated in Fig. 3,
where the bounding blue contour represents the vertical
meridian, and the remaining three roughly horizontal lines,
converging at the origin, represent orientations of 45°, 0°
(horizontal), and −45° respectively. Had two concentric cir-
cles with radii of 3.6° and 7.2° been imaged on the retina, the
cortical activation would be represented by the two almost
parallel red horizontal bands. Conversely, a radial pattern
starting a few degrees away from the fovea would have
generated almost horizontal bands of activation due to this
mapping. The critical insightwas that these could be approxi-
mated as parallel neural activation patterns inV1 (Ermentrout
and Cowan 1979).

With the complex logarithmic mapping in 2D, plus an
analysis of steady states for the Wilson–Cowan equations,
Ermentrout and Cowan showed convincingly that visual
hallucinations could be explained by asymptotically stable
patterns of activated parallel lines of E neurons in V1. When
projected back to the retina, these would have been con-
centric circles. Given drug activation of V1, higher levels
of the visual system would have received the same stim-
ulation from V1 as would have resulted from concentric

circles in the visual field. In addition, drug activation of hor-
izontal contours of V1 activity would have resulted in the
illusory percept of radial spokes, and activation of diago-
nal contours would have produced a hallucination of spirals.
Complex checkerboards with checks increasing in size with
distance from the fovea were also generated. Recall the min-
imal properties required: 2D generalization, asymptotically
stable firing states of the network, and the empirically deter-
mined complex logarithmic mapping in Eq. (5).

This elegant explanation of visual hallucinations (Ermen-
trout and Cowan 1979) was very powerful, but it simplified
by ignoring a very important organizing principle of V1: ori-
entation columns (Hubel and Wiesel 1977). A more recent
study by Cowan and colleagues has reexamined this by intro-
ducing multiple E populations, each tuned to a different peak
orientation (Bressloff et al. 2001). In addition to incorporat-
ingmultiple arrays of orientation-tunedE neurons, theE toE
connectivity functions were altered to incorporate collinear
facilitation. Physiological data from V1 had demonstrated
the presence of long range E–E interconnections among
neurones with similar orientation preferences located at a
distance from each other but aligned roughly collinearly
(Ts’o and Gilbert 1988; Gilbert and Wiesel 1989). The addi-
tion of multiple orientations plus collinear facilitation to the
Wilson–Cowan equations permitted a much wider range of
visual hallucinations to be explained (Bressloff et al. 2001).

So far, nothing has been said about spatiotemporal hal-
lucinations. It is known that uniformly flickering light, par-
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Fig. 3 Complex log retina to
cortex mapping as defined by
Eq. 5. The bounding blue
contour represents the vertical
meridian, while the horizontal
meridian (0°) and the two
diagonals are as indicated. Axis
units are in mm along the
cortical surface. A reflected map
represents the other half of the
visual field in the opposite V1
cortex. The two almost parallel
horizontal bands are the
projections of two half
concentric circles from the
retina onto the cortex
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ticularly near 10.0 Hz, can induce spatiotemporal illusions,
including auras in migraine sufferers (Crotogino et al. 2001).
Ermentrout and colleagues have shown that the Wilson—
Cowan equations with appropriate parameters can accurately
predict this behaviour (Rule et al. 2011). A mathemati-
cal analysis of the equations plus simulations demonstrated
the existence of nonlinear spatiotemporal oscillations. In
response to a flickering stimulus that was uniform across
space, the initial network oscillation was unstable, but after
a transient period, broke into a spatially alternating pattern
of synchronous oscillations. An example is illustrated in
Fig. 4, where a network with appropriate parameters for an
active transient mode (Wilson 1999) generate such a pattern
in response to uniform sinusoidal stimulation. This oscil-
lation consists of three spatial loci becoming active, then
decaying, and the interdigitated three competing active foci
beginning to fire. Boundary conditions were periodic, and
the number of active populations per half cycle is deter-
mined by the spatial extent of the network. Ermentrout and
colleagues went on to conduct experiments using a uniform
annuluswithinwhich uniformfield, counterphase flicker was
employed (Pearson et al. 2016). Subjects perceived a ring of
equally spaced illusory grey blobs that alternated between
clockwise and counterclockwise rotation. As the annulus
effectively reduced the stimulus to one-dimension (Wilson
et al. 2001), the 1D Wilson–Cowan equations provided a
neural model that effectively explained the illusion. Further

research has also invokedWilson–Cowan in explaining addi-
tional spatiotemporal oscillations (Bertalmio et al. 2020).

4 Long-termmemory

The activity depicted in Fig. 2 reflects short-range recur-
rent excitation localized by longer range inhibition. As such,
the activity pattern is dependent on the neural connectivity,
which is the same throughout this network. This suggested,
however, that network connectivity could be learned from
training examples and could therefore be used to encode
long term memories. This was explored, first in networks
with step function neural responses and subsequently with
sigmoid nonlinearities by Hopfield (1982, 1984). It has been
pointed out that Hopfield (1984) utilized a special case of
the Wilson–Cowan equations in which the learned connec-
tion matrix was symmetric (i.e. β ij � β ji), but no recurrent
connections of a population to itself were permitted, so β ii

� 0 (Destexhe and Sejnowski 2009). In addition, Hopfield
networks permitted neurons to have both excitatory and
inhibitory connections, so no explicitly inhibitory popula-
tion was incorporated. However, a more realistic model with
explicit populations of excitatory and inhibitory neurons can
easily be developed (Wilson 1999).

In Hopfield networks, learning a pattern comprising N
distinct neurons uses a Hebbian rule (Hebb 1949) to calcu-
late the average cross-correlation between the responses of
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Fig. 4 Example of a
spatiotemporal illusion resulting
from uniform field flicker. The
plot shows one spatial
dimension on the abscissa and
time increasing downward on
the ordinate. E neuron activity
levels are pseudocoloured as
very low (black), intermediate
(shades of red), and high
(yellow). Although the stimulus
is uniform flicker, the neural
activity pattern bifurcates to a
spatiotemporal alternation of
competing activity foci

Cortical Distance

Time

each ij pair (i �� j) active in the pattern. This cross-correlation
(without a time lag that would encode causality) guarantees
the symmetry of the connection matrix. Under these con-
ditions, Hopfield constructed an energy function and proved
that when stimulatedwith a sufficient percentage of a pattern,
the network would asymptotically approach activity repre-
senting the full learned pattern.

Neural learning models have progressed far beyond Hop-
field networks in the intervening years. Of particular impor-
tance have been deep learning networks. These networks
incorporate multiple hierarchical levels of model neurons
that learn their connection weights from the previous layers.
In particular, errors between the desired output and the cur-
rent output are calculated, and the relative error is assigned
to the weights in the various layers based on the chain rule
from calculus (Rumelhart et al. 1986). The current generic
deep learningnetworks consist of hierarchical layers inwhich
there is first a neighbourhood convolution with input from
the previous layer, followed by a nonlinear transformation,
such as the maximum within a neighbourhood, and then a
spatial subsampling to a smaller upstream area (Reisenhuber
and Poggio 1999; LeCun et al. 2015). Recently, alternative
networks using both lateral interactions and feedback from
higher areas have been shown to provide greater accuracy and
enhancedbiologically plausiblity (Spoerer et al. 2017). These

networks are consonant withmulti-layerWilson–Cowan net-
works, as they incorporate convolution of inputs followed by
a sigmoid nonlinearity, and this approach has evolved to gen-
erate an enormous range of very powerful applications.

5 Binocular rivalry and travelling waves

The Wilson–Cowan equations have been used to explain
a range of nonlinear visual phenomena, one of the most
dramatic ones being binocular rivalry. Under normal stim-
ulation, the eyes have evolved to sample the visual world
from two slightly different visual perspectives, which the
brain then combines to generate a percept of the third dimen-
sion, namely depth. However, when two radically different
images (e.g. orthogonal gratings) are viewed independently
by the two eyes, they cannot be interpreted in depth, and
rivalry ensues. The brain then defaults to a stochastic oscil-
lation in which first one monocular image and then the other
is perceived, with the transitions between monocular images
occurring approximately once every 2 s.

Before describing an explanation for binocular rivalry, it is
necessary to review somemore recentwork on single neurons
in the mammalian cortex. Since the Hodgkin–Huxley equa-
tions were developed to describe action potential generation
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in the squid giant axon, studies of mammalian neocortical
neurons have shown that many additional ion currents are
present. In particular, excitatory neocortical neurons self-
adapt as the result of a, Ca++ mediated K+ current that slowly
hyperpolarizes the cell (McCormick and Williamson 1989;
Sanchez-Vives et al. 2000). This current has an exponen-
tial time constant of a second or more, almost two orders
of magnitude longer than typical synaptic currents. This fits
well with the rate of alternations in binocular rivalry. Cru-
cially, it is primarily excitatory rather than inhibitory neurons
that possess this slow adapting current. The Wilson–Cowan
equations have been extended to include this slow current
by introducing an equation for a hyperpolarizing variable H
(Wilson 1999, 2007; Wilson et al. 2000) Thus, the equation
for E(x,t) in Eq. (2) is replaced by the two equations:

τE
∂E

∂t
� −E + SE

(
βEE (x) ⊗ E

− βI E (x) ⊗ I + P(x, t) − gH
)

τH
dH

dt
� −H + E (6)

with τH approximately 1.0 s, almost two orders of magni-
tude greater than τE . (Alternatively, H can be added to the
semi-saturation constantσ in Eq. (3)with no significant qual-
itative differences.) The parameter g was assigned a value
such that adaptation ultimately reduced the E firing rate to
about 1/3 of its maximum, in agreement with electrophys-
iology. Finally, the stochastic component of rivalry can be
simulated, if desired, by adding a Gaussian noise term to the
H equation in Eq. (6), which produces a dominance time
distribution that is well fit by either a log-normal or gamma
distribution in accord with data (Fox and Herrmann 1967).

Given this embellishment of theWilson–Cowan equations
to include adaptation, binocular rivalry can nowbe explained.
Separate equations describe excitatory neurons driven by
the left and right eyes, EL and ER respectively. Competi-
tion between them is driven by inhibition, IL , and IR, from
the opposite eyes. Thus, limit cycle competition emerges in
which one eye first suppresses the other eye, but it then grad-
ually adapts via its H current so the second eye can escape
from the suppression and itself become dominant. This is
illustrated in Fig. 5. The slow oscillation on a several sec-
ond time scale is a result of the very long time constant τH
in Eq. (6). Note that the alternation is far too slow to be
explained by ordinary synaptic inhibition.

Thus far, binocular rivalry had been treated as though it
were a unitary phenomenon in which one monocular image
uniformly replaced the other, but this is inaccurate. Rather,
the suppressed image will first begin to replace the visible
image at one point, and it will then transform into a trav-
elling wave moving across the image from that point. To
measure the travelling wave properties rivalry was restricted

to a circular, effectively one-dimensional annulus or “race
track” (Wilson et al. 2001). A wave of the suppressed pat-
tern could then be triggered at any point around the circle,
with the subject indicating when it reached the finish line.
Using this psychophysical technique, it was shown that the
wave travelled at a roughly constant speed across the cortex,
which was estimated using the cortical mapping in Eq. (5) to
be about 2.24 cm/s (Wilson et al. 2001). In an elegant subse-
quent fMRI experiment, wave speed was directly measured
on the human cortex and found to be in good agreement with
the psychophysical estimate (Lee et al. 2007).

The observed rivalry wave propagation was shown to be
predictable by a model based on the Wilson–Cowan equa-
tions with adaptation (Wilson et al. 2001). The left and right
eye patterns were represented by independent groups of EL

and ER neurons that were mutually inhibitory. As the sup-
pressed neurons become dominant at the moving front of
the wave, they inhibit previously dominant neurons in front
of the wave, thereby generating a release from inhibition.
A detailed mathematical analysis of this wave propagation
was later developed based on a variant of theWilson–Cowan
equations (Bressloff and Webber 2012).

Rivalry only occurswhen the twomonocular images are so
different that they prevent fusion and the extraction of depth.
If the two images are oriented cosinegratings; for example, an
interocular orientation difference up to about±6° will result
in fusion and the depth percept of a grating tilted forward or
backward in depth (Blake andWilson 2011). For an interocu-
lar orientation difference greater than that, however, fusion is
impossible and rivalry ensues. Importantly, when the interoc-
ular orientation difference is continuously varied it has been
shown that the switch from fusion to rivalry involves hystere-
sis (Buckthought et al. 2008). Fusion, rivalry, and hysteresis
have all been captured using Wilson–Cowan equations with
H current adaptation as shown in Eq. (6) (Wilson 2017). To
particularize the model for V1, the model comprised 12 dif-
ferent excitatory populations (difference of 15° in preferred
orientation between them) for each eye plus four separate
inhibitory populations at each orientation (two for each eye):
one for small orientation contrast normalization and one for
long range orientation rivalry respectively. By incorporating
additional neural populations and particularizing the connec-
tivity among cell populations, hysteresis between fusion and
rivalry can be explained by the Wilson–Cowan approach.

6 Epilepsy

The Wilson–Cowan equations have also been applied to
epilepsy. This was based upon the original observations that
spatially localized limit cycles could exist and that travelling
waves could occur should the inhibition be too weak (Wil-
son and Cowan 1973). Shusterman and Troy (2008) later
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Fig. 5 Example of binocular rivalry generated by the Wilson–Cowan
model with adaptation. Following a brief transient, a limit cycle results
with leftmonocular activity (red) alternatingwith rightmonocular activ-
ity (blue) about once every two seconds. Model responses are in units

of relative contrast. The stochastic component has been omitted here to
emphasize the limit cycle produced by H current adaptation and recip-
rocal inhibition

showed that, with appropriate parameters, local oscillations
would lead to travelling waves and then to synchronous sus-
tained activity. The results were comparable to data recorded
from cortical surface electrodes during passage of epileptic
seizures.

The explanations of cortical travelling waves in focal
epilepsy have also led to a suggested modification of
the Wilson–Cowan equations. To describe an epileptiform
cortex, an effect was incorporated that does not occur
under healthy physiological conditions. The Hodgkin–Hux-
ley equations show that if extracellular K+ builds up in the
extracellular space too much, there is a bifurcation in which
all spiking vanishes. This was simulated in Wilson–Cowan
by replacing the sigmoid function in Eq. (3) by a Gaussian
so that excessive activity could actually drive the firing rate
down to zero. Introduction of this physiologically important
clinical observation produced an accurate simulation of focal
epilepsy and its spread (Meijer et al. 2015).

7 Decisions

Contemporary philosophy of mind has been strongly influ-
enced by neuroscience. For example, Dennett (1996) has
proposed that conscious decisions are the result of compe-
tition among a range of possibilities. Similarly, Dehaene, a

neuroscientist who has studied brain function in domains
such a mathematics (Dehaene 1997), argued in a recent book
on consciousness (Dehaene 2014): “Rivalry is, indeed, an apt
metaphor for the constant fight for conscious access.” These
opinions suggest that decision making by the brain might be
usefully interpreted as a form of generalized rivalry among
competing neural representations reflecting ideas based on
past memories.

A candidate network for decisions, presumably mimick-
ing areas in the prefrontal lobe, has been proposed related to
the Wilson–Cowan network for rivalry (Wilson 2009; Wil-
son 2013). It can be argued that decisions among alternative
interpretations or courses of action require reflection and
the expenditure of neural energy in the cases where there is
almost equal evidence in favour of several alternative courses
of action. In this instance one typically considers each alter-
native in turn, seeking new evidence for or against it, and
ultimately deciding on one alternative. The small network
in Fig. 6 can be used to illustrate this. Imagine that each
column of neural populations represents a category, perhaps
the first as subject, second as verb, and so forth. The neural
populations in each row are the particular possibilities for
each category, such as I, you, he/she for subject; came, went,
gave for verb, etc. Then a particular idea or possibility would
be represented by a learned pattern association including one
member of each column.With correlation learning (Hopfield
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Categories

Fig. 6 Model for learning and recalling a series of simple patterns. Each
pattern is represented by one active population from each Category (e.g.
five grey circles). During Hebbian learning all connections among all
five units are symmetrically strengthened (only nearest neighbour con-
nections are shown by double arrows to simplify diagram). Finally, all
of the particular instances are mutually exclusive in any pattern and so
are coupled via mutual inhibition. This is shown by the lines terminat-
ing in solid circles on the far right. Other vertical population arrays of
particulars are also mutually inhibitory, although connections are not
shown for clarity. Even this small network can store up to about five
partially overlapping patterns. When a subset of these patterns are acti-
vatedwith nearly equivalent stimulus levels, theywill become dominant
one after another in a generalized rivalry oscillations. This is suggested
to be a model for considering several alternatives for a course of action
in deliberation. See text for other details

1982), the five populations in each pattern (grey for example)
would have all their interconnection synapses strengthened
as shown by arrows. Within a column all the possibilities are
mutually exclusive in any one thought, hence mutual inhibi-
tion shown on the right by interconnectionswith solid circles.
Under these conditions, the network will exhibit generalized
rivalry in which one thought pattern will alternate or com-
pete with several others in sequence. Furthermore, if a few
patterns receive fairly weak evidence or input relative to oth-
ers, they are automatically excluded by the dynamics from
competition within the network. For a trivially small network
of only 15 neurons, about five patterns can be learned (with
partial pattern overlap), and from 2 to 5 of themwill compete
when receiving roughly comparable input. If this network is
extended to a more realistic 500×1000 neural populations
or more, the link to decisions becomes quite plausible.

8 Discussion

The Wilson–Cowan equations have produced useful mod-
els and insightful explanations in many cortical areas and
brain functions. The original spatial model (Wilson and
Cowan 1973) was applied to several phenomena in V1,
and this has since been extended to visual hallucinations
(Ermentrout and Cowan 1979), multiple orientations defin-
ing E neuron groups (Bressloff et al. 2001), and multiple
inhibitory groups in fusion and rivalry (Wilson 2017). In
higher cortical areas Wilson–Cowan has served as a basis

for connectionist learning and memory first introduced in
theHopfield (1984) network. In addition,Wilson–Cowan has
provided interpretation for travelling waves, both in binocu-
lar rivalry (Wilson et al. 2001; Lee et al. 2007) and in epilepsy
(Shusterman and Troy 2008, Meijer et al. 2015). Finally, a
generalization of rivalry has generated a possible explanation
for decisions among several plausible alternative possibilities
(Wilson 2009; Wilson 2013).

This range of applications of the Wilson–Cowan model
depends on a number of extensions to the original model.
Most obviously it is possible to generalize to multiple E and
I populations reflective of particular cortical areas and func-
tions. Among multiple populations there must be multiple
population-to-population connectivity functions, which fur-
ther individuate models. Furthermore, it has been shown to
be important for connectivity functions to be learned (Hop-
field 1984) in many cortical areas, and others have taken this
much further in the development of multi-layer, deep learn-
ing convolutional networks (LeCun et al. 2015).

To this panoply of extensions must be added the abil-
ity to introduce ion currents that generate self-adaptation,
particularly in E populations. Since the first development of
Wilson–Cowan, it was discovered that many cortical pyra-
midal neurons, typically excitatory, incorporate slow Ca++

mediated K+ currents that serve to hyperpolarize active
cells and thereby reduce their firing rate (McCormick and
Williamson 1989; McCormick 1998). The key here is that
this is a slow current, with a time constant much longer
than the excitatory and inhibitory postsynaptic currents on
which the Wilson–Cowan equations were based. Other suit-
ably slow potentials can obviously be introduced as they are
discovered. This, however, highlights one clear limitation of
the Wilson–Cowan formalism: it cannot deal with extremely
rapid neural variation, where simulation of individual spikes
would be required. To cite but one example, humans can
accurately discriminate the direction from which a sound
emanates when the arrival time difference at the two ears is
as small as 10 microseconds, or about 1/100 the width of an
excitatory action potential. This exquisite sensitivity involves
axonal delay lines and coincidence detection, and is clearly
too fast for the Wilson–Cowan approach.

As the Wilson–Cowan approach has been very success-
ful at incorporating additional populations, particularizing
multiple sets of interconnections, and adding slow adap-
tive currents, it is appropriate to ask why this approach has
succeeded in capturing key features of neural networks in
numerous areas of the cortex. When we began this work a
half century ago, it was frequently claimed that nonlinear
dynamics was such a vast area, effectively infinite, that only
linear approximations plus perhaps a few exact nonlinear
solutions of particular equations were possible. Despite the
clearly vast range of possible nonlinear systems, our argu-
ment then was that the nervous system depended on strong,
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but understandable nonlinearities. Four key ideas incorpo-
rated in the original formulation epitomize this.

First, the simplification to neural populations and firing
rates as espoused by Beurle (1956) simplified the descrip-
tion of neural networks relative to a detailed description
using multiple equations to describe each individual spike
(Hodgkin and Huxley 1952). As suggested previously (Wil-
son 1999), this is analogous to reporting data in terms of
post stimulus time histograms (PSTH) rather than describ-
ing individual spike trains. Bins in PSTH are typically about
10–20mswide, which is reflected in theWilson–Cowan time
constants. Regarding human understanding, it is clear that the
overwhelming wealth of our knowledge lies on the several
second time scale, with memory vastly extending this back
into the past. Thus, the time scale engendered by popula-
tion dynamics in Wilson–Cowan fits naturally with human
understanding as well.

Implicit in the paragraph above is the notion of an
exponential time scale. The Wilson–Cowan equations were
derived on the assumption that changes in firing rates of
populations followed the time constants of typical neural
post-synaptic potentials, EPSPs and IPSPs. Given multiple
populations, multiple time constants have been incorporated.
But by constraining our equations to time constants rep-
resenting postsynaptic potentials, which implied ignoring
individual spikes, a major simplification was accomplished:
only population firing rates mattered. Compared to simulat-
ing individual spikes, this reduced computational require-
ments by almost two orders of magnitude. This meant that
Wilson–Cowan could simulate networks about 100× larger
than spiking networks, given equivalent computing power.

Third, Wilson–Cowan was established on the extremely
important physiological observation that excitatory and
inhibitory neurons formed distinct, interacting populations
(Wilson and Cowan 1972). This is now a commonplace, but
it was ignored by all earlier attempts at network modelling.
One can think of neural excitation as active and cooperative
(“yang”), while inhibition functions to shut down excitatory
activity by introducing competition (“yin”). This generates
a cooperative-competitive dynamic that forms the basis of
neural computation. Both components have been integral to
Wilson–Cowan from the beginning.

This cooperative–competitive theme has been indepen-
dently developed into a canonical model for neocortex
(Douglas et al. 1989; Douglas and Martin 1991). These
authors developed a model with two excitatory neuron popu-
lations, one comprising neurons in the supragranular cortical
layers 2 and 3, and one comprising neurons in infragranular
layers 5 and 6. Recurrent excitation both within and between
the excitatory populations is incorporated into themodel. The
final group contains inhibitory neurons that are connected to
themselves and to both excitatory groups to generate nega-
tive feedback. All neural populations are described by spike

rate dynamics. Thus, this candidate for a canonical circuit for
neocortex may be regarded as an embellishment ofWilson—
Cowan dynamics. RelatedE–I dynamics have also been used
byGrossberg to develop theories of a large number of cortical
functions (Grossberg 2021).

Finally, the sigmoid function is a key to the power of the
Wilson–Cowan equations. The sigmoid captures the impor-
tance of neural thresholds, followed by the roughly linear
activity increase with increasing stimulation, and finally by a
compressive nonlinearity and saturation at high input levels.
Unlike many nonlinear dynamical systems, his nonlinearity
has facilitated state space analysis, as neural activity is con-
strained by the threshold to be ≥0, and sigmoid saturation
guaranteed that activity must be ≤M, the maximum value.
This restriction to a hyper-cube in state space has proved
valuable in many mathematical analyses, so the importance
of the sigmoid to physiologically relevant neural modelling
cannot be overstated.

The Wilson–Cowan equations have clearly proved their
value at explaining a wide variety of neural functions in
diverse cortical areas. Keys to this success are cooperative—
competitive dynamics, population dynamics on a postsynap-
tic potential time scale, and sigmoid nonlinear boundedness
by thresholds and saturation. Within this framework, there
has been a rich evolution, and we suspect that they will con-
tinue to enhance our understanding of brain function.
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