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Abstract
More and more, the neurosciences and the sciences concerned with mind and cognition are burying fundamental questions
under layers of professional methodology. I therefore welcome Biological Cybernetics’ invitation to comment on two of my
papers, (von der Malsburg 1973) and (von der Malsburg and Schneider 1986) (henceforth referred to as (I) and (II)) as an
opportunity to address two fundamental questions about brain and mind: How is the brain’s structure generated? and How is
mental content expressed by the brain’s physical states? Those two questions are deeply entangled with each other and play a
kind of gateway role on the way to making progress with the issues of perception, intelligence, creativity and consciousness.

Keywords Cognition · Symbols vs. Neurons · Binding issue · Network self-organization

Part I–How is thebrain’s structuregenerated?

Any fleeting thought in our mind is ultimately the result
of the nested processes of evolution, ontogenesis, learning
and education. Regarding all these and the whole context
of understanding Life, a unifying theme and framework is
just becoming perceptible as outline shining through a veil.
For more than a hundred years, the discussion of evolution
has been a battle between two attitudes, intelligent design
and accumulation of “senseless” mutations. Neither of these
helps to provide insight into Life’s structure, at least as long
as mutations are taken to be totally unstructured (Dawkins
1976) and the designing intelligence is seen as acting from
outside the material world.

Since before the time of Darwin, biology in its various
branches has brought to light highly systematic structure
that characterizes living and past organisms and the rela-
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tions between them and has, in recent decades, powerfully
extended this perspective down to themolecular level, reveal-
ing systematic patterns of structure formation in cell and
organism. Considering the layout of this landscape, the orig-
inal front lines of the evolution discussion are no longer
tenable. It is no longer too daring to say that Life is indeed the
result of intelligent design, the design, however, happening
under our eyes, as part of the game and within the material
world.

To grasp its mechanisms, it may help to compare Life’s
structure to the architectures of technology that dominate the
construction of buildings, of electronic chips, of software and
ofmanymore types of artifact. It is the essence of an architec-
ture that the specification of concrete structures takes place in
two stages, by first defining the architecture and then, within
the bounds of that architecture, determining specific struc-
tures. An architecture is not a physical thing but rather an
abstract conceptual framework that can be materialized in
a variety of ways. A software architecture in the form of a
programming language complete with development environ-
ment, for instance, constrains individual programs to what
is functionally useful. Likewise, the bauplan of mammals,
formulated as a parametrized system of ontogenetic devel-
opment, constitutes an architecture that constrains individual
species but still leaves tremendous room for variation.

An architecture comprises an array of sub-processes that
link up with each other and with the environment in a com-
plex network of nested loops of signals, all acting together
in the sense of organismic coherence. Mutual consistency
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of those loops is a powerful constraint. Mathematics takes
this to the extreme, admitting only structures in which all
loops of deduction are totally free of self-contradiction.
This constraint admits, for instance, only five Platonic bod-
ies or only four number fields—real, complex, quaternion
and octonion. Also, technical or biological architectures are
structured such as to support only contradiction-free and
seamlessly fitting parts and levels. Like mathematics, the
functional architecture of Life can be expected to form a Pla-
tonic realm. It is structured not by external intelligence but
by the system-immanent constraint of consistency,whichdis-
cerns between viable and non-viable structures. This, then, is
the truemeaning of intelligent design, thatmaterial structures
and processes, once they come near to consistent architec-
tural structure, are fully drawn into it as if by magical force,
like a dangling chain into the form of a perfect catenoid or
like a potatoid soap bubble into a perfect sphere.

Let us apply this perspective to the functioning brain. It
is an amalgam of at least two architectures, those that David
Hume (1740/1975) referred to when writing that reason was
the slave of the passions. The “passions,” our behavioral
architecture, ultimately goes back to our single-celled ances-
tors and implements the strategies and drives serving the
basic goals of survival and procreation. Originally, this archi-
tecture was all expressed in terms of molecular signals and
interactions, which on the way to multi-cellular organisms
were transformed into the network of neural and humoral
interactions pervading our body. Our behavioral architec-
ture has absorbed, over the eons, all the experience evolution
has collected with our near and distant ancestors inside their
ecological environment, and it may well be called the archi-
tecture of our life.

I will here concentrate on the other architecture, Hume’s
“reason,” the slave of the passions, and on the two funda-
mental questions of how it arises and how it expresses itself
in physical terms. Our whole organism, including the brain,
is ontogenetically constructed on the basis of one gigabyte
of genetic information, 3.3 billion nuclear bases worth 2 bits
each (Consortium 2001). To describe the wiring of the brain
as a list of connections, on the other hand, takes a petabyte—
a million gigabytes—of information (for a synapse to select
one of the 1010 neurons of the brain it takes log2(10

10) = 33
bits; for the 1014 synapses of cortex it accordingly takes
3.3 · 1015 bits).

How is this tremendous information gap to be bridged? Is
it that JohnLocke (1690/1997) is right and the brain is a tabula
rasa at birth, its wiring containing little information, empty
space to be filled only after birth by masses of information
flooding in through the senses?

For one thing, we are certainly not born as a tabula rasa,
being endowed at birth with the behavioral architecture just
mentioned and with the infrastructure to take in and admin-
ister experiences, as pointed out by Kant (1781/1999). And

then, the flood of information coming in through our senses
is very limited. The environment in which children grow up
could be simulated with the tools of modern virtual reality on
the basis of a few gigabytes of information (see, for instance
Crytek’s game Robinson: The Journey, URL: https://www.
crytek.com/games/robinson), and through our lifetime we
anyway absorb information only at the very modest rate of
a couple of bits per second (Landauer 1986), running up to
altogether a gigabit if we live long. The information gap dis-
appears if the information content of a complex structure
is measured not in terms of the number of bits needed to
describe it but in terms of the number of bits of the shortest
algorithmbywhich it can be generated (Li andVitányi 2008).
This directs our attention at this mechanism or mechanisms,
this “Kolmogorov algorithm,” by which our body and brain
are made.

The brain’s construction proceeds in stages. The first stage
is part and extension of the construction kit of thewhole body.
As such it is based on a three-dimensional lay-out of marker
molecules, “morphogens.” These are produced by the cells
of the embryo and in turn control the step-wise specification
of the cells’ genetic control hierarchy (Zeitlinger and Stark
2010). In this stage of development and in this fashion, the
brain’s various regions (nuclei, cortical areas, etc.) are created
together with morphogenetic markers and marker gradients
inmutual interaction. In stage two, the lay-out ofmorphogens
and their gradients guide the axons that are extended by neu-
rons, creating a first sketch of the brain’s wiring diagram
(Sperry 1951). It may be surmised that Hume’s “passions,”
the definition of behavioral patterns, are a direct result of
these two stages and are in this sense directly determined by
genetic control.

This genetically specified sketch amounts to something
like a hull constraining further refinement. In stage three,
which begins late in embryonic development and contin-
ues throughout the life of the individual, this refinement of
connectivity takes place in the form of pruning of connec-
tions and of moving axonal terminal branches over short
distances, breaking some connections and making others.
In these movements, the terminal branches and synapses
are guided exclusively by the signals that are observable in
their neighborhood and the signals arriving along the fibers
from their own source neurons. These signals are created
spontaneously by the neurons themselves (only later to be
complemented by sensory input). Thus, connectivity and
activity condition each other, connectivity shaping activity
patterns, activity patterns acting back on connectivity. This
interactive loop runs its course until it converges on net-
work patterns that stabilize themselves. To this process of
network self-organization, I will refer by the name connec-
tivity dynamics.

This is the point at which (I), the first of my two articles
comes in. However, before I come to that, let me draw atten-
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tion to the analogy between developmental stage three and
the previous two. Also those had as their basis a loop of inter-
action, cells putting out signals (in the form of morphogens),
morphogens acting back on the cells’ differentiation and sig-
naling. In that case, the distribution of signals is shaped by
three-dimensional space, which imposes its structure on the
movement of cells and the diffusion of signals. This dance of
interacting signals and cell differentiation is set up by evolu-
tion such as to guide the emergence of a self-consistent spatial
lay-out of those two, cellular differentiation and molecular
signals. While this process is beholden to and constrained by
the rigid ‘network’ of spatial neighborhood relations, stage
three, in which signals are transported along neural fibers, is
free to escape from the dictate of three-dimensional topology
to enter a totally new realm of forms, constrained only by the
law of consistency between signals and connections.

Self-organization of orientation sensitive cells in the
striate cortex

Now that the stage is set, let me discuss the first of my
two publications, “Self-Organization of Orientation Sensi-
tiveCells in the Striate Cortex,”which appeared inBiological
Cybernetics when it still was called Kybernetik (von der
Malsburg 1973) and referred-to as (I).

According to the observations (Hubel and Wiesel 1977)
to be modeled, neurons in the primary visual cortex of some
animal species respond to a line or edge that appears in their
receptive field in the retina when the orientation of that line
or edge is near to an ‘optimal angle’ specific to each neu-
ron, and this optimal angle changes continuously with the
position of neurons within the cortical plane. The purpose
of the model (I) was to let these two observations, oriented
receptive fields and continuous distribution of orientations
within the cortical plane, develop by connectivity dynamics
starting from a plausible initial state. Connectivity among
the neurons in the cortical plane was assumed in (I) to be
fixed, in the form of short-range excitation and longer-range
inhibition. Development concerned the reorganization of the
receptive fields of the neurons under the influence of sen-
sory input patterns in the form of oriented edges or lines of
light. An initially random profile of the afferent connection
strengths within the receptive fields then changed to a final
state in the form of an oriented bar. This development of indi-
vidual receptive fields wasmodeled in a style that later and in
probabilistic formulation came to be called expectation max-
imization (Dempster et al. 1977): on the basis of the current
values of the afferent connections neurons decide whether
to fire, and the firing neurons then mold their receptive field
profile to the current input pattern. They do this by strength-
ening their active afferent connections (in Hebbian fashion)
at the expense of currently non-active connections (keeping
the sum of all afferent connections constant). In this respect,

the model (I) was quickly followed by two others (Nass and
Cooper 1975) and (Perez et al. 1975).

But the model (I) went further, by letting neurons
exchange lateral excitation and inhibition within the cortical
plane, so that a neuron could only fire together with cor-
tical neighbors. In consequence, the model converged to a
final state in which sets of neighboring neurons in cortex
acquired receptive fields with similar orientation, those sets
succeeding, over the course of development, in establishing
themselves on the basis of mutual consistency between the
fixed neighborhood interaction and plastic afferent organiza-
tion in the participating neurons. These overlapping sets, or
‘net fragments,’ thus form a continuous map from stimulus
orientation to cortical position.

The model is an early example of network self-organi-
zation. Under the influence of structured input statistics, it
shows convergence to a state in which firing statistics as
shaped by the structure of connections in turn supports that
same connectivity structure. It is to be admitted, though,
that the model as such is not a generic example of net-
work self-organization being, first, dominated strongly by
input statistics and, second, many of its connections being
fixed. The model’s initial connectivity state—neighborhood
connections in a two-dimensional cortical sheet and local-
ized afferent connections from the retina (via thalamus) to
cortex—can be interpreted as the result of stage two devel-
opment and early stage three.

After its publication, the model (I) turned out in one
respect to be in conflict with experimental data: it was shown
(Wiesel and Hubel 1974) that not only orientation specificity
of cortical neurons but also the generation of a continu-
ous map of orientation onto the cortical plane takes place
before visual experience, whereas the model (I) required
structured visual stimulation of the retina. Several attempts
at modeling orientation specificity or even map formation in
the absence of visual input were subsequently published in
response to this observation. One invoked pattern formation
within the receptive field of cortical neurons (Linsker 1986),
another relied on a highly regular arrangement of afferent
fibers (Miller 1992). These two attempts had the problem
of being critically dependent on rather precise regularities
and parameter constellations which in view of the experi-
mentally observed scatter of afferent fibers are unrealistic.
A third attempt (von der Malsburg and Cowan 1982) relied
on a vestige of orientation specificity already in the retina
and a molecular marker mechanism to induce a regular map
of it on the cortex. My own last (and to me, I confess, most
convincing) attempt (Grabska-Barwinska and von der Mals-
burg 2008) at explaining prenatal development of orientation
specificity and orientation map continuity relies on experi-
mentally observed spontaneous pre-natal activity waves in
the retinae (Meister et al. 1991) and structure formation
induced by them in the cortex. In recent decades, there has
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been a scatter of occasional publications on the subject with-
out much coherence and mutual reference between them.

In themean time, another study had for some time aroused
more interest, the generation of receptive fields in the form of
oriented Gabor wavelets on the basis of the statistics of nat-
ural images (Olshausen and Field 1996). This study itself is
now superseded in public interest by the generation ofGabor-
like receptivefields inside deep learning systems (Krizhevsky
et al. 2017). After all this, the functional significance of the
regular arrangement of orientation specificity is not clear
(Horton and Adams 2005), appearing only in some species
anyway. So the topic is nowa scientific backwater. Thedeeper
significance of (I) and all experimental and theoretical work
of which it was part lies more in its laying the foundation
for understanding the general phenomenon of network self-
organization. This came into its own with the age-old subject
of the ontogenesis of retinotopic connections.

Retinotopy

Being easy to understand, convenient to study experimen-
tally as well as theoretically, and being a dominant theme of
the nervous system’s wiring, retinotopy is the paradigm of
network self-organization, the hydrogen atom of brain orga-
nization. Two types of theory have long dominated thinking
about the ontogenesis of retinotopic connections: one based
onmarkermolecules, the other on neurons’ electrical activity.
I myself was originally an ardent proponent of the electrical
activity version, then had a revelation that made me convert
to marker molecules, and finally it became clear on the basis
of experiments that both play their role. The issue thus sits
at the intersection of stage two and stage three.

Stage one and two create the setting: retina and tectum as
two-dimensional sheets of neurons with short-range excita-
tory connections. Molecular gradients guide fibers that grow
from the retina to the tectum and establish a first, diffuse
mapping as initial state. In the electrical activity version
of retinotopic map formation, neurons in the retina gener-
ate spontaneous spike activity. This activity is organized by
lateral short-range excitatory connections into local swarms
of simultaneously firing neurons. These activity patterns are
conveyed by the projection fibers to the tectum, where short-
range connectivity equally generates local activity swarms.
These pairs of activity clouds, one in retina, one in tectum, act
back on the retino-tectal connections by synaptic plasticity:
fibers are strengthened or generated by simultaneous firing
in their retinal source and their tectal target neurons. The
growth of a fiber is, however, compensated by the reduc-
tion in the strength of other connections out of the fiber’s
source neuron and of other connections into its target neuron.
Thus, the local retinal activity clouds and the tectal activity
clouds they induce concentrate strength into the connections

between them. For the first simple model for this process, see
(Willshaw and von der Malsburg 1976).

Network self-organization

This, then, is the nucleus, the central mechanism, of net-
work self-organization, the Kolmogorov algorithm of the
brain: existing connections generate and shape clouds of
activity, and connections within the clouds are strengthened
or generated at the expense of competitors, thus modifying
the existing connectivity: activity is shaped by connectiv-
ity, and connectivity is shaped by activity. This process of
connectivity dynamics continues through many cycles until
it converges to an attractor state, a connectivity structure
that stabilizes itself. It has an inherent tendency to create
global order: connectivity structures that are coherent. In the
retino-tectal example, ‘global order’ and ‘coherence’ refer to
connectivity in the form of a fully continuous map from all of
the retina to all of the tectum, which in this context is called
systems matching (Gaze and Keating 1972). This tendency
to global order results from the fact that overlapping clouds
of activity conspire in strengthening the connections within
their overlap. Attractor networks therefore have topological
structure: connectivity supports sets of overlapping activity
clouds (somewhat analogous to the open sets of topologi-
cal spaces) and those clouds condense connections into their
overlaps.

Global coherence is, however, not guaranteed, and the
process of network self-organization can get caught in local
optima. In the retinotopy case, such local optima would be
mutually incoherent part-maps of retinal regions to tectal
regions. The danger of ending up in local optima is to be
avoided by starting the process with fairly large activity
clouds supported by diffuse connectivity and letting activity
clouds and connectivity contract gradually, thus progress-
ing in coarse-to-fine fashion to find a detailed and globally
coherent connectivity pattern.

Elucidation of the mechanism by which retinotopy is
established in ontogenesis was a joint venture by several
groups of experimental and theoretical neuroscientists. It
resulted in a clear-cut conclusion, according to which the
gradients of chemical morphogens of stage two establish
boundary conditions for stage three, in which the growth
behavior of neural fibers and the electrical (or molecular!,
see (Willshaw and von der Malsburg 1979)) signals carried
by them interact iteratively to create the final connectivity
pattern. These conclusions were captured in extensive simu-
lations (Willshaw and von derMalsburg 1979) and a compact
mathematical description (Häussler and von der Malsburg
1983). Conclusion reached and fight over, the groups of sci-
entists dispersed to work on other problems, leaving little by
way of durable traces in textbooks and curricula. For themost
recent reviews, see (Simpson and Goodhill 2011) (Kirkby
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et al. 2013). The field of neurogenetic studies seems to have
fallen back, as commented on by Hiesinger (2021), on con-
sidering only the processes of stage one and two. This is
important work, as it has the potential of bringing us nearer to
understanding the neural structures at the basis of our behav-
ioral architecture, Hume’s “passions.”

Realizing, however, that the lion’s share of the brain’s
structure is generated by connectivity dynamics, the nearly
total neglect, if not ignorance, of this process not only
in experimental neuroscience circles (where experimental
accessibility is the main concern) but also in the computa-
tional neuroscience community is crippling progress with the
problem of understanding the nature of human intelligence.
See (von der Malsburg 2018) for a perspective on the great
potential of network self-organization for understanding the
brain’s function.

At least for me, the entry point to the subject of network
self-organization was modelling the ontogenesis of orienta-
tion maps in visual cortex (I), and when David Willshaw
came to the Max Planck Institute for biophysical Chemistry
inGöttingen in 1973, he introducedme to the thenhighly con-
tentious retinotopy topic, which we attacked together, first
with the electrical activity version (Willshaw and von der
Malsburg 1976), then with a molecular version thereof, the
“marker induction theory” (von der Malsburg and Willshaw
1977), and finally with extensive simulations (Willshaw and
von der Malsburg 1979) accounting for the full variety of
seemingly contradictory experimental results available then.
For me, the final point of that period of my scientific life
was the development of a concise description of retinotopy
development in the form of coupled differential equations for
synaptic growth, complete with linear stability analysis and
nonlinear coarse-to-fine coupling of the linear modes (Häus-
sler and von der Malsburg 1983), something that would not
have come about without Alexander Häussler, a Swiss math-
ematicianwho came as postdoc tomy institute andwho sadly
passed away shortly after completing this work. The equa-
tions, deservedly called Häussler equations, have repeatedly
proved useful for describing aspects of brain function, see
for instance, (Zhu et al. 2010) or (Fernandes and von der
Malsburg 2015).

Part II–How is mental content expressed by
the brain’s physical states?

Understanding the brain’s function and the emulation thereof
in silico are severely hampered by one as yet unresolved
issue: how do the physical processes in the brain (and how
could the electronic processes in the computer) act as lan-
guage to represent mental content? Regarding this question,
the community is deeply split between a symbolic and a sub-
symbolic camp.

The symbolic camp is constituted by classical Artificial
Intelligence and by cognitive science (especially linguistic
theory), whereas the sub-symbolic camp (‘connectionism,’
‘artificial neural networks’) speaks of neurons and their con-
nections. The symbolic camp insists on a data format that is
compositional so that a data item (such as the sentence ‘John
loves Mary’) can exert effect on the basis of its structure and
is systematic and productive in the sense of giving rise to
analogous structures, (such as ‘Mary loves John’ or ‘Peter
loves Edith’) (Fodor and Pylyshyn 1988).

This camp criticizes connectionism, whose data structure
of pools of simultaneously active neurons offers on this front
unsatisfactory choices: To represent ‘John loves Mary,’ it
can either devote a neuron to the whole sentence, alterna-
tively represent it as a ‘bag of features’—as the pool of
neurons {‘John’, ‘loves’, ‘Mary’}—or try to represent the
syntactical structure by neurons ‘John-subject,’ ‘loves-verb,’
‘Mary-object.’ Neither of these is satisfactory. The bag-of-
features version is ambiguous (being indistinguishable from
‘Mary loves John’), and the other two possibilities, based on
combination-coding neurons, hamper structural generaliza-
tion (e.g., from ‘John loves Mary’ to ‘Mary loves John’ and
so on). The sub-symbolic neural camp retorts by criticizing
the symbolic camp for being too intimately married to the
sequential computer, for being too digital, for being unable
to relate to the brain, and for being unable to account for
learning.

The stand-off and lack of synthesis between the camps
may be the main roadblock on the way to understanding
brain function and true AI. This lack of progress may cur-
rently be hidden behind the general excitement over recent
spectacular progress with problems like object classification
from photographs (Krizhevsky et al. 2017) or speech-to-text
conversion and natural language translation. This progress is
based on amixture of old (Rosenblatt 1961; Fukushima1980;
Rumelhart and McClelland 1986) and new (Hochreiter and
Schmidhuber 1997; Vaswani et al. 2017) ideas, all of which
are generally taken to be part of the neural camp. That camp
can, however, not claim full victory, and the basic flaws of the
sub-symbolic approach are coming back with a vengeance.
Due to the underlying data structure’s inability to serve as
basis for generalization—from an image of an object to trans-
formed versions thereof, for instance, or from a sentence to
another one describing the same actual situation—learning in
current systems is extremely inefficient, needs huge masses
of data and is restricted to interpolation between the samples
already seen. For a recent discussion, see (Goyal and Bengio
2020). This is in sharp contrast to learning in humans, who
are able to learn and generalize from a phenomenon after
single exposure.

It seems highly desirable, then, to understand how the
brain’s neural tissue and activity serves as data structure of
the mind. This data structure evidently unites the strengths
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of the symbolic and sub-symbolic versions discussed so far.
The sub-symbolic camp’s generally accepted version of this
data structure, taking individual neurons as elementary sym-
bols, undeniably is part of the truth, as it is resting on a solid
experimental basis. But something seems to be lacking. A
memorandum written four decades ago (von der Malsburg
1981) formulates this missing aspect as the “binding prob-
lem.” The term refers to the putative mechanism that enables
the brain to agglomerate neurons into a hierarchy of compos-
ite mental structures. The binding problem has gained public
attention (Roskies 1999) but to this day no solution or even
formulation has gained broad acceptance.

Sensory segmentationmodels

This is the context in which the second of my papers (von der
Malsburg and Schneider 1986), referred-to here as (II), is
to be discussed. It addresses a special case of the binding
problem, the definition and representation of a compact sen-
sory phenomenon and its distinction from background. In
the visual modality, one speaks of the separation of fig-
ure from ground, whereas when the sensory phenomenon
is a human voice one speaks of the cocktail-party problem
(Cherry 1953). The problem is to both identify all sensory
elements that belong to the phenomenon and to represent the
result (the Gestalt in the parlance of the eponymous move-
ment (Ellis 1950)) such that it can be treated as a composite
whole.

The inner ear acts as a filter bank that decomposes the
sound signal into frequency components. The human voice
has harmonic structure and is composed of a series of com-
ponents whose frequencies are multiples of the fundamental
frequency. In (II), synthetic data are given in the form of
an overlay of several harmonic spectra representing differ-
ent simultaneously spoken human voices. The voices have
different fundamental frequencies, and the amplitudes of all
spectral components of one voice are modulated, sharing the
same time course, as for instance the voice onset after explo-
siva. Themodel system is composed of two types of neurons,
E-neurons, each of which is activated by one auditory fre-
quency component and exerts excitation on other neurons,
and a pool of H-neurons that are activated by the excitatory
neurons and in turn inhibit them. The E-neurons respond to
sensory inputwith sequences of bursts in relaxation oscillator
fashion, whereas the H-pool passively follows its collective
excitatory input.

The goal of themodel is to bind together theE-neurons that
belong to one voice by synchronizing their oscillations and
desynchronizing them fromall other E-neurons. The basis for
this synchronization and desynchronization is rapid modifi-
cation of the synapses between the E-neurons. If the activity
in two neurons is positively correlated, their connection is
strengthened; if it is negatively correlated, their connection

is weakened. This positive feedback loop between synchro-
nization (desynchronization) of E-neuron oscillations and
strengthening (weakening) ofmutual coupling between them
is set in motion by sensory signal correlations, especially
common onset, between spectral components belonging to
one voice. The strengthening of connections within sets
of E-neurons that are positively correlated helps to couple
those oscillators still further, thus leading to network self-
organization.

As a result, the neurons representing the spectral compo-
nents of one voice get coupled as a block and oscillate in
perfect synchrony. This synchronization between all compo-
nents of one voice can serve as basis for higher centers of the
auditory system to focus attention on this voice, undisturbed
by all other voices of the cocktail-party. All that is necessary,
as briefly discussed in (II), is that all neurons involved in
this analysis in higher centers pick up the rhythm of the sen-
sory neurons, oscillate in sync with them, and with the help
of the same kind of rapid synaptic plasticity just described
strengthen their connections with the sensory neurons and
decouple from the background neurons. The model has led
in the hands of a student visitor, Avery Wang, to a technical
application, the extraction of a single voice from background
sound on the basis of harmonic structure and frequencymod-
ulation (Yue et al. 1998).

Themodel (II) is still far fromestablishing a generalmech-
anism of sensory segmentation. It contents itself with a single
type of evidence, temporal signal structure, and forgoes sup-
port by long-term learning and memory. A model of sensory
segmentation in the olfactory cortex (Wang et al. 1990) goes
to the other extreme, basing itself exclusively on memory.
It assumes that individual odors have been recorded in the
past by pair-coupling of all neurons responding to a single
odor in the style of associative memory (Hopfield 1982).
When a mixture of a small number of those individual odors
is presented, oscillatory responses of the activated neurons
are synchronized within known (recorded) odors and de-
correlated between them, thus making it possible for the rest
of the brain to focus attention on individual odor components
by synchronizing with them.

The restriction in (II) to just one type of evidence was
lifted in (Schneider 1986) (which has never been published
in English and of which (II) actually represents only the
first chapter). The same conceptual structure was applied in
(von der Malsburg and Buhmann 1992) to the problem of
visual segmentation. In bothmodels, there is a field of cortical
neurons with a tendency to oscillate. Each neuron relates to a
one-dimensional (auditory case) or two-dimensional (visual
case) position x and represents a specific feature type f . The
system has a simple structure of excitatory connections, two
neurons being connected if they agree in x or if they agree in
f , and there are inhibitory pools that prevent global corre-
lation. On the basis of feature distributions that are rather
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homogeneous within segments and are different between
them, both systems were able to subdivide simple synthetic
input patterns into segments with correlated activity within
and de-correlated activity between them.

Both models relate to coherent phenomena in the external
world, human voices or solid objects, which create acoustic
or optic disturbances that are analyzed by sensory organs, eye
and ear, into fields of sensory signals and by neural filters into
x-local feature types f . This analysis into components by our
sensory apparatus poses the binding problem, the necessity
to tie together and represent as one whole all those com-
ponents that relate to the same external phenomenon, while
at the same time keeping separate components that relate
to different external phenomena. The neural connections of
the system can be seen as modeling the physical interactions
within the external phenomena, voice or solid object.

The binding issue

The report (von der Malsburg 1981) and the model (II) took
a little while to attract attention, but then a response came
in the form of first intriguing experimental hints (Eckhorn
et al. 1988) and (Singer and Gray 1995) at the realization
of binding by synchrony. Soon, however, the idea aroused
violent opposition in the USA, possibly triggered by an edi-
torial article in ScienceMagazine (Barinaga 1990). Themost
vociferous opponent to the idea, Anthony Movshon, orga-
nized a symposium during the 1993 Neuroscience Meeting
of the Society for Neuroscience in Washington, DC, with
the intent to critically discuss the idea of oscillations for
feature binding, while others (Shadlen and Newsome 1998)
created models to argue that cortical neurons could not pro-
cess the temporal signal structure required for binding by
synchrony. The discussion came to a head in a special issue
of Neuron (Roskies 1999). In his contribution to that issue
(Shadlen and Movshon 1999), Movshon proposed the chal-
lenge to experimentally demonstrate the object-global signal
synchrony that seemed to be required by the theory of binding
by synchrony. That experimental demonstration never mate-
rialized, discrediting in the eyes of many the idea of binding
by synchrony.

Unfortunately, the heated debate about the subject let the
community throw out the baby with the bath and lose interest
in the binding problem altogether. It is true that the spe-
cial problem of representing figure-ground separation can
be solved within the framework of classical neural networks
(Wersing et al. 2001), but the need for interpreting neural
tissue as cognitive data structure goes way beyond figure-
ground separation. The lack for a generally accepted solution
to this problem may be the main roadblock on the way to
understanding the mind and emulating it in the computer.

The article (II) must be seen against the background of the
discussion (von der Malsburg 1981), which had raised the

binding issue and had proposed a solution in the dual form
of signal synchrony and rapid synaptic plasticity. As a purely
conceptual discussion, that report was rather inaccessible to
the neuroscientific community. Themodel (II)was an attempt
to present a simple and concrete application of its main ideas.
Unfortunately, the impact of (II) turned out to be a mixed
blessing. It illustrated the binding issue and its solution in
the case of a simple example, the figure-ground problem,
and it opened the way to experimental test, but in spite of first
encouraging results the experiments eventually were judged
by the community to be unconvincing. This had the negative
effect that the binding issue was banned from the agenda of
the neurophysiology community, leaving only a tradition of
studying neural oscillations in various frequency bands. The
binding issue as originalmotivation for this tradition has been
suppressed mostly to the subconscious level, but see (von der
Malsburg et al. 2010).

It is remarkable that the other half of the original proposal
(von derMalsburg 1981), rapid changes in connectivity, quite
central also in (II), got completely bypassed by the literature.
The reason for this may be the experimental difficulty of
measuring neural connection weights, let alone their rapid
change in a situation-dependent way.

Part III–The emerging neural code

Another effect of emphasis on experimental accessibility
was the concentration on very simple binding structures,
figure-ground separation as well as feature binding (Treis-
man 1999). This in turn let the computational neuroscience
community altogether miss the opportunity of understand-
ing the binding issue as the missing link between neural and
symbolic approaches to cognitive science and artificial intel-
ligence.

This link is probably best established by considering
schema application, a process that is central to cognition and
that is best understood as a binding structure. In philosophy
and psychology, there are proposals (Kant 1781/1999; Piaget
1923; Bartlett 1932) to understand structures and processes
by reference to abstract schemata, in artificial intelligence by
reference to ‘scripts’ or ‘frames’ (Schank and Abelson 1977;
Minsky 1974). Abstract schemata are also the basis for anal-
ogy (Bartha 2019), case-based reasoning (Watson and Marir
1994), for the jurist’s interpretation of concrete cases rela-
tive to coded law or precedent or for the parsing of sentences
by linguists. Schema application has even be proposed in an
experimental context as basis for rapid learning (Tse et al.
2011).

Themost concrete neuralmodels for the process of schema
application are dealing with visual object recognition based
on template matching (von der Malsburg 1981; Bienenstock
and von der Malsburg 1987; Lades et al. 1993; Olshausen
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et al. 1993; Wiskott and von der Malsburg 1996; Arathorn
2002; Wolfrum et al. 2008). Here, a concrete object con-
tained in an image is mapped onto an abstract template.
Both the object-containing part of the image and the template
are represented as two-dimensional fields of feature detec-
tor neurons, and the relation between them is established
by a neural fiber mapping that preserves both neighborhood
relations and feature type. Such mappings are called home-
omorphic, a term borrowed from the mathematical field of
topology. The template is invariant to changes in the position
(and size and orientation) of the object in the image and may
be abstract in more senses, relating for instance to only spe-
cific features in the image while ignoring others as irrelevant.

A specific neural model of schema-instance matching
(Wiskott and von der Malsburg 1996) addresses the prob-
lem of invariant face recognition. A number of templates of
faces of individual persons are represented as neural nets, a
facial image of one of the individuals is presented in an image
and the template of the correct person is to be activated. The
difficulty of the problem lies in the fact that trial images can
appear in any of an infinity of transformed versions—shifted
or deformed (as by moderate depth rotation or change in
expression)—so that rigid template matching is out of the
question. In (Wiskott and von der Malsburg 1996), both
face templates and input images are represented as two-
dimensional fields of local feature detector neurons. The
actual recognition is realized by a rapid process of network
self-organization resulting in neighborhood-preserving one-
to-one connections between corresponding points in image
and template. The process starts from an initial state in which
all neurons of the image field are connected to all neurons
(of the same feature type) of the template field, irrespective
of position. The feature-type specificity has the effect that
points with similar texture in template and image are con-
nected already in the initial state more densely than average.

The process of self-organization proceeds, in the model,
exactly like in the retinotopy mechanism described above:
Clouds of firing neurons are spontaneously formed in the
image and template fields, and these clouds are local in those
fields due to short-range excitation between neurons. Rapid
synaptic plasticity strengthens synaptic connections between
the two clouds and reduces the strengths of other connections
running into or out of one of the clouds. Like in the retino-
topy case, the process homes in to a one-to-one connectivity
between the fields, neighboring neurons in the image field
connecting to neighboring neurons in the template field. The
active mappings thus developing can accommodate a fair
amount of deformation. During the process, the different
templates compete with each other, and the one with the best
over-all point-to-point feature similarity with the image wins
the process.

The model just described generates, and is based on, a
binding structure that expresses both the neighborhood rela-

tions in object image and template and the point-to-point
relations between object and template. This binding structure
is generated by network self-organization and is expressed
both in terms of connectivity (the fixed connections between
neighboring neurons in image and template and the rapidly
modifiable connections between image and template) and in
terms of temporal signal correlations. The significance of this
model is that it is binding structures of this kind that underlie
the general process of schema-to-instance application.

It must be admitted that the system just described has
a rather serious flaw—when taking into account realistic
neural activation times (optimistically 5-10 msec for the
formation of an activity cloud), it would take 10 or 100
seconds to recognize a face, orders of magnitude slower
than in our brain. The system takes so much time because
for each recognition attempt it has to run the full course of
network self-organization fromall-to-all (though feature spe-
cific) connectivity between the image and template fields to
a one-to-one mapping.

The situation can, however, be changeddrastically if traces
of the connectivity structures generated by this slow process
of network self-organization are permanently preserved and
can be rapidly activatedwhen needed, instead of generated de
novo. This rapid activation of fiber projections could be neu-
rally implemented with the help of control units (Anderson
and van Essen 1987), which have been used in (Olshausen
et al. 1993) for the purpose of object recognition. Whereas
thatmodel still needed engineered circuits to activate the con-
trol units, in the model (Wolfrum et al. 2008) control units
were activated directly by the locally evaluated similarities
between the activity pattern arriving on the set of fibers under
the command of a single control unit and the activity pattern
on the target neurons of those fibers. If in addition differ-
ent control units cooperate appropriately through excitatory
connections, whole coherent mappings can be activated in
a single step. This is how the model (Wolfrum et al. 2008)
solved the speed problem of the model (Wiskott and von der
Malsburg 1996). The self-organization of the necessary con-
nectivity has been demonstrated by simulation in the model
(Fernandes and von der Malsburg 2015) and analyzed on the
basis of the Häussler equation in (Zhu et al. 2010).

This face recognition model, or its technological imple-
mentation (Lades et al. 1993), is no longer state of the art (see,
e.g., (Schroff et al. 2015)) andwould have to be brought up to
speed by further work. However, let us take it as a particular
case and illustration of the general process of schema appli-
cation, such as in parsing a sentence by relation to abstract
syntactical structure, or performing an arithmetic calculation
according to an algorithmic schema, or understanding a par-
ticular object as arrangement of parts, or analyzing a legal
case in relation to precedent or code of law.The schema appli-
cation is achieved by a dynamic process at the end of which
stands a network of active connections homeomorphically
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mapping the structured network representing the instance
onto that representing the schema.Taking schemaapplication
as typical cognitive process (and assuming that the general-
ization from concrete models like (Wolfrum et al. 2008) is
indeed viable), I would like to venture the claim that here lie
the answers to the questions posed in the introduction: Men-
tal content is represented by structured nets, and these nets
are generated, in a nesting of time scales, as attractor states
of connectivity dynamics. The thus conceived system is both
neural, by being compatible with what we know about the
brain, and symbolic, by being compositional, systematic and
productive, as exacted by Fodor and Pylyshyn (1988).

In what way can one, from this perspective, still speak
of binding? In the first of the two face recognition models
(Wiskott and von derMalsburg 1996), bindingwas expressed
by temporal signal correlations, but these served only to
modify connectivity and at the end of the process reflected
the connectivity structure. In the second model (Wolfrum
et al. 2008), binding is exclusively expressed in terms of
connectivity. As formulated there, the rapid connectivity
dynamics underlying brain function no longer requires the
time-consuming evaluation of signal correlations but con-
sists in the activation of previously formed net fragments.
Signal synchrony still plays a role, and a rather important
one, as it supports life-long formation of new connectivity
structure (such as when storing a new facial template).

Accepting the view outlined here (and explained in more
detail in (von der Malsburg 2018)) implies a rather bold
conclusion: All the symbolic structures ever generated in
the brain are attractor states of connectivity dynamics. This
may appear counter-intuitive, as it seems to impose a rather
mechanical syntax on our inner world. The decisive growth
condition (besides sparsity) for connectivity dynamics—
mutual cooperation of alternative pathways between any two
points in the nervous system, (and cooperation between path-
ways inside the nervous system and pathways in the external
world)—goes, however, to the heart of what lets a mental
state be viable: consistency of lines of reasoning (interpret-
ing neural pathways as lines of reasoning). This condition
of consistency of lines of reasoning is the strict criterion for
a mathematical structure to be viable, and the example of
mathematics demonstrates how potent that condition is in
singling out structures that are interesting—and relevant to
the world we live in (Wigner 1960)!

Conclusions

Setting out from two simple studies, of the generation of ori-
entation domains in visual cortex (I) and of the cocktail-party
effect (II), I have here spun out a discussion of two questions
concerning brain and mind, the mechanisms by which our
brain and our mind are made, and the interpretation of mate-

rial states of the nervous system as representation of mental
structure. The current mainstream within the neuroscience
and artificial intelligence communities gives rather unsatis-
factory answers to these two questions, and it is likely that
it is these unsatisfactory answers that are blocking progress
toward understanding the function of the brain and emulating
that function in silico.

As to the issue of representation, the criticism of Fodor
and Pylyshyn (1988) raised against the neuroscientific view
of mental representation (then going under the name of con-
nectionism) still stands unanswered. Artificial Intelligence
has, in transformer networks (Vaswani et al. 2017) evidently
found a neural framework that is wide enough to repre-
sentmental content (interestingly containing an equivalent of
dynamic connections, as pointed out, e.g., in (Goyal andBen-
gio 2020)), but that framework is totally passive in the sense
of needing exhaustive training material and being unable to
generalize beyond the examples it has seen.

This is in stark contrast to the ease with which chil-
dren learn from comparatively minute amounts of data and
rather restricted types of training material to then be able to
generalize from this narrow basis and perceive, understand
and behave in the world outside their nursery. This is only
possible with the help of a very potent bias (Geman et al.
1992) which tunes the brain to the kind of world we live in
(Wolpert 1996). Part of this bias is a behavioral repertoire
(Eibl-Eibesfeldt 1996) that has been developed over the eons
by evolution and is re-created in the individual under genetic
control, presumably during what I have called stage two.
Part of that bias is, however, of a more general nature and
lifts our mind beyond the rather mechanical functions that,
in most animals, are already apparent at birth. This more
general bias I have discussed here as a result of connectiv-
ity dynamics and its tendency to create consistent webs of
interdependent cognitive structures. Wigner marveled at the
‘unreasonable effectiveness’ of mathematics in describing
the world (Wigner 1960), but the much greater marvel is
the unreasonable effectiveness of the brain in perceiving the
world (and, to boot, in discovering mathematical structures).

References

Anderson C, van Essen D (1987) Shifter circuits: a computational strat-
egy for dynamic aspects of visual processing. PNAS84:6297–6301

Arathorn D (2002) Map-Seeking circuits in Visual Cognition - A
Computational Mechanism for Biological and Machine Vision.
Standford University Press, Stanford

Barinaga M (1990) The mind revealed? Science 249:856–858. https://
doi.org/10.1126/science.2392677

Bartha P (2019) Analogy and analogical reasoning. In: Zalta EN (ed)
The stanford encyclopedia of philosophy, Spring, 2019th edn.
Stanford University, Metaphysics Research Lab

Bartlett F (1932) Remembering: A study in experimental and social
psychology. Cambridge University Press, Cambridge

123

https://doi.org/10.1126/science.2392677
https://doi.org/10.1126/science.2392677


448 Biological Cybernetics (2021) 115:439–449

Bienenstock E, von der Malsburg C (1987) A neural network for invari-
ant pattern recognition. Europhys Lett pp 121–126

Cherry E (1953) Some experiments on the recognition of speech, with
one and with two ears. J Aoust Soc Am 25:975–979

Consortium TIHGM (2001) A physical map of the human genome.
Nature 409:934–941. https://doi.org/10.1038/35057157

Dawkins R (1976) The Selfish Gene. Oxford University Press, Oxford
Dempster A, Laird NM, Rubin DB (1977) Maximum likelihood from

incomplete data via the EM algorithm. R Stat Soc B Met 39(1):1–
38

EckhornR,BauerR, JordanW,BroschM,KruseW,MunkM,Reitboeck
H (1988) Coherent oscillations: a mechanism for feature linking
in the visual cortex? Biol Cybern 60:121–130

Eibl-Eibesfeldt I (1996) Human ethology. In: Schmitt A, Atzwanger
K, Grammer K, Schäfer K (eds) New Aspects of Human Ethol-
ogy, Springer, Boston, MA, https://doi.org/10.1007/978-0-585-
34289-4_1

Ellis W (ed) (1950) A source book of Gestalt psychology. Rout-
ledge & Kegan Paul, London, https://ia801600.us.archive.org/
9/items/in.ernet.dli.2015.198039/2015.198039.A-Source-Book-
Of-Gestalt-Psychology.pdf

Fernandes T, von der Malsburg C (2015) Self-organization of control
circuits for invariant fiber projections.Neural Comput 27(5):1005–
1032. https://doi.org/10.1162/NECO_a_00725

Fodor JA, Pylyshyn ZW (1988) Connectionism and cognitive architec-
ture: a critical analysis. Cognition 28(1):3–71. https://doi.org/10.
1016/0010-0277(88)90031-5

Fukushima K (1980) Neocognitron: a self-organizing neural network
model for a mechanism of pattern recognition unaffected by
a shift in position. Biol Cybern 36:193–202. https://doi.org/10.
1007/BF00344251

Gaze R, Keating M (1972) The visual system and neuronal specificity.
Nature 237:375–378. https://doi.org/10.1038/237375a0

Geman S, Bienenstock E, Doursat R (1992) Neural networks and the
bias/variance dilemma. Neural Comput 4:1–58

Goyal A, Bengio Y (2020) Inductive biases for deep learning of higher-
level cognition. arXiv preprint arXiv:201115091

Grabska-Barwinska A, von der Malsburg C (2008) Perinatal ontogene-
sis of orientation specificity and maps in primary visual cortex of
highermammals. J Neurosci 28:249–257. https://doi.org/10.1523/
JNEUROSCI.5514-06.2008

Häussler A, von der Malsburg C (1983) Development of retinotopic
projections–an analytical treatment. J Theor Neurobiol 2:47–73.
https://vfs.fias.science/d/3cfce0fe5a/files/?p=/Retina.pdf

Hiesinger P (2021) The self-assembling brain: How neural networks
grow smarter. Princeton University Press

Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural
Comput 9(8):1735–1780. https://doi.org/10.1162/neco.1997.9.8.
1735

Hopfield J (1982) Neural networks and physical systems with emer-
gent collective computational abilities. PNAS 79(8):2554–2558.
https://doi.org/10.1073/pnas.79.8.2554

Horton J, Adams D (2005) The cortical column: a structure without a
function. Philos Trans R Soc B 360:837–862

Hubel D, Wiesel T (1977) Ferrier-lecture: functional architecture of
macaque monkey visual cortex. Proc R Soc B 198:1–59. https://
doi.org/10.1098/rspb.1977.0085

Hume D (1740/1975) A treatise of human nature. Clarendon Press,
Oxford (Original work published in 1739-40)

Kant I (1781/1999) Critique of pure reason. Cambridge University
Press, Cambridge, England (Original work published in 1781)

Kirkby L, Sack G, Firl A, Feller M (2013) A role for correlated
spontaneous activity in the assembly of neural circuits. Neuron
80:1129–1144. https://doi.org/10.1016/j.neuron.2013.10.030

Krizhevsky A, Sutskever I, Hinton G (2017) Imagenet classification
with deep convolutional neural networks. Commun ACM 60:84–
90. https://doi.org/10.1145/3065386

Lades M, Vorbrüggen J, Buhmann J, Lange J, von der Malsburg C,
Würtz R, Konen W (1993) Distortion invariant object recognition
in the dynamic link architecture. IEEE Trans Comput 42:300–311

Landauer T (1986) How much do people remember? Some esti-
mates of the quantity of learned information in long-term mem-
ory. Cognitive Sci 10(4):477–493. https://doi.org/10.1016/S0364-
0213(86)80014-3

Linsker R (1986) From basic network principles to neural architecture:
emergence of orientation columns. PNAS 83:8779–8783

Li M, Vitányi P (2008) Preliminaries. In: An introduction to Kol-
mogorov complexity and its applications, Springer, New York, pp
1–99. https://doi.org/10.1007/978-0-387-49820-1_1

Locke J (1690/1997) An essay concerning human understanding. Pen-
guin Classics, London (Original work published in 1690)

Meister M, Wong R, Baylor D, Schatz C (1991) Synchronous
bursts of action potentials in ganglion cells of the developing
mammalian retina. Science 252:939–943. https://doi.org/10.1126/
science.2035024

Miller KD (1992) Development of orientation columns via competition
between ON- and OFF-center inputs. NeuroReport 3:73–76

Minsky M (1974) A framework for representing knowledge. Memo
306, MIT-AI Laboratory

Nass M, Cooper LN (1975) A theory for the development of feature
detecting cells in visual cortex. Biol Cybern 19:1–18

Olshausen B, Field D (1996) Emergence of simple-cell receptive field
properties by learning a sparse code for natural images. Nature
381:607–609

OlshausenB,AndersonC, van EssenC (1993)A neurobiologicalmodel
of visual attention and invariant recognition based on dynamic
routing of information. J Neurosci 13:4700–4719

Perez R, Glass L, Shlaer R (1975) Development of specificity in the cat
visual cortex. J Math Biol 1:275–288

Piaget J (1923) Langage et pensée chez l’enfant. Delachaux et Niestlé,
Neuchâtel

Rosenblatt F (1961) Principles of neurodynamics: perceptrons and the
theory of brain mechanisms. Spartan Books, Washington, D.C

Roskies A (1999) The binding problem – review introduction.
Neuron 24:7–9, https://www.cell.com/neuron/issue?pii=S0896-
6273(00)X0252-8

RumelhartD,McClelland J (1986) ParallelDistributedProcessing.MIT
Press, Cambridge

Schank R, Abelson R (1977) Scripts, plans, goals and understanding:
Inquiry into human knowledge structures. Wiley, Nashville, TN

Schneider W (1986) Anwendung der Korrelationstheorie der Hirn-
funktion auf das akustische Figur-Hintergrund-Problem (Cocktail-
Party-Effekt). PhD thesis, Ruhr-Universität Bochum

Schroff F, Kalenichenko D, Philbin J (2015) Facenet: A unified embed-
ding for face recognition and clustering. In: 2015 IEEEConference
on Computer Vision and Pattern Recognition (CVPR), https://doi.
org/10.1109/CVPR.2015.7298682

ShadlenM,Movshon J (1999) Synchrony unbound: a critical evaluation
of the temporal binding hypothesis. Neuron 24:67–77. https://doi.
org/10.1016/s0896-6273(00)80822-3

Shadlen M, Newsome W (1998) The variable discharge of cortical
neurons: implications for connectivity, computation, and infor-
mation coding. J Neurosci pp 3870–96, https://doi.org/10.1523/
JNEUROSCI.18-10-03870.1998

Simpson HD, Goodhill G (2011) A simple model can unify a broad
range of phenomena in retinotectal map development. Biol Cybern
104:9–29. https://doi.org/10.1007/s00422-011-0417-y

Singer W, Gray C (1995) Visual feature integration and the temporal
correlation hypothesis. Annu Rev Neurosci 18:555–568

123

https://doi.org/10.1038/35057157
https://doi.org/10.1007/978-0-585-34289-4_1
https://doi.org/10.1007/978-0-585-34289-4_1
https://ia801600.us.archive.org/9/items/in.ernet.dli.2015.198039/2015.198039.A-Source-Book-Of-Gestalt-Psychology.pdf
https://ia801600.us.archive.org/9/items/in.ernet.dli.2015.198039/2015.198039.A-Source-Book-Of-Gestalt-Psychology.pdf
https://ia801600.us.archive.org/9/items/in.ernet.dli.2015.198039/2015.198039.A-Source-Book-Of-Gestalt-Psychology.pdf
https://doi.org/10.1162/NECO_a_00725
https://doi.org/10.1016/0010-0277(88)90031-5
https://doi.org/10.1016/0010-0277(88)90031-5
https://doi.org/10.1007/BF00344251
https://doi.org/10.1007/BF00344251
https://doi.org/10.1038/237375a0
http://arxiv.org/abs/201115091
https://doi.org/10.1523/JNEUROSCI.5514-06.2008
https://doi.org/10.1523/JNEUROSCI.5514-06.2008
https://vfs.fias.science/d/3cfce0fe5a/files/?p=/Retina.pdf
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1073/pnas.79.8.2554
https://doi.org/10.1098/rspb.1977.0085
https://doi.org/10.1098/rspb.1977.0085
https://doi.org/10.1016/j.neuron.2013.10.030
https://doi.org/10.1145/3065386
https://doi.org/10.1016/S0364-0213(86)80014-3
https://doi.org/10.1016/S0364-0213(86)80014-3
https://doi.org/10.1007/978-0-387-49820-1_1
https://doi.org/10.1126/science.2035024
https://doi.org/10.1126/science.2035024
https://www.cell.com/neuron/issue?pii=S0896-6273(00)X0252-8
https://www.cell.com/neuron/issue?pii=S0896-6273(00)X0252-8
https://doi.org/10.1109/CVPR.2015.7298682
https://doi.org/10.1109/CVPR.2015.7298682
https://doi.org/10.1016/s0896-6273(00)80822-3
https://doi.org/10.1016/s0896-6273(00)80822-3
https://doi.org/10.1523/JNEUROSCI.18-10-03870.1998
https://doi.org/10.1523/JNEUROSCI.18-10-03870.1998
https://doi.org/10.1007/s00422-011-0417-y


Biological Cybernetics (2021) 115:439–449 449

Sperry R (1951) Regulative factors in the orderly growth of neural
circuits. Growth 10:63–87

Treisman A (1999) Solutions to the binding problem: progress through
controversy and convergence. Neuron 24:105–10. https://doi.org/
10.1016/s0896-6273(00)80826-0

TseD, Takeuchi T,KakeyamaM,Kajii Y,OkunoH, TohyamaC,BitoH,
Morris R (2011) Schema-dependent gene activation and memory
encoding in neocortex. Science 333:891–895. https://doi.org/10.
1126/science.1205274

Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN,
Kaiser Ł, Polosukhin I (2017) Attention is all you need. In:
Advances in neural informationprocessing systems, pp5998–6008

von der Malsburg C (1973) Self-organization of orientation sensitive
cells in the striate cortex. Kybernetik 14:85–100

von der Malsburg C (2018) Concerning the neural code. J Cog Sci
19(4):511–550

von der Malsburg C, Buhmann J (1992) Sensory segmentation with
coupled neural oscillators. Biol Cybern 67:233–242

von der Malsburg C, Cowan J (1982) Outline of a theory for the onto-
genesis of iso-orientation domains in visual cortex. Biol Cybern
45:49–56

von der Malsburg C, Schneider W (1986) A neural cocktail-party pro-
cessor. Biol Cybern 54:29–40

von derMalsburg C,WillshawD (1977) How to label nerve cells so that
they can interconnect in an ordered fashion. PNAS 74:5176–5178.
https://doi.org/10.1073/pnas.74.11.5176

von der Malsburg C (1981) The correlation theory of brain func-
tion. Internal report, 81-2, Max-Planck-Institut für Biophysikalis-
che Chemie, Postfach 2841, 3400 Göttingen, FRG, reprinted in
E. Domany, J.L. van Hemmen, and K.Schulten, editors, Models
of Neural Networks II, chapter 2, pages 95–119. Springer, Berlin,
1994

von der Malsburg C, Phillips W, Singer W (eds) (2010) Dynamic coor-
dination in the brain: Volume 5: From neurons to mind.MIT Press,
London, England

Wang D, Buhmann J, von der Malsburg C (1990) Pattern segmentation
in associative memory. Neural Comput 2:94–106

Watson I,Marir F (1994)Case-based reasoning: a review. In:Theknowl-
edge engineering review, vol 9, Cambridge University Press, pp
327–354

Wersing H, Steil JJ, Ritter H (2001) A competitive layer model
for feature binding and sensory segmentation. Neur Comput
13(2):357–387

Wiesel T, Hubel D (1974) Ordered arrangement of orientation columns
in monkeys lacking visual experience. J Comput Neurol 158:307–
318

Wigner E (1960) The unreasonable effectivenss of mathematics in the
natural sciences. Communications in Pure andAppliedMathemat-
ics 13 No. I:1–14, https://doi.org/10.1002/cpa.3160130102

WillshawDJ, von derMalsburg C (1976) How patterned neural connec-
tions can be set up by self-organization. ProcRSocB194:431–445

Willshaw DJ, von der Malsburg C (1979) A marker induction mech-
anism for the establishment of ordered neural mappings; its
application to the retinotectal problem. Philos Trans R Soc B
287:203–243. https://doi.org/10.1098/rstb.1979.0056

Wiskott L, von der Malsburg C (1996) Face recognition by dynamic
link matching. In: Sirosh J, Miikkulainen R, Choe Y (eds) Lateral
Interactions in theCortex: Structure andFunction.Electronic book,
TheUTCSNeuralNetworksResearchGroup,Austin, TX, chap11,
http://www.cs.utexas.edu/users/nn/web-pubs/htmlbook96/

Wolfrum P, Wolff C, Lücke J, von der Malsburg C (2008) A recur-
rent dynamic model for correspondence-based face recognition. J
Vision 8(7):34. https://doi.org/10.1167/8.7.34

Wolpert D (1996) The lack of a priori distinctions between learning
algorithms. Neural Comput 8:1341–1390

Yue LL, Dalal PB, Wang A (1998) Harmonic and frequency-locked
loop pitch tracker and sound separation system. https://patents.
justia.com/patent/5812737

Zeitlinger J, Stark A (2010) Developmental gene regulation in the era
of genomics. Dev Biol 339(2):230–239. https://doi.org/10.1016/j.
ydbio.2009.12.039

Zhu J, Bergmann U, von der Malsburg C (2010) Self-organization of
steerable topographic mappings as basis for translation invariance.
In: Diamantaras K, Duch W, Iliadis LS (eds) Artificial neural net-
works – ICANN 2010, Springer, Berlin, pp 414–419

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://doi.org/10.1016/s0896-6273(00)80826-0
https://doi.org/10.1016/s0896-6273(00)80826-0
https://doi.org/10.1126/science.1205274
https://doi.org/10.1126/science.1205274
https://doi.org/10.1073/pnas.74.11.5176
https://doi.org/10.1002/cpa.3160130102
https://doi.org/10.1098/rstb.1979.0056
http://www.cs.utexas.edu/users/nn/web-pubs/htmlbook96/
https://doi.org/10.1167/8.7.34
https://patents.justia.com/patent/5812737
https://patents.justia.com/patent/5812737
https://doi.org/10.1016/j.ydbio.2009.12.039
https://doi.org/10.1016/j.ydbio.2009.12.039

	Toward understanding the neural code of the brain
	Abstract
	Part I–How is the brain's structure generated?
	Self-organization of orientation sensitive cells in the striate cortex
	Retinotopy
	Network self-organization

	Part II–How is mental content expressed by the brain's physical states?
	Sensory segmentation models
	The binding issue

	Part III–The emerging neural code
	Conclusions
	References




