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Abstract
Neural circuits contain a wide variety of interneuron types, which differ in their biophysical properties and connectivity
patterns. The two most common interneuron types, parvalbumin-expressing and somatostatin-expressing cells, have been
shown to be differentially involved in many cognitive functions. These cell types also show different relationships with the
power and phase of oscillations in local field potentials. The mechanisms that underlie the emergence of different oscillatory
rhythms in neural circuitswithmore thanone interneuron subtype, and the roles specific interneurons play in thosemechanisms,
are not fully understood. Here, we present a comprehensive analysis of all possible circuit motifs and input regimes that can
be achieved in circuits comprised of excitatory cells, PV-like fast-spiking interneurons and SOM-like low-threshold spiking
interneurons. We identify 18 unique motifs and simulate their dynamics over a range of input strengths. Using several
characteristics, such as oscillation frequency, firing rates, phase of firing and burst fraction, we cluster the resulting circuit
dynamics across motifs in order to identify patterns of activity and compare these patterns to behaviors that were generated
in circuits with one interneuron type. In addition to the well-known PING and ING gamma oscillations and an asynchronous
state, our analysis identified three oscillatory behaviors that were generated by the three-cell-type motifs only: theta-nested
gamma oscillations, stable beta oscillations and theta-locked bursting behavior, which have also been observed in experiments.
Our characterization provides a map to interpret experimental activity patterns and suggests pharmacological manipulations
or optogenetics approaches to validate these conclusions.
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1 Introduction

With the introduction of genetic tools into neuroscience,
particularly optogenetics, the possibilities to study the func-
tional roles of and relationships between different cell types
in the brain have improved dramatically (Callaway 2005;
Fenno et al. 2011; Luo et al. 2018). Although representing
a numerical minority of all neurons, inhibitory interneurons
have received most attention in recent years. Two groups of
inhibitory interneurons are of particular interest: interneu-
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rons that express the calcium-binding protein parvalbumin
(PV, reviewed in (Hu et al. 2014)), such as basket cells and
chandelier cells, and interneurons expressing the neuropep-
tide somatostatin (SOM, for a review see (Urban-Ciecko and
Barth 2016)), e.g., Martinotti cells in neocortex and oriens-
lacunosum moleculare (O-LM) cells in hippocampus. PV
and SOM cells are the two-interneuron types that most fre-
quently occur in cortex, with PV positive cells making up
about 40–50% (Markram et al. 2004; Rudy et al. 2011) and
SOM cells about 30% of the interneuron population (Rudy
et al. 2011). About half of the remaining share is made up
of a third cell type, expressing Vasoactive Intestinal Peptide
(VIP, Rudy et al. 2011). Genetic tools have made it possible
to identify these interneuron types in vivo and in vitro and
assess their connection profiles (for example: Pfeffer et al.
2013), and to selectively stimulate or inhibit activity through
the expression of light-sensitive ion channels, namely chan-
nelrhodopsin and halorhodopsin, respectively (reviewed in:
Fenno et al. 2011).
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Both PV and SOM are expressed by several interneuron
cell types, but despite this diversity, these groups generally
have some distinct biophysical properties (Gouwens et al.
2020), which can effectively be captured by simple spiking
neuron models (Billeh et al. 2020). PV cells are generally
fast spiking (FS), reaching high firing rates (Kawaguchi and
Kubota 1993), while SOM cells spike less often, but become
active at lower input levels and are hence referred to as ‘low-
threshold spiking’ (LTS). PV basket cells target the soma
and basal dendrites of neighboring pyramidal cells and PV
chandelier cells target the initial axonal element (Klausberger
and Somogyi 2008). The axons of these cell types are highly
branched, suggesting they can produce strong inhibition in
the local circuit (Hu et al. 2014). Conversely, SOM cells are
mostly found in the superficial layers of the cortex, mostly
targeting the higher parts of the apical dendrites and tufts (Sik
et al. 1995; Wang et al. 2004). As a result, SOM cell activity
is associated with inhibition of NMDA-mediated calcium
spikes and bursting (Spruston et al. 1995).

PV, SOM and VIP cells were also found to have distinct
connection patterns with other cell types. In mouse V1, PV
cells tend to inhibit pyramidal cells and each other, but not
other interneuron types (Pfeffer et al. 2013). On the other
hand, SOM cells do not inhibit each other, but strongly
inhibit both PV and VIP expressing interneurons (Pfeffer
et al. 2013). SOM cells have been shown to mediate lateral
inhibition between neighboring pyramidal cells (Silberberg
and Markram 2007). VIP cells were found to inhibit pre-
dominantly SOM cells, leading to disinhibition of PV and
pyramidal cells, a pattern that was found in both V1 (Pfeffer
et al. 2013), motor cortex (Lee et al. 2013) and auditory and
prefrontal cortex (Pi et al. 2013). In prefrontal cortex, PV,
but not SOM, cells were found to preferentially connect to
some types of excitatory cells, while avoiding others (Lee
et al. 2014a), suggesting that several connection patterns can
co-exist within a cortical area.

Interneurons are likely to playmany essential roles in neu-
ral function, from preventing overall runaway excitation to
complex computation (Isaacson and Scanziani 2011; Roux
2015; Cardin 2019). Based on the differences in both bio-
physical properties and connection patterns between PV and
SOM cells, it is expected that these cell types also show dis-
tinct functional activation patterns. Indeed, several studies
have identified differences between PV and SOM cells in
locking strength and phase preference within neural oscil-
lations. In hippocampus, O-LM cells preferably lock to the
peak of the 4–8 Hz theta oscillation, while PV cells lock
to the trough (Klausberger et al. 2003; Lapray et al. 2012).
O-LM cells show a marked increase in activity during theta
oscillations, while PV firing is relatively low (Klausberger
et al. 2003). However, rhythmic optogenetic stimulation of
PV cells led to resonance in the theta frequency band (Stark
et al. 2013). Interestingly, reducing inhibitory inputs onto

PV cells did not affect hippocampal gamma rhythms, but did
reduce theta power (Wulff et al. 2009). Furthermore, PV, but
not SOM inactivation, has been shown to affect the timing of
hippocampal place cells firing within the theta rhythm, while
SOM inactivation lead to burst firing (Royer et al. 2012). In
addition to theta-locking, PV cells are also locked to gamma
oscillations nested within the theta periods. Modeling of hip-
pocampal circuits has suggested that the generation of these
theta-nested gamma oscillations depends on an interaction
between PV and SOM cells (White et al. 2000; Rotstein et al.
2005; Vierling-Claassen et al. 2010; Bezaire et al. 2016), in
line with the experimental work by (Wulff et al. 2009), but
thesemodels do not agree onwhich connection is critical and
whether additional membrane dynamics are required. Other
modeling work has suggested SOM cells are not required
for theta generation (Ferguson et al. 2017). It has also been
suggested that these different interneuron types can sustain
independent slow and fast nested gamma rhythms (Keeley
et al. 2017), in line with the findings from (Colgin et al.
2009). These findings therefore suggest that PV and SOM
indeed play complementary roles in hippocampal circuits.
The exact nature of these roles remains to be determined
and may depend on the circuit activity and differ for other
brain regions, stressing the need for a comprehensive study
of possible circuits motifs involving PV and SOM cells.

In addition to theta oscillations, which have been related
to memory formation (Colgin 2016) and periodic atten-
tional sampling (VanRullen 2016), several other rhythms
are prominently found in local field potentials: alpha fre-
quencies (8–12 Hz) which is thought of as a sign of global
inhibition (Jensen and Mazaheri 2010), and beta (12–30 Hz)
and gamma frequencies (30–90Hz) associatedwith anything
between coding and communication of information in neural
circuits, to a wide range of cognitive functions (for reviews
see: Jensen et al., 2007; Spitzer & Haegens, 2017). With the
exception of gamma oscillations, little is known about the
generation of these rhythms (for a review see: Wang 2010).
Inhibition and stimulation of SOM cells was demonstrated
to reduce, respectively, enhance, visually induced beta oscil-
lations, while PV cells were shown in be involved in both
beta and gamma frequencies, both under anesthesia (Kuki
et al. 2015) and in behaving animals (Chen et al. 2017).
Other work has suggested that beta oscillations are indepen-
dent of GABAA-mediated inhibition, excluding a role for
PV-inhibition in beta-generation (Roopun et al. 2006). No
modeling framework has so far accounted for all these find-
ings. It has been established that PV cells are essential for
the generation of gamma rhythms in hippocampus (Whit-
tington et al. 1995; Traub et al. 2000) and cortex (Cardin
et al. 2009; Sohal et al. 2009). Based on extensive studies in
hippocampus, two distinct mechanisms have been identified
for the generation of gamma oscillations (Whittington et al.
2000; Bartos et al. 2007; Tiesinga and Sejnowski 2009): a
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mechanism relying on PV cells only (Interneuron Network
Gamma, ING, Wang and Buzsáki 1996; Brunel and Hakim
1999)) and a mechanism relying on the interactions between
PV cells and pyramidal cells (Pyramidal-Interneuron Net-
workGamma, PING, (Tiesinga and Sejnowski 2009)). These
mechanisms can co-exist in models of cortical columns (Bos
et al. 2016). However, it remains unknown how these mech-
anisms are embedded in a circuit with multiple interneuron
types.

It is likely that the functional interactions between PV,
SOM and other cell types are affected by changes in syn-
chrony within the circuit. For example, synchronization of
inhibitory cells in the gamma frequency range has been
shown to affect gain of model pyramidal cells (Tiesinga
et al. 2004). It has recently also been suggested that PV and
SOM cells respond differently to synchrony- and rate-coded
information; PV cells were most likely to represent infor-
mation that was coded by synchronized pre-synaptic activity
(Tiesinga et al. 2002), while SOM cells responded to both
synchrony- and rate-coded information, albeit slower than
the PV cells (Tran et al. 2019). The behavior of PV and SOM
cells therefore not only depends on the strength of excitatory
and inhibitory inputs, but also on the state of the surrounding
network. Such mesoscale interactions might, in part, explain
why studies into the functional separation between PV and
SOMcells have so far produced complex and sometimes con-
tradicting findings. For example, optogenetic studies into the
role of PV and SOM cells in gain modulation have yielded
confusing results: activation of PV cells led to divisive inhi-
bition in mouse V1, preserving stimulus selectivity in some
(Atallah et al. 2012;Wilson et al. 2012), but not other studies
(Lee et al. 2012). Similarly, activation of SOM cells could
either increase selectivity (Wilson et al. 2012) or leave it unaf-
fected (Lee et al. 2012). It has since been suggested that such
discrepancies can stem from differences in how these cell
types are recruited by different stimulation protocols, with
outcomes depending on the strength (Atallah et al. 2014;
Lee et al. 2014b; El-Boustani and Sur 2014) and duration
(Lee et al. 2014b; Li et al. 2014). Furthermore, stimulation
and suppression of PV and SOM cell activity led to different
conclusions about their function in mouse auditory cortex
(Phillips and Hasenstaub 2016) and stimulation of PV cells
in somatosensory cortex could, in some conditions, lead to
an unexpected increase in activity in neighboring pyrami-
dal cells (Mahrach et al. 2020). These studies suggest that
interpretation of optogenetic stimulation requires an under-
standing of interactions between cell types at the network
level and how this affects their input–output mapping.

Despite the substantial increase in the amount of exper-
imental data, there is still no comprehensive understanding
of how interactions between PV, SOM and pyramidal cells
affect synchronization of neural activity at frequencies other
than the gamma band. It is also unclear how synchroniza-

tion is affected by input conditions and connection profiles.
Obtaining such understanding is complicated by the fact that
(1) interactions cannot be assessed on a pair-by-pair basis,
as the state of the motif as a whole can affect the outcome of
the pair’s interaction; and (2) the number of possible interac-
tions scales quadraticallywith the number of cells types. This
makes an experimental assessment of interactions extremely
complex and time consuming. Suggestions have been made
on how to improve assessment and reporting of interactions
through the use of circuit motifs (Womelsdorf et al. 2014b;
Braganza and Beck 2018).

Here, we use a modeling approach to identify the possible
asynchronous and oscillatory outcomes of interactions in cir-
cuit motifs of three-cell types: pyramidal cells, and PV and
SOM interneurons. We report a wide range of possible cir-
cuit behaviors, from robust beta oscillations, to theta–gamma
phase-amplitude coupled oscillations, to switches between
distinct frequency bands. We document both frequency and
amplitude of the oscillations in the LFP, as well as the firing
rates and phase-of-firing of the different cell types.

2 Methods

2.1 Overview

To study the network dynamics of two-interneuron neural
circuits, we simulated the spiking activity and local field
potentials for circuits of 1000 cells. These cells were mod-
eled as Izhikevich point neurons (Izhikevich 2003). Circuits
with three-cell types (Fig. 1a) contained 80% model excita-
tory cells (DeFelipe and Fariñast 1992;Markram et al. 2004),
i.e., 800 regular spiking cells, and 20% interneurons, consist-
ing of 100 low-threshold spiking cells (SOM cells) and 100
fast-spiking cells (PV cells). Example voltage traces and f-I
curves are given for each of these cell types in Fig. 1b and
c. Two-cell-type circuits instead contained 200 cells of one
of the two-interneuron types. Neurons were connected via
excitatory (AMPA) and inhibitory (GABA) synapses.

We tested the impact of two elements on the dynamics of
the two-interneuron circuit, namely the absence or presence
of specific connections within the circuit and the presence
and strength of external inputs to each of the cell types. Each
circuit motif was simulated for a range of inputs to the RS
and FS cells, once with external inputs to LTS cells and once
without this input. This resulted in a total of 18 three-cell-type
motifs and 2 two-cell-type motifs (see Fig. 2).

2.2 Model neurons

The three cell types were modeled using the Izhikevich neu-
ron model and followed the definitions used in (Izhikevich
2003). For a detailed discussion of the characteristics of these
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Fig. 1 Model neurons and circuit. a: Schematic of the full network; b:
Example traces for the three model cell types in response to a step cur-
rent; c: Firing rates per cell types in response to Poisson input spike
trains of between 0 and 5000 Hz (x axes). Solid lines give the mean
firing rate across all neurons of a cell type (for the number of cells

included see panel a) and 10 different random seeds. Shaded areas give
the 95% confidence interval. Throughout the manuscript, red represents
the regular spiking neurons (RS), blue the fast-spiking neurons (FS) and
we use green for the low-threshold spiking neurons (LTS)

neuronmodels, as well as specific parameter choices for each
cell type, we refer to (Izhikevich 2007).

The neurons were modeled through a system of two cou-
pled differential equations:

dV

dt
� 0.04V 2 + 5V + 140 −U + I

dU

dt
� a(bV −U )

I �
∑

j

I jsyn + Ibg + Inoise

if V ≥ 30mV, then

{
V ← c

U ← U + d

(1)

Here, V is the cell’s membrane potential, whereas U
captures slower subthreshold dynamics, and a, b, c, d are
parameters. I represents the inputs into the cell, which here
consists of the sum of synaptic inputs from other neurons j in
the circuit (I jsyn), background synaptic input (Ibg) and noise
(Inoise), which are described in more detail in the next two
sections. Variables and parameters are dimensionless, but V
represents the membrane potential in millivolt, with time t
in milliseconds. The V -equation models the rising phase of
action potentials, but not the falling phase. Instead, a condi-
tion is added such that when V exceeds the spike threshold

of 30 mV, its value is reset to c, while d is added to the value
of U to maintain a refractory period.

Initial conditions V0 were drawn, for each of the cell
types, from a uniform distribution spanning between −80
and−70mV.The corresponding initial conditions forU were
computed as U0 � bV0 + d.

The values of parameters a, b, c, d differed for the three
cell types and are given inTable 1. To introduce heterogeneity
into the population, some parameters were drawn from uni-
form or squared uniform distributions, as detailed in Table 1.
Themodel neurons resulting fromEq. 1 and Table 1 have rel-
atively short membrane time constants (in the order of a few
millisecond), while reported membrane time constants from
neural recordings vary widely, up to several dozen millisec-
onds, and are often found to be shorter for FS cells than for
other cell types (Povysheva et al. 2006; Neske et al. 2015).
The impact of the membrane time constant is explored in
Fig. 11 (Appendix III).

2.3 Synapses and connection probabilities

Cells communicated with each other through AMPA and
GABA synapses. Synaptic currents Isyn between pre-

123



Biological Cybernetics (2021) 115:487–517 491

Pyramidal 
Interneuron 
Network 
Gamma

Pyramidal 
Interneuron 
Network 
Beta

recurrent connec�ons

Legend: 

external input (Poisson)

excitatory connec�ons 
from RS
inhibitory connec�ons
from FS
inhibitory connec�ons
from LTS

Only external 
excita�on

Feedforward
inhibi�on

Compe��on Feedback
inhibi�on

Disinhibi�on

Only local 
excita�on

Local & external
excita�on

Recurrent
inhibi�on

Two cell types:

Three cell types:

I II

III

IV

V

VI

VII

VIII

XII

XIII

XIV

XV

XVI

XVII

XVIII

XIX

XX

X

XI

IX

Recurrent
disinhibi�on

Input to LTS:

Fig. 2 Overview of the circuit motifs and the roman numerals used to
identify them throughout thismanuscript. The two-cell-typemotifs, RS-
FS and RS-LTS, are shown on the top row. The three-cell-type motifs
are given below and are structured in 3 rows representing (from top to
bottom) motifs with external input to LTS cells only; motifs with local

excitation to LTS cells only; and motifs with both local and external
inputs to LTS cells. The motifs are also structured into columns repre-
senting different types of inhibition provided by theLTS cells (discussed
in the main text)

synaptic cell j to post-synaptic cell i were modeled as
follows:

I i, jsyn(t) � Ci, jH
(
t − tdelay

)
e
− t−tdelay

τpre w j ∗ S j (t) (2)

On theRHS, S j (t) is the spike train of pre-synaptic neuron
j , with S j � 1 at tspike and 0 otherwise, which is convolved
with a synaptic kernel. In this kernel, H is the Heaviside step
function, with tdelay the synaptic delay time constant, which
was set to 1 ms for all synapses. The third factor is an expo-
nential decay with characteristic time scale τpre, determined
by the pre-synaptic cell type. τpre was 2ms for excitatory con-
nections (i.e., from RS cells), 3 ms for inhibitory synapses
fromFS cells and 6ms for inhibitory synapses fromLTS cells
(see Table 2b). The resulting differences in synaptic potential

durations between the synapse types quantitatively mimics
empirical findings from rodent somatosensory (Silberberg
andMarkram2007) and hippocampal (Savanthrapadian et al.
2014) areas and follows previous modeling work (Vierling-
Claassen et al. 2010). In Eq. (2), wj represents the synaptic
weight, based on the pre-synaptic cell j , which was drawn
from a normal distribution, with averages and standard devia-
tions given in Table 2b. The post-synaptic potentials resulting
from single pre-synaptic action potentials are characterized
in Fig. 9a and b in Appendix I. Ci, j represents the connec-
tion matrix. The connection matrix was generated randomly,
i.e., without any spatial structure, following the probabili-
ties given in Table 2a, which were based on (Pfeffer et al.
2013). Depending on the circuit motif, specific connections
between cell types were left out or introduced (see Fig. 2 for
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Table 1 Parameter values for the
three cell types Cell type Parameter

a b c d

Regular spiking 0.020 0.20 -65 – 50 * 2 – 8 *1

Fast Spiking 0.10—0.18 0.15—0.20 -65 2

Low-Threshold Spiking 0.020—0.025 0.20—0.25 -65 2

Where a range is given, a uniform distribution scaled to the stated range was used, unless the range is followed
by a *, in which case a beta distribution was used with shape parameters 0.5 and 1; or *1 in which case a beta
distribution with parameters 1 and 0.5 was used

Table 2 Connection
probabilities (a) and synaptic
current parameters (b) for each
of the cell types

a Pre b Pre-synaptic cell type wpre(avg±SD) τ pre(ms)

Post RS FS LTS

RS 5% 30% 40% RS 1±0.5 2

FS 10% 30% 20% FS −2±1 3

LTS 10% 20% 0% LTS −2±1 6

all circuit motifs), we did, however, not vary the connection
probabilities, i.e., whenever a connection existed, it followed
the probability stated in Table 2a.

2.4 External inputs

In addition to local synaptic inputs, cells also received two
‘external’ input currents, Ibg and Inoise. The former, Ibg, rep-
resents driving synaptic inputs from excitatory cells from
other regions of the brain, for example input from the tha-
lamus. It was modeled as Poisson spike trains arriving via
AMPA synapses, using Eq. (2) withC � 1,w � 1 and τpre �
2 ms. Each cell received an independently generated Poisson
spike train. The firing rate of the spike train was varied and
ranged between 0 and 5000 Hz, in 250 Hz steps. This input
rate mimics the combined inputs from all synaptic inputs a
cell might receive, which generally are thought to run in the
thousands (DeFelipe and Fariñast 1992).

A noise current was inserted in all neurons to mimic all
other sources of variability in neural responses. This noise
source consisted of two parts: Inoise � Ioffset + It(t). Here,
Ioffset is a static offset per neuron, drawn from a normal
distribution and It(t) is a time-varying noise source drawn
independently at every time step from a normal distribution
with mean 0 and a standard deviation of 1 mV. The variations
in membrane potential caused by the noise current are char-
acterized in Fig. 9c and d in Appendix I. The noise source
Inoise, as well as the variability in neuron parameters a − d
and synaptic weight parameter wj, introduce variability in
the membrane potential at the time scale of the membrane
time constant and therefore can affect the timing of individ-
ual spikes. This variabilitywas added to ensure that identified
network states were generalizable and did not rely on indi-
vidual input- or connection patterns.

2.5 Model output: spike times and local field
potentials

Spikeswere detectedwhenever the voltage V of amodel neu-
ron crossed the 30 mV threshold (see Eq. (1)). Time stamps
and neuron IDs of all spikes were stored for further analysis.
In addition to spike times, we also stored the mean volt-
age trace across all cells, which was used as a proxy for the
Local Field Potential (LFP), as would be recorded using an
invasive extracellular recording setup. We chose to use the
mean voltage here, because this measure was cheap to com-
pute, allowing for the high number of simulations used here,
and was shown to perform similarly to the more expensive
weighted synaptic current under the high spiking condition
generated by the model network (Mazzoni et al. 2015).

2.6 Simulations

The above differential equations were numerically integrated
using the Euler method with a time step of 0.2 ms. Simulated
time series were 2300ms long, of which the first 300mswere
discarded before further analysis. For every circuit design,
we simulated time series for a range of external input val-
ues. Simulations for different input values were run using the
same random seeds, to improve comparison between input
values. Every simulation was repeated 10 times with differ-
ent random seeds (i.e., with different connection patterns and
noise currents). Unless stated otherwise, results shown rep-
resent the average across these 10 repetitions.

2.7 Analyses—LFPs

We analyzed the spectral content of the LFP for each simula-
tion. After exclusion of the first 300 ms of the simulation,
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we computed the power spectral density using a multita-
per approach with a time-halfbandwidth (NW) product of
3. We then identified the frequency with highest power in
the full spectrum, as well as in two pre-defined frequency
bands: a low-frequency band between 2 and 30 Hz and a
high-frequency band between 30 and 150 Hz. The three peak
frequencies and the corresponding power were stored.

For simulations that had sufficient power (at least 1 dB/Hz)
for both the low and high peak frequency, and for which
the peak frequency in the higher frequency band was above
40 Hz and not the first harmonic of the lower peak frequency,
we subsequently computed phase-amplitude coupling (PAC).
We used the weighted Phase Locking Factor (wPLF; Maris
et al., 2011) between the phase of the low-frequency band and
the amplitude from the high-frequency band as a measure of
PAC. Briefly, (1) we computed the instantaneous phase in the
low-frequency band by zero-phase filtering the LFP with a
second-order Butterworth filter with a pass band of 2–30 Hz,
subtracting the mean, computing the Hilbert transform of
the filtered signal and normalizing the Hilbert transformed
signal by dividing by its norm; (2) we computed the instanta-
neous amplitude for the high-frequency band by zero-phase
filtering the LFP with a fourth-order Butterworth filter with a
pass band of 30–150Hz, subtracting themean, computing the
Hilbert transform and taking the absolute value divided by
the norm of the Hilbert transformed signal; (3) we computed
the PLF by taking the absolute value of the inner product
between the signal obtained in steps 1 and 2.

2.8 Analyses—spikes

To characterize the spiking behavior of the 3 cell types in
each of the motifs, we report the firing rate, as well as the
burst fraction per cell type. The firing rate was computed
as the average number of spikes per second across all cells
in the circuit belonging to a given type. The burst fraction
was determined by identifying all spikes of a single neuron
that occurred within 10 ms of each other and by dividing the
resulting number of burst events by the sum of the number
of bursts and the number of single spikes. This resulted in a
number between 0, when all spikes were single spikes, and 1,
when all spikes occurred in bursts. The computation of burst
fraction required each neuron to have at least 2 spikes to be
detectable.

In addition, we computed two spike-LFP measures for
every simulation: the pairwise phase consistency (PPC;
Vinck et al. 2010), which gives an indication of how strongly
the individual cell types were locked to the LFP; and the
average phase of firing. Both PPC and average phase of fir-
ing were computed using the instantaneous phase at the peak
frequency of the LFP. To obtain the instantaneous phase, we
zero-phase filtered the LFP trace with a second-order But-
terworth filter with a 10 Hz wide passband centered around

the peak frequency. After mean-correction, we computed the
Hilbert transform and took the angle to obtain the instanta-
neous phase. We then identified the phases θct at all spike
timestamps t from each cell type c. Note that a phase of 0
means that the cell spiked at the positive peak of the LFP, and
a phase of±π resulted from spiking around the trough of the
oscillation in the LFP. To obtain the average phase of firing,

we computed the circular average: θcavg � Arg
(∑

t e
iθct

)
.

The PPC was then computed, following (Vinck et al.
2010): PPCc � 1

Nc
s

∑
i, j cos(θ

c
i − θcj ), where Nc

s is the total
number of spikes from cell type c and i, j denote a pair of
spike time stamps.

2.9 Clustering

To compare the many different input regimes and connection
profiles (see Fig. 2) with each other efficiently, we opted for
a clustering approach. We used k-means clustering with the
following characteristics, obtained from the spikes and LFP
produced by the model, as features:

– Firing rates for each of the three-cell types
– PPC for each of the cell types
– Burst fraction of individual cells for each of the cell types
– Peak frequencies in the low (2–30 Hz) and high
(30–150 Hz) frequency bands

– Log-transformed power at the peak frequencies in the
low- and high-frequency bands

– Phase-amplitude coupling between the low- and high-
frequency bands

Each of these measures was first averaged across the 10
different seeds and subsequently standardized, to provide
equalweighing across the features.Whenmeasures could not
be calculated in at least 5 of the seeds, for example because
a cell type was inactive, values were set to 0. We then con-
catenated all input conditions from all connection profiles
and entered this into the k-means clustering algorithm using
a squared Euclidean distance measure. We ran the k-means
algorithm 10 times, to account for initial conditions of the
clusters, with a maximum of 1000 iterations.

To determine the appropriate number of clusters, we first
clustered only the two two-cell-type motifs (Fig. 2a). We
repeated the clustering on these twomotifs for 1 to 20 clusters
and evaluated the appropriate number of clusters using the
Calinski–Harabasz index (Caliński andHarabasz 1974). This
resulted in an optimum of 4 clusters (Fig. 3b), with 2 clusters
unique to motif I, 1 cluster unique to motif II and 1 cluster
appearing in both motifs (Fig. 3a). We then clustered the
entire dataset (i.e., using all motifs) using 4 to 20 clusters
and established, again using the Calinski–Harabasz index,
that the optimal number of clusters was 6.
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Fig. 3 Outcome of k-means clustering. a & b: k-means clustering per-
formed on the two-cell-type motifs only (motifs I and II), using k �
1–20. The Calinski–Harabasz index identified k� 4 as optimal number
of clusters (b, dashed line indicates the peak). In a, the cluster to which
each of input conditions (x- and y-axes) of motifs I and II was assigned
is shown. Clusters are color-coded; c-e: k-means clustering was subse-
quently performed on all 20 circuit motifs combined, for k � 4–20. The

optimal cluster count was here identified at k � 6 (Calinski–Harabasz
index, dashed line in d). The distribution of these 6 clusters across input
conditions of motifs I and II is given in c (using a color code matched
to a), and the three-cell-type motifs are given in e, following the layout
from Fig. 2. The cluster color code used here is maintained throughout
the manuscript
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2.10 Software

All simulations were run using MATLAB 2018a (The
Mathworks) with the Signal Processing Toolbox, using stan-
dard functions and custom code. For the plots in Fig. 5
and S1, the violin.m function by H. Hoffmann (Hoffmann
2015) was used. All custom code is available via https://
github.com/marijeterwal/RS-FS-LTS-clustering (https://doi.
org/10.6084/m9.figshare.14695584).

3 Results

3.1 Dynamics of 20 unique circuit motifs were
modeled using spiking neuronmodels

We aimed to characterize the oscillatory behavior and cor-
responding circuit dynamics of all generic circuit motifs
consisting of pyramidal cells, as well as PV and SOM
inhibitory neuron types. To this end,we identified all possible
circuit motifs containing these three cell types and simulated
their activity patterns.We compared the activity produced by
the three-cell-type model to simulations of the well-studied
motif consisting of pyramidal cells and inhibitory PV basket
cells (Fig. 2, motif I).

To arrive at a comprehensive overview of the dynamics
that can be achieved by the three-cell type circuit, we did not
make assumptions about the connection pattern between the
SOM cells and the two other cell types. Instead, we included
all possible connection patterns separately and simulated the
activity for all of them. Nor did we assume local excitation or
long-range inputs (i.e., from outside the local circuit) to the
SOM cells; again, we simulated both possible input condi-
tions as separate motifs. This resulted in a total of 18 unique
three-cell-type motifs, shown in Fig. 2, with columns rep-
resenting the different connection patterns between the cell
populations and rows showing the different input regimes to
the SOM cells.

Wemodeled each of the motifs using randomly connected
Izhikevich point neuron models (Izhikevich 2003). We used
regular spiking (RS, Fig. 1, red) excitatory cells to model
pyramidal cells, fast-spiking cells (FS, Fig. 1, blue) to match
PV cells and low-threshold spiking cells (LTS, Fig. 1, green)
to represent SOM cells. We simulated the spiking activity
and local field potentials (LFPs) of the circuits for 2 s peri-
ods across a range of different inputs to the RS and FS cell
populations and repeated this 10 times with different ran-
dom seeds.We analyzed the spiking activity and themodeled
LFPs of each of the three-cell-type motifs at each input con-
dition and compared themwith thewell-known two-cell-type
motif consisting of RS and FS cells, as well as to a circuit
consisting of RS and LTS cells.

3.2 K-means clustering identifies known types
of circuit dynamics in RS-FSmotifs

In order to compare and qualitatively describe the behaviors
generated by all 20 circuit motifs, we opted to use a k-means
clustering approach. This unsupervised clustering approach
allowed us to process the large amount of data produced by
the 20 circuit motifs and identify patterns of activity within
and across different motifs. As a result, we could group the
behaviors of all circuit motifs into a small number of char-
acteristic activity patterns in a data-driven way.

Briefly, the clustering approach involved the following
steps: Firstly, we identified key features of the motif’s activ-
ity, such as firing rate and oscillation frequency, for each
input condition and motif. We then concatenated these fea-
tures from all input conditions and motifs to create one large
dataset. We entered this combined dataset into a k-means
clustering algorithm. As features, we used both spike-based
andLFP-basedmeasures. The spike-basedmeasureswerefir-
ing rate, pairwise-phase consistency (PPC, this quantifies the
locking of a cell type to theLFP’s oscillations) and single-cell
burst fraction, for each of the cell types separately. As net-
work activity characteristics based on the LFP, we used peak
power and the corresponding oscillation frequency within
the lower (2–30 Hz) and higher (30–150 Hz) frequency
bands, and phase-amplitude coupling between those bands
(see Methods for details). The values for each of those mea-
sures were averaged across the 10 repeated simulations (with
different randomseeds) andwere only included for clustering
when they could be determined in at least 5 of the simulations
to avoid bias toward outliers.

To validate the clustering method, we first clustered only
the two-cell-type motifs, I and II, as the network dynamics of
thesemotifs arewell-established and distinctive. The dynam-
ics of the RS-FS motif are particularly well-characterized.
This circuit motif has been shown to robustly synchronize
in the gamma frequency range through two possible mech-
anisms (Brunel 2000; Whittington et al. 2000; Bartos et al.
2007; Tiesinga and Sejnowski 2009): Interneuron Network
Gamma (ING), which critically depends on recurrent inhibi-
tion in the basket cell population (Wang and Buzsáki 1996;
Brunel and Hakim 1999); or Pyramidal cell–Interneuron
Network Gamma (PING) mechanism, which depends on
interactions between the excitatory or inhibitory populations.
The motif can also generate asynchronous behavior, and the
type of circuit dynamics depends on the amount of input the
two-cell types receive.

We ran k-means clustering on the simulated activity of
motifs I and II with k � 1–20, i.e., assuming between 1 and
20 clusters of activity patterns. Using the Calinski–Harabasz
index, we identified that the behavior of the two two-cell type
circuits was best described by 4 activity clusters (Fig. 3b).
The input conditions we simulated for Motif I (the RS-FS
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Fig. 4 Characteristics of motif I:K-means clustering reproduces known
types of circuit dynamics in RS-FS motifs. a: Schematic of the circuit
motif (repeated fromFig. 2); b: Clustering result for thismotif (repeated
from Fig. 3); c: Example LFPs (top) and raster plots (bottom) for 3 input
settings (indicated by black dots in panel c). Red dots are spikes from
RS cells, blue dots are FS cells; d: Peak frequency per input setting
identified based on the LFP; e: Pairwise phase consistency of spikes
relative to the LFP at peak frequency for fast-spiking cells for a special

conditionwithout FS-FS inhibitory connections (comparewith g, right).
Cluster outlines for the full circuit in a are overlaid for comparison; f :
Average firing rate for RS cells (left) and FS cells (right). g: Pairwise
phase consistency of spikes relative to the LFP at peak frequency for
regular spiking cells (left) and fast-spiking cells (right); White areas in
e–g did not allow for analysis in a sufficient number of the random seeds
(see Methods). Black lines in b, d–g give the outlines of the clusters

motif) were split up into 3 clusters of approximately equal
size (Fig. 3a, left, each color is one cluster). Figure 4 shows
the dynamics of Motif I in more detail, with examples of the
LFP and raster plots for each of the three clusters given in
Fig. 4c. Indeed, the three clusters of this circuit motif showed
distinct behaviors (compare the cluster outlines from Fig. 4b
to the data in Fig. 3d–g):

– Dark blue cluster: This activity cluster was characterized
by low firing rate in both RS and FS cell populations
(Fig. 4f) and low synchronization among the cells, as indi-
cated by the low PPC for both RS and FS cells (Fig. 4g)

and the low power for the blue cluster in general (Fig. 5b),
matching an asynchronous state;

– Purple cluster:With both RS and FS cells active in approx-
imately equal amounts (Fig. 4f), this cluster showed strong
synchronization in the gamma frequency range (Fig. 4d),
with both cells locking to this rhythm (Fig. 4g). The syn-
chronization at the input conditions in this cluster survived
when the recurrent connections between FS cellswere bro-
ken (Fig. 4e). These characteristics suggest this cluster
represents the PING mechanism;

– Green cluster: like the purple cluster, for input conditions in
the green cluster the circuit showed synchronized activity
in the gamma frequency range across all input conditions,
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addition to plotting all observations (colored dots), the data are repre-
sented as violin plots (shaded areas), as well as by the mean across all
observations in a cluster (black dots)

but spiking ofRS cellswas infrequent or absent in this clus-
ter. FS cells did show high firing rates and high PPC. The
synchronization in this cluster was broken by removing
recurrent FS connection from the circuit (Fig. 4e), demon-
strating that this cluster represents the ING mechanism.

These results show that (1) the circuit model containing
simple RS and FS neuron models reproduced both the asyn-
chronous network activity, as well as synchronous activity
through the ING and PING mechanisms identified by pre-
vious studies; and (2) that these three categories of activity
were correctly identified by the k-means clustering approach.

The second two-cell-type motif, containing only RS and
LTS cells, is not expected to be physiologically relevant, but
we included it in the validation step to allow us to check
that the clustering approach correctly separated synchroniza-
tion driven by FS cells from synchronization driven by LTS

cells. Indeed, k-means clustering identified a unique cluster
(orange, Fig. 3a right) for input conditions of motif II where
RS and LTS cells were both active (see Fig. 5d) and produc-
ing an oscillation (see Fig. 5b for LFP power and Fig. 5e for
PPC). The orange cluster will be discussed in more detail
later. Note that LTS has no recurrent connectivity in motif II,
and hence cannot synchronize through an ‘ING-like’ mech-
anism. High LTS input conditions are therefore led to high,
but asynchronous, firing in the LTS cells, with little or no
firing in the RS cells. K-means clustering correctly grouped
these asynchronous input conditions ofmotif II together with
the asynchronous dark blue cluster found for motif I.

In addition to validating our model and clusteringmethod,
the clustering results from motif I and II also provided a
reference against which we compared the clustering results
obtained from all 20 motifs combined, which are shown in
Fig. 3c and e. In this second clustering step, we clustered
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all input conditions of 20 motifs together using k � 4–20
clusters. The Calinski–Harabasz index indicated that 6 was
the optimal number of activity clusters when combining the
data from allmotifs. As shown in Fig. 3c, the input conditions
of motif I were clustered in virtually identical ways when
clustering only data from motifs I and II (shown in Fig. 3a),
or when using data from all motifs (Fig. 3c). The clustering
results also showed a very high overlap for the orange and
dark blue RS-LTS clusters.

Our validation steps show that k-means clustering based
on a small set of spike-based and LFP-based activity charac-
teristics can correctly identify (1) known oscillatory mech-
anisms in the well-studied RS-FS motif; and (2) separate
activity patterns driven by RS-FS interactions from activ-
ity patterns driven by RS-LTS interactions. Importantly, it
also identifies these mechanisms correctly when including
the data from all three-cell-type motifs, suggesting the k-
means clustering is a robust approach to identifying activity
patterns in the three-cell-type motifs.

3.3 Adding SOM cells to the circuit produced three
new synchronization patterns

The k-means clustering approach identified, in addition to the
3well-knownactivity patterns from theRS-FScircuit, 3 addi-
tional clusters, indicated by orange, light blue and yellow in
Fig. 3. Of these new activity patterns, the orange cluster was
already seen for the RS-LTS cluster and is hence expected
to rely strongly on an interaction between RS and LTS cells.
On the other hand, the yellow and light blue activity patterns
are unique to the triplet of RS, FS and LTS cells.

To gain insight into the kinds of behaviors captured by
these newly identified clusters of circuit behaviors, the char-
acteristics of spiking activity and LFPs are given in Fig. 5
for each of the clusters and across all motifs, using the color
code from Fig. 3. Interestingly, with the exception of the
dark blue cluster that was already seen in the RS-FS motif
and represents asynchronous activity, all other clusters rep-
resent activity patterns with high oscillatory power (Fig. 5b)
and high PPC (Fig. 5e). This suggests that the new yellow,
orange and light blue clusters represent distinct patterns of
synchronized activity.

These five clusters representing synchronous activity
covered a wide range of different oscillation frequencies
(Fig. 5a). Across clusters, these frequencies were not uni-
formly distributed, but were concentrated in the frequency
bands observed in electrophysiological recordings, partic-
ularly in the theta/alpha band, high beta band and high
gamma band (see Fig. 10 in Appendix II). As seen before,
the well-known PING cluster (purple) covered high beta and
low gamma frequencies, while the green ING cluster con-
tained both low and high gamma frequencies. On the other
hand, two of the new clusters were dominated by the lower

frequencies: the orange cluster covered theta (in the three-
cell-type circuits) to beta (in motif II) frequencies and the
light blue cluster almost exclusively covered beta frequen-
cies. The yellow cluster showed a bimodal distribution of
oscillation frequencies, with a group of theta/alpha/beta fre-
quencies and a group of low gamma frequencies (we will
discuss this in more detail below). The yellow cluster could
instead be distinguished from the purple cluster, which cov-
ers a similar frequency range, by a high phase-amplitude
coupling (Fig. 5c), which will be discussed in more detail
later.

In addition to differences in oscillation frequency and
power, the clusters also showed distinct patterns of spik-
ing activity in the different cell types (Fig. 5d). In line with
previous studies, the green ING cluster consistently showed
high FS cell firing, but contained a high number of observa-
tions with no RS and/or LTS firing. The purple PING-cluster,
known to depend on RS-FS interactions, showed approx-
imately equal firing rates for the RS and FS populations,
which co-occurred with both low and high LTS firing rates.
On the other hand, the new light blue and yellow clusters
had nonzero firing rates for all three-cell types, in agreement
with the fact that these clusters were unique to the three-cell-
type motifs. The orange cluster, which was also found in
some three-cell-type motifs as well as in the RS-LTS motif,
showed no or minimum FS firing across the three-cell-type
motifs, setting it apart from the light blue cluster. The orange
and light blue cluster both showed a high fraction of bursts
fired by the RS and LTS, respectively, LTS cell population.

In conclusion, the k-means clustering algorithm identified
one cluster of asynchronous activity patterns (dark blue) and
5 synchronous activity patterns, across awide range ofmotifs
and input conditions. While the purple and green clusters
showed high agreementwith knownPING, respectively, ING
gammaoscillations, the yellow, light blue and orange clusters
represent three distinct oscillatory patterns at low oscillation
frequencies and characterized by differences in firing rate
and burst fraction of the different cell types. More detailed
descriptions and examples of dynamics within the light blue,
yellow and orange clusters will be given in the next sections.

3.4 RS-LTS interaction generates stable beta
oscillations

The most prevalent new cluster observed in the three-cell-
type motifs was the light blue cluster, appearing in all motifs
with RS-to-LTS connections. However, the light blue cluster
was virtually absent from the RS-LTS motif, suggesting that
it relies on interactions between all three-cell types in the
circuit. In line with this, the light blue cluster had high firing
rates and PPC for all three-cell types (Fig. 5d and e). As
shown in Fig. 5a and Fig. 10 (Appendix II), the light blue
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cluster was characterized by oscillations in the higher beta
frequency.

To illustrate the dynamics of the light blue cluster, Fig. 6
shows oscillatory and spiking behavior of Motif XVI. As
illustrated in example 1 in Fig. 6b (left), in this cluster the
cell types spiked in a consistent order: the RS population
spiked first, followed by the FS at a small delay (see also
Fig. 6g). Like the FS population, the LTS populationwas also
recruited by the spiking of the RS cells, but this resulted in a
slower and more prolonged period of spiking in these cells,
as shown by relatively late phase of firing for LTS across
the light blue cluster conditions in this motif (Fig. 6g right).
This prolonged inhibitory activity is expected to postpone the
recovery of the RS population, leading to longer oscillation
periods. This period of extended inhibition caused by LTS
activity can explain the slow 20–30 Hz oscillation frequency
range for motif XVI (Fig. 6f) and was very stable across all
motifs with light blue clusters (see Fig. 5a).

Interestingly, and in line with the observed order of
spiking, the beta oscillations persisted when RS-to-FS and
FS-to-FS connection were broken (Fig. 6h for LFP and raster
of example 1). This suggests that the observed beta oscilla-
tions were not reliant on interactions between RS and FS
cells, but instead were the result of RS-LTS interactions.
The model therefore predicts that the introduction of an RS-
LTS loop into the three-cell-type circuit results in highly
perturbation-resistant oscillations the beta frequency range.

The behavior grouped in the light blue cluster mostly
occurred at input conditions that generated PINGoscillations
in motif I, i.e., at low FS inputs and medium to high inputs to
RS (compare purple cluster in Fig. 3c with light blue clusters
in e). In most of the motifs in which this behavior appears,
these beta oscillations could only be substantially altered by
increased excitation to the FS population, i.e., by moving
rightward in the cluster plots in Fig. 3e. Such increased FS
excitation will often result in a transition to the green clus-
ter, i.e., in the appearance of ING oscillations (green cluster).
Alternatively, a switch to the yellow cluster will occur, which
leads to beta-nested ING oscillations (Fig. 6b, right), which
will be described in the next section.

3.5 Feedforward inhibition of pyramidal cells
combined with FS to LTS inhibition generates
theta-nested gamma oscillations

The second oscillatory signature that was unique to the three-
cell type circuit, the yellow cluster, occurred in seven of the
three-cell-type motifs. The yellow cluster was characterized
by spiking activity in all three-cell types (Fig. 5d). It stands
out from all other identified oscillatory signatures by dis-
playing high phase-amplitude coupling (PAC), i.e., coupling
between the phase of the low 5–30Hz frequency band and the
amplitude of the high 30–150 Hz frequency band (Fig. 5c).

The dynamics of one of the 7 three-cell-type motifs
included in the yellow cluster, motif IX, is shown in Fig. 7.
The high phase-amplitude coupling is apparent in the exam-
ple traces shown for this circuit in Fig. 7b, with both the
LFP and raster plot showing periods of high-frequency activ-
ity nested within a slower oscillation. The spectrum for this
example revealed a sharp peak at 8 Hz as well as a peak
around 45 Hz, confirming that the high PAC was not caused
by broad-band activity, but rather by nesting of two oscilla-
tions, namely a theta and a gamma oscillation. The PAC was
high for all input conditions included in the yellow cluster for
this circuit (Fig. 7d). Both the low and high peak frequencies
were mostly stable (Fig. 7e), with the low peak frequencies
falling within the theta/alpha range (4–12 Hz), and the high-
frequency consistently in the lower gamma range.

The theta–gamma coupling shown in Fig. 7 relied on the
presence of LTS cells in the circuit, and specifically on the
relatively strong coupling between V and U variables for
this cell type (b parameter), which generates negative feed-
back on the membrane potential in a way that is analogous to
the h-current in hippocampal O-LM cells (Izhikevich 2003).
Reducing the b parameter to match the FS cells switched the
theta–gamma coupled state to a gamma oscillation (Fig. 13
in Appendix III). In line with previous modeling studies,
the theta–gamma coupling could, however, be recovered by
using a long synaptic time constant for the LTS projections
(Fig. 13 in Appendix III), which have been shown to be
physiologically feasible for SOM-expressingMartinotti cells
(Silberberg and Markram 2007). In addition, theta–gamma
coupling relied on sufficient strength of the projections from
LTS cells to other cells, and/or sufficient activity in the LTS
population (Fig. 14 in Appendix III).

The three-cell-type motifs that show yellow cluster activ-
ity cover several different connectivity patterns (Fig. 3e). On
the one hand, in motifs IX and XII, the LTS populations
received only external inputs and received local inhibition
from the FS population. In these circuit motifs, theta–gamma
oscillations occurred for low tomedium input strengths to FS
cells combined with relatively high input to the RS popula-
tion. Note that the theta–gamma cluster covered a wide range
of input conditions and largely overlappedwith the input con-
ditions of the PING mechanism (purple cluster) in motif I.
This provides us with testable predictions about the circuit
behavior ofmotifs IX andXII. The basis for these predictions
is that, without external excitation to the LTS population, the
motifs IX andXII (in fact, all motifs on the first row in Fig. 2b
and Fig. 3e) have the same functional connectivity as motif I,
namely consisting of interconnected RS and FS populations.
Motifs IX and XII can therefore be ‘switched’ to behave
as motif I by preventing excitation of the LTS population.
This suggests that activity of three-cell-type motifs IX and
XII, when demonstrating PING oscillations, can switch to a
theta-nested gamma oscillationwhen the external drive to the
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cells and green dots are spikes from LTS cells; c: Clustering result for
this motif (repeated from Fig. 3); d: Phase-amplitude coupling (PAC)
between phase of low frequency and amplitude of high-frequency band
(note that the color code is truncated at 0.5); e: Peak LFP frequency
identified after filtering in the low-frequency band (2–30 Hz, left) and
the high-frequency band (30–150 Hz, right). Note that the color bars
differ for the left and right panel; f: Peak LFP frequency without fre-
quency restrictions; g: Mean phase of firing relative to the phase of the

LFP at peak frequency for regular spiking (RS, left), fast-spiking (FS,
middle) and low-threshold spiking cells (LTS, right). White areas in d,
e and g did not allow for analysis for a sufficient fraction of the random
seeds (see Methods). Black lines in c-g give the outlines of the clusters;
h: LFP (top) and raster plot (bottom) of example 1 without RS-to-FS
connections (left) and without FS-to-FS connections (right), illustrat-
ing the beta oscillation in example 1 is not dependent on interactions
between RS and FS; i: as h, but for example 2, illustrating the beta-
nested gamma oscillations rely on FS-to-FS connections, i.e., an ING
mechanism. In the right panel, excitation to both RS and FS populations
was reduced to 2500 Hz to compensate for the increased inhibition in
the circuit
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Fig. 7 Characteristics of motif IX: Feedforward inhibition of pyramidal
cells with FS to LTS inhibition generates theta-nested gamma oscil-
lations. a: Schematic of the circuit motif (repeated from Fig. 2); b:
Example LFP (top), raster plot (bottom) and the frequency spectrum
(right) for the input setting indicated by the black dots in panel c. Red
dots are spikes from RS cells, blue dots are FS cells and green dots
are spikes from LTS cells; c: Clustering result for this motif (repeated
from Fig. 3); d: Phase-amplitude coupling (PAC) between phase of low
frequency and amplitude of high-frequency band (note that the color
code is truncated at 0.5). The white area did not allow for analysis in a
sufficient number of the random seeds (seeMethods); e: Peak frequency
per input setting identified based on the LFP in the low-frequency band

(2–30 Hz, left) and the high-frequency band (30–150 Hz, right). Note
that the color bars differ for the left and right panel. Black lines in c-e
give the outlines of the clusters; f: Examples of external step currents
applied to the LTS population, with RS and FS inputs as in b. The
LFP is shown on the top row, the external current to LTS below. With-
out external current, the circuit behaves like PING in motif I (compare
with Fig. 4), while with external current, the theta–gamma oscillation
appears (compare with panel b); g: LFP (top) and raster plot (bottom)
of input conditions from example 1 without RS-to-FS connections (left)
and without FS-to-FS connections (right), illustrating the theta-nested
gamma oscillations in example 1 is dependent on RS-FS, but not FS-FS
interactions, suggesting a PING mechanism

LTS population is increased. This is demonstrated in Fig. 7f
(left) for one input condition. Conversely, the model predicts
that theta–gamma nested activity can be switched to PING
oscillations by inhibiting the LTS population until it stops
spiking (Fig. 7f right), but this cannot produce ING or beta
oscillations, nor can it lead to asynchronous behavior.

In the remaining motifs with yellow cluster dynamics,
high PAC occurred at high input conditions for both RS and

FS cells, setting themapart frommotifs IX andXII.An exam-
ple was given for motif XVI in Fig. 6b (example 2). Similar
to the example in Fig. 7, the LFP in Fig. 6b showed a fast
oscillation nested within a slower oscillation, but the slow
oscillation had a higher frequency than in for motif IX in
Fig. 7; for this motif, the base frequencies fell between 20
and 25 Hz, substantially higher than the theta frequencies
shown earlier. As evident from the raster in Fig. 6b, the fast
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oscillation also differed from the behavior in motif IX, by
only involving the FS cell population. Indeed, breaking the
RS-to-FS connections did not affect the nested oscillation
(shown for example 2 in Fig. 6i, left), while removing the
FS-to-FS connections resulted in loss of the gamma oscil-
lations (Fig. 6i right), confirming the presence of an ING
mechanism nested within the beta-oscillation.

In summary, the yellow cluster was characterized by oscil-
lation frequencies in the low theta/alpha and beta frequency
range, and critically, by high phase-amplitude coupling
between the phase of the low and amplitude of the high-
frequency bands. The spiking patterns suggest that the yellow
cluster incorporates both PING and ING gamma oscillations
nested within slow oscillations: PING oscillations nested
within theta/alpha oscillations in motifs IX and XII, relying
on FS-LTS connection, and ING oscillations nested within
beta oscillations in the othermotifswith yellow clusters, rely-
ing on local drive of the LTS cells.

3.6 Disinhibition via LTS cells induces bursting in RS
and LTS cells

The third newly identified circuit dynamics is grouped into
the orange cluster. This cluster is characterizedby the absence
of FS firing (Fig. 5d), with both RS and LTS populations
active, creating a slow oscillation. This pattern hence domi-
natedmotif II, but also appeared in 4 of the 18 three-cell-type
motifs (Fig. 3e), although the oscillation frequencies were
lower than in motif II (theta and beta range, respectively).
In these motifs, LTS cells received excitation from the RS
population, and in turn inhibited the FS population, but not
the RS cells.

As an example of the behavior of the three-cell-typemotifs
with RS-LTS oscillation, Fig. 8 shows the circuit dynamics
of motif VIII across all input conditions. For this motif, the
RS-LTS oscillation covered a wide range of input conditions
(Fig. 8b). Across the entire cluster, oscillations showed a
stable theta frequency (5–8 Hz, Fig. 8d), with sharp transi-
tions to PING gamma frequencies for increased drive to the
RS population (y-axis) and to ING gamma frequencies for
increased drive to the FS population. The sharp transitions
between the activity patterns were also visible in the pairwise
phase consistency of the individual cell types (Fig. 8f), with
low PPC for the FS cells within the orange cluster. Further-
more, the orange cluster was characterized by high bursting
of both RS and LTS cells (Fig. 8e); on average, every cell
fired a burst of spikes around the peak of the cycle, followed
by period of inhibition (Fig. 8b, example 1).

Note that the orange cluster in motifs V and VIII relied,
to a large extent, on the presence of external inputs to the
LTS population; the area of the orange cluster was reduced
markedly in motif IV (without external LTS drive) compared
tomotif V (with external LTS drive), with a similar effect vis-

ible for motifs VII and VIII, respectively (see Fig. 3). Motifs
IV and VII only showed the low-frequency population activ-
ity and bursting typical for the orange cluster for a small set
of input conditions, instead yielding stable PING oscillations
for most input conditions. Our simulations therefore suggest
that disinhibition-based circuits can switch between stable
gamma oscillations to bursting behavior by increasing the
drive to the LTS population. A demonstration of this prin-
ciple is shown in Fig. 6g for the input conditions used in
example 1 (Fig. 8b).

Are the RS-LTS dynamics in the three-cell-type motifs
caused by the same mechanism as in motif II? The 4 three-
cell-type motifs shared two characteristics with each other:
(1) LTS cell received local excitation from the RS cells and
(2) LTS cells inhibited the FS, but not the RS population.
This connection pattern created local disinhibition of the RS
cells through suppression of the inhibitory FS population.
This resulted in reduced firing of FS cells, while stimulating
RS and LTS firing (Fig. 5d). For low drive to the RS cells
(and insufficient drive to the FS cells) in motifs IV, V, VII
and VIII, this suppressed the activity in the FS population.
Note that in these motifs, no direct inhibition of either the RS
or LTS populations was present, as the FS cells were inac-
tive (see Fig. 5d) and there was no connection from the LTS
cells to the RS population, or between LTS cells. The lack of
direct inhibition in the three-cell-type motifs shows that the
oscillation in the orange cluster cannot result from an ING
or PING like mechanism. Instead, the oscillation was caused
by adaptation in the cell populations, captured in the model
by an increase in the U variable (see Methods), which trun-
cated spiking activity in the RS population, in turn shutting
down the activity in the LTS population. Conversely, in motif
II inhibition of RS cells by the LTS population was present,
and this difference could explain the increased oscillation
frequency found in motif II (beta range) compared to the
three-cell-type motifs included in the orange cluster (theta
range), as build-up of this direct inhibition of the RS cells
likely shortened the active period of this population.

In summary, the orange cluster is characterized by slow
oscillations and burst firing in the RS and LTS populations,
which is expected to switch to PING oscillations when the
LTS drive is reduced. In the three-cell-type motifs, the oscil-
lation is mediated by an absence of FS activity, allowing for
burst firing and the slow buildup of adaptation in the other
cell types.

3.7 Three-cell-typemotifs show frequency steps
and stable asynchrony

In addition to new patterns of oscillatory dynamics, the clus-
tering results for the three-cell-type motifs shown in Fig. 3e
also make predictions about the way the motifs respond to
changing inputs, some of which have already been discussed
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Fig. 8 Characteristics of motif VIII: Disinhibition via LTS cells induces
bursting inRS andLTS cells. a: Schematic of the circuitmotif;b: Exam-
ple LFPs (top) and raster plots (bottom) for 2 input settings (indicated
by black dots in panel c). Red dots are spikes fromRS cells, blue dots are
FS cells and green dots are spikes from LTS cells; c: Clustering result
for this motif (repeated from Fig. 3); d: Peak frequency per input setting
identified based on the LFP; e: Burst fraction (fraction of total number
of bursts and single spikes) for regular spiking cells (left) and fast spik-
ing cells (right); f: Pairwise phase consistency of spikes relative to the

LFP at peak frequency for regular spiking (left), fast-spiking (middle)
and low-threshold spiking cells (right). White areas in e–f did not allow
for analysis in a sufficient number of the random seeds (see Methods).
Black lines in c-f give the outlines of the clusters; g: Example LFP (top
row) and raster plot (middle row) of the behavior of motif VIII with
and without external input to LTS (bottom row). A short block current
switches the circuit temporarily from the PING mechanism displayed
by motif VII (which has no external current to LTS) to the bursting
behavior of motif VIII

in the previous sections. Here, we take a closer look at the
resilience of the circuit behaviors to changes in RS and FS
inputs.

The introduction of the third cell type allowed the circuit
to oscillate at low frequencies that are not observed in RS-
FS circuits. As a result, it markedly increased the frequency
range that can be achieved by the circuit under physiologi-
cal conditions, from high beta to high gamma for the RS-FS
circuit, to anywhere between theta and high gamma for the
three-cell type circuit. As we have shown, these oscilla-
tions are caused by distinct mechanisms. This raises the

question how the transitions between frequencies andmecha-
nisms occur in the three-cell type circuit: are these transitions
smooth and gradual, or abrupt and all-or-none?

As noted before, the frequency bands covered by the new
yellow, orange and light blue clusters are concentrated in nar-
row frequency bands. As can be seen in the example motifs
in Fig. 6f for the light blue cluster and in Fig. 8d for the
orange cluster, the oscillation frequencies found for these
clusters were largely independent from the level of inputs to
the RS and FS populations. This behavior is markedly differ-
ent from that of the purple PING cluster, where oscillation
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frequency gradually increased with RS and FS drive (com-
pare Fig. 4d). The observed stability within the orange and
light blue clusters has two potential consequences for the
functional behavior of the oscillation: small or even medium
changes in input to RS and FS are expected to have no
impact on the oscillation for most input conditions, making
it resilient to perturbations. However, when a similarly small
change in RS or FS drive moves the circuit into a different
cluster, the behavior of the circuit changes dramatically. For
example, consider increasing the RS external drive in 1-pixel
steps toward example 2 in Fig. 8. For the first few steps, the
circuit dynamics appears unchanged, but when the boundary
between orange and purple is approached, the circuit starts
to briefly switch between an 8 Hz oscillation with high burst
fraction and a sparse 40 Hz oscillation in the span of 2 input
steps (Fig. 12c in Appendix III), after which the 40 Hz PING
oscillation becomes the stable state. A similar behavior is
seen for transition to the green cluster (Fig. 12d in Appendix
III). This suggests that the introduction of the slow oscilla-
tions leads to sharp frequency steps, where small changes in
drive to the RS or FS populations can lead to large changes
in oscillation frequency.

We also asked whether the introduction of the second
interneuron type affected the overall level of synchroniza-
tion that is observed in the circuit across input conditions.
For RS-FS circuit in motif I, 20.0% of input conditions led
to low levels of synchronization (dark blue cluster). In most
three-cell-type motifs, particularly those with local excita-
tion to the LTS cells, this fraction remained similar (avg:
18.5%; range: 11.6–31.8%).However, in themotifswith only
external LTS excitation (top row in Fig. 3e) the fraction of
asynchronous behavior increased substantially (avg: 40.9%;
range: 26.3–71.9%). This was particularly striking in motifs
XV (45.6%) and XVIII (71.9%), where the substantial part
of the tested input conditions lead to asynchrony and only
very high input strengths produced oscillatory behavior. As
such, the three-cell-type motifs cannot only stabilize oscil-
lation frequencies, it can also result in stable asynchrony.
Furthermore, as we pointed out before, the motifs in the top
row of Fig. 3e can effectively be switched to the behavior of
motif I by reduction in theLTSdrive, suggesting that switches
between asynchrony and synchronous PING oscillations in
these circuits can be achieved by controlling the input to the
LTS population.

Our modeling results therefore predict that the addition
of LTS cells allows for oscillations at lower frequencies
as well as asynchronous states, that are stable across many
input conditions. In addition to this, depending on the circuit
architecture, it also allows for sharp and substantial changes
in network state, either between oscillation frequencies, or
between asynchronous and synchronous states. In the model,
these switches between states are controlled by changes in
inputs to one of the cell types and these predicted changes

are therefore both physiologically feasible and testable using
optogenetic techniques.

4 Discussion

In this study,we set out to provide a comprehensive character-
ization of the population dynamics of the circuits consisting
of regular spiking pyramidal cells, fast-spiking PV cells and
low-threshold spiking SOM neurons. We identified 18 pos-
sible circuit motifs with these three cell types (see Fig. 2),
consisting of different connection patterns between the cell
types and different input regimes for the SOMcells.We com-
pared the behavior of these circuit motifs to that of two
reference circuit motifs consisting of two cell types: RS-
FS and RS-LTS. We used a k-means clustering approach
and information criteria to identify 6 different groups of
population dynamics across the 20 circuit motifs. Aside
from asynchronous behavior, the motifs produced 5 distinct
oscillatory behaviors, among which the previously identified
PING and INGmechanisms. In addition to these well-known
gamma oscillations, the three-cell-type motifs produced sta-
ble beta oscillations, theta-nested PING gamma oscillations,
beta-nested ING gamma oscillations, as well as theta oscil-
lations with burst firing. It is important to note that the model
did not receive synchronized input to anyof the cell types, and
the oscillations were therefore spontaneously generated by
the circuit. The modeling results provide important insights
into the generative mechanisms behind three oscillations in
physiologically relevant frequency bands and aid the func-
tional interpretation of circuit behaviors recorded in neural
tissue.

4.1 k-means clustering allows for the identification
of network signatures

A comprehensive comparison of 20 circuit motifs, as pre-
sented here, can be challenging due to the large number of
datapoints and a priori unknown number and type of network
dynamics. Here, we used a k-means clustering approach to
categorize the dynamics into a small number of behaviors, in
a data-driven way. The use of the Calinski–Harabasz index
allowed us to determine the number of clusters based on the
information in the data. It is important to note that thismethod
did rely on two other choices that were made a priori: (1)
the single unit and network dynamics descriptors that were
included in the clustering algorithm (such as firing rate, peak
frequency and burst fraction) and (2) the relativeweighting of
these characteristics (here, all set to 1). It is conceivable that
including a different number or other descriptors, or chang-
ing their relative weights, would lead to merging or splitting
of clusters, by emphasizing specific network dynamics. We
validated our choices by applying the clustering approach to
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the two well-known motifs I and II and showed it correctly
identified previously established circuit dynamics.

4.2 Predictions for experiments using optogenetic
stimulation and silencing

In this study, we included awide range of input conditions for
RS, FS and LTS cells. The model therefore allows us to pre-
dict the outcomes of a wide range of experiments. Our results
suggest that LFP and spike recordings, combined with stim-
ulation or inhibition of individual cell types, can be used to
identify potential circuit motifs in vitro and in vivo. Although
in the model none of the oscillatory behaviors were unique
to a single circuit motif, these behaviors were indicative of
subgroups of motifs. As a result, the model predicts that
the number of possible circuit motifs can be narrowed down
based on LFP and spike data alone. Furthermore, the model
allows us to predict the outcomes of optogenetic stimulation
for specific circuit motifs. Optogenetic stimulation of RS and
FS cells can be seen as an increase along the vertical, respec-
tively, horizontal axis of the plots in Figs. 3, 4, 5, 6, 7 and 8,
while stimulation or reduction in LTS activity is captured by
moving between the different rows of motifs in Figs. 2 and
3. Some of the predictions from the model are listed below:

• Stable beta oscillations occur across a wide range of three-
cell-typemotifs. These oscillations are ‘stable’ in the sense
that changes to RS, FS or LTS drive are not likely to have a
large impact on the power or frequency of the oscillation.
Only a strong increase in FS drive is expected to affect the
oscillation and is expected to switch the system to a high
gamma-band ING oscillation, or to a beta-nested gamma
oscillation.

• For motifs IX and XII, which are characterized by FS-LTS
inhibition, with only external drive to the LTS population,
the model predicts theta-nested gamma activity. It is fur-
ther predicted that this pattern of activity changes to PING
oscillations when the drive to the LTS cells is reduced.

• The model predicts that burst firing of individual cells (in
the absence of intrinsic bursting behavior) depends on dis-
inhibition of RS cells by LTS-to-FS connections, without
local excitation of the LTS cells. Inhibiting the LTS cells
in this motif is expected to reduce burst firing, allowing
gamma oscillations to appear. Conversely, for motifs X
and XI, where the LTS directly inhibits RS cells, inhibi-
tion of the LTS population could actually induce bursting,
by moving these circuits closer to the setup in motifs VII
and VIII.

• Stable asynchrony is also a predicted outcome of the
three-cell-type motif. This behavior specifically occurred
with feedforward inhibition where LTS cells only received
external drive. In these cases, the model predicts that

silencing of the LTS cells would lead to the appearance
of a PING oscillation.

These predictions are based on the tonic activation of
the individual cell types. Optogenetics is also well-suited
to provide transient or periodic stimulation, allowing for
the probing of resonance and entrainment in the circuit.
Extending the modeling work presented here with peri-
odic stimulation has the potential to produce even more
comprehensive and detailed predictions that could aid the
identification of specific motifs in neural tissue (Tiesinga
2012; Herrmann et al. 2016).

4.3 Mechanisms for the generation of theta–gamma
oscillations

The three-cell-typemotif produced several oscillatory behav-
iors that are not present in circuits with RS and FS cells
alone: theta–gamma oscillations, beta-nested gamma oscilla-
tions, beta oscillations and theta-bursting. The theta–gamma
rhythm has been of particular interest in recent years due
to its proposed mechanistic link to hippocampus-dependent
spatial navigation andmemory formation and its role inwork-
ing memory maintenance (Düzel et al. 2010). The origin of
theta oscillations remains a topic of study, and it is likely
that the hippocampal network contains more than one theta-
generative mechanism (Colgin 2016). One possible source
of theta generation is thought to depend on subthreshold
memory potential resonance mediated by h-currents. When
O-LMcells weremodeledwith h-currents, spontaneous theta
and theta-nested gamma oscillations could be generated (i.e.,
without external oscillatory current), but this critically relied
on the presence of mutual inhibitory connections with fast-
spiking interneurons (Rotstein et al. 2005). Theta–gamma
oscillations were also demonstrated in a model network of
PV and O-LM cells without h-currents, although these oscil-
lations were less stable (White et al. 2000). This is echoed
by modeling work, suggesting that the theta rhythm (Fergu-
son et al. 2017) as well as the theta-nested gamma signature
(Pastoll et al. 2013) can be generated in the absence of
h-currents when the circuit allows for local feedback inhi-
bition. h-currents were also not necessary for theta–gamma
oscillations in a more detailed model with RS, FS and LTS
cells (Vierling-Claassen et al. 2010). Similarly, in a highly
complex and detailed model of the hippocampal subregion
CA1, output from PV cells was identified as crucial to the
spontaneous theta-nested gamma oscillations produced in
the model (Bezaire et al. 2016). Interestingly, this com-
plex model showed that output fromO-LM SOM-expressing
cells to surrounding cells was not necessary for generating
theta oscillations, although outputs from another dendrite-
targeting cell type, neurogliaform cells, were found to be
essential. The authors identified the slow synaptic dynam-
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ics of the neurogliaform cells as the essential element of
contribution to the theta rhythm, similar to the findings for
SOM-cells by (Vierling-Claassen et al. 2010). In linewith the
findings presented here, both studies also identified the FS-
to-LTS connections as an essential ingredient for combined
theta and gamma oscillations. Our results are based on LTS
neuron models that implicitly incorporate an effect similar
to that of h-currents, through the coupling between the two
variables of the model. The theta-nested gamma oscillations
relied on this coupling in the results presented here, but addi-
tional simulations shown in Fig. 13 (Appendix III) suggest
that this behavior can also be achieved by introducing long
synaptic decay time constants for the LTS projections. Our
results therefore align with these previous studies, but extend
them by demonstrating that theta-nested gamma oscillations
can (1) be spontaneously generated in a network of simple
point neuron models; and (2) be generated by two different
implementations, namely h-currents and long synaptic decay
time constants, in an otherwise identical network. Studying
the similarities and differences between these implementa-
tions in detail is beyond the scope of this study.

4.4 Mechanisms for the generation of beta
oscillations

The rhythm that wasmost commonly produced by three-cell-
type motifs was the beta oscillation, with stable frequencies
between 20 and 30 Hz across a wide range of input con-
ditions. Beta oscillations are a prominent part of cortical
electrophysiological recordings, but were originally mostly
linked to sensorimotor activity and motor-preparation. They
have since been associated with a wide range of cortical
regions and functional domains (for reviews see: Engel &
Fries, 2010; Spitzer & Haegens, 2017). Experimental work
has led to several proposed generative mechanisms. It has
been suggested that beta oscillations can be generated in the
same way as gamma oscillations in RS-FS circuits (through
‘INB’ and ‘PINB’ network mechanisms), but this relies on a
substantially reduced GABAA synaptic decay time constant
(Jensen et al. 2005). Unless two or more PV cell populations
with distinctly different GABAA time constants can be iden-
tified, such a mechanism is unlikely to drive beta oscillations
that spatially co-existingwith faster gammaoscillations.Oth-
ers have suggested that beta oscillations in motor areas are in
fact independent of GABAA receptors (Roopun et al. 2006).
An alternative model for the generation of short periods of
beta activitywas proposedmore recently, relying on the coin-
cident input to apical and proximal dendrites of pyramidal
cells (Sherman et al. 2016). Furthermore, it was shown that
intrinsic bursting cells can produce spontaneous beta oscil-
lations when their axons contain M-currents (Roopun et al.
2006; Kramer et al. 2008). The M-current builds up through
burst spiking and, through hyperpolarization, prevents fur-

ther spiking, with the decay time constant determining the
period of these beta oscillations. When these intrinsic burst-
ing cells were combined with RS, FS and LTS cells, the
model circuit alternated between slow gamma, fast beta and
a ‘period-concatenated’ slow beta, which period was the sum
of the other two rhythms (Kramer et al. 2008). It is unclear
whether this mechanism extends to other areas than motor
cortex. Our modeling results show that the faster beta oscil-
lation can in fact be obtained without either intrinsic bursting
cells, or h- andM-currents, and can switch to gamma oscilla-
tions through changes in drive to the RS, FS and/or LTS cell
populations. In line with experimental data, the model did
not rely on GABA-mediated outputs from FS cells to other
FS or RS cells.

4.5 Burst firing during theta and beta oscillations

Furthermore, the model was able to generate burst spiking,
without intrinsically bursting cells present in the circuit. The
model also did not include dendritic mechanisms such as
calcium-spikes and back-propagating action potentials in the
RS cell population, which were demonstrated to mediate
burst firing in layer 5 pyramidal cells (Larkum et al. 1999).
In the model, burst firing was found for both RS and LTS
in the orange cluster. This was associated with strong theta
range oscillations. In addition, the burst fraction was high for
LTS cells in the light blue cluster, where oscillations predom-
inantly fell in the beta frequency range. These behaviors align
with experimental data from monkey PFC, where increased
burst firing in both excitatory and inhibitory populations was
associated with increased theta power (Voloh and Womels-
dorf 2017), while beta power changes were linked mostly
to bursting in the inhibitory cells (Womelsdorf et al. 2014a;
Voloh and Womelsdorf 2017). These findings depended on
the attentional state of the animal, suggesting that the rela-
tionship between oscillations and (the recruitment of) burst
firing is transient and dynamic. Our model predicts that such
changes can be mediated by changes in drive to the local
LTS population, a prediction that can directly be tested using
optogenetic suppression of LTS firing in circuits with high
burst firing. Further work is needed to assess the role of burst-
ing cells and dendritic mechanisms in the generation of theta
and beta oscillations in cortical tissue. While our work does
not currently allow for a direct comparison of circuits with
and without intrinsic bursting mechanisms, it does demon-
strate that theta- and beta-associated bursting behavior can
be obtained through circuit interactions alone, stressing the
need for establishing both sufficiency as well as necessity of
intrinsic bursting in future experimental studies.
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4.6 Model assumptions

This study provides a first step into the characterization
of neural circuit dynamics of RS-FS-LTS motifs. Several
assumptions and simplificationsweremade tomake the com-
prehensive approach taken here feasible. For example, it was
shown experimentally that interneurons of the same type
form gap junctions with each other (Gibson et al. 1999),
whichwere not included in themodel. Gap junctions have the
potential to synchronize activity of cells within a population
directly and therefore can enhance their impact on down-
stream targets. Furthermodelingwork is needed to determine
the extent to which this affects the oscillatory dynamics pre-
sented here. We also did not include short-term facilitation
and depression of chemical synaptic inputs in the model. The
characteristics of synaptic facilitation and depression have
been shown to differ between PV and SOM cells: Excita-
tory synapses onto SOM cells have been shown to facilitate,
i.e., show an increase in the evoked excitatory post-synaptic
potential (Reyes et al. 1998; Gibson et al. 1999; Beierlein
et al. 2003). Most other synaptic connections, including the
LTS-to-RS connections, showdepressionwith repeated stim-
ulation (Gibson et al. 1999; Beierlein et al. 2003), although
recordings in hippocampus have suggested a more complex
picture, with mixed facilitation and depression within cell
type pairs (English et al. 2017). It was previously shown that
facilitation of RS-to-LTS connections can give rise to slow
oscillations (delta or low theta band) in a rate-based model
(Hayut et al. 2011), i.e., without relying on spike timing. It is
conceivable that short-term facilitation and depression inter-
act with the oscillation-generating mechanisms described
here. Future work will have to establish the form this interac-
tion takes and to what extent this plays a role in physiological
conditions.

Several assumptions and simplifications had to be made
in the model about the connections between the cell popula-
tions. Connections in neural circuits are far from uniform,
depending on cell type and brain area (Silberberg and
Markram 2007; Lee et al. 2013; Pfeffer et al. 2013; Jiang
et al. 2013), but also on cortical layer (Yoshimura et al. 2005)
and on downstream projections (Brown and Hestrin 2009).
On small spatial scales, neurons are often densely connected,
with density of connections falling off rapidly within a few
hundred micrometers (Hellwig 2000). As oscillations, par-
ticularly at lower frequencies, are generally thought to span
these larger spatial distances, our aim was to represent a
network of at least several hundred micrometers with the
model. However, to make simulation of a large number of
circuit motifs and input regimes feasible, we simulated a
relatively small number of cells, while maintaining the con-
nection patterns seen when considering larger spatial scales.
This is likely to result in an underestimation of the influence
of local RS cells on the interneuron populations, which was

compensated by relatively high, but random, input spike rates
to all cell types. We also used relatively strong synaptic con-
nections, to compensate for the lower number of neurons in
the simulation. Given our interest in the effect of adding LTS
cells to the well-known RS-FS circuit motifs, we opted for
strong synaptic connections from LTS cells compared to RS
and FS connections (compare Fig. 9a and b in Appendix I
with results from, for example (Beierlein et al. 2003; Silber-
berg andMarkram 2007; Pfeffer et al. 2013)). These stronger
connections were aimed to mimic the input-gating effect that
this neuron type is thought to have by inhibiting the apical
dendrite, an effect which cannot directly be incorporated in
our simplified point neuron model. Further work is needed
to identify if, and if so, how these simplifications affect the
presented results.

Another simplification lies in the use of relatively broad
neuron categories, regular spiking, fast-spiking and low-
threshold spiking cells, where many subgroups of these
cell types exist in the brain. Interneurons in particular are
very diverse, and efforts to classify PV and SOM cells are
ongoing (Markram et al. 2004; Kepecs and Fishell 2014).
Calcium-binding proteins, such as PV, and neuropeptides,
such as SOM, are not universally unique identifiers and usu-
ally span several classic interneuron cell types (DeFelipe
1993; Markram et al. 2004). Detailed knowledge of the bio-
physical and morphological diversity within these cell types,
as recently pioneered in (Gouwens et al. 2020), is needed
to allow for more detailed models. Similarly, connectivity
preferences of the difference subgroups need to be estab-
lished, before a full assessment can bemade of the impact this
diversity has on the results presented here and in other stud-
ies using the same categories. Given more detailed neuron
categories, future modeling work can also establish and/or
predict in more detail, which neuron-specific characteristics
are sufficient and required for generating the network dynam-
ics demonstrated here and towhat extent these characteristics
are unique to PV and SOM cells.

4.7 Possible roles of VIP neurons

In addition to within-group diversity, we also excluded sev-
eral other known interneuron types that do not express PV or
SOM.After PV and SOMcells, themost prominent interneu-
ron type are the VIP neurons. VIP cells are thought to mostly
project to SOM cells, while showing virtually no connec-
tions onto other VIP cells (Pfeffer et al. 2013). This results
in a strong disinhibitory pathway, where activation of VIP
cells leads to relief from inhibition for downstream PV and
pyramidal cells (Pi et al. 2013). A powerful computational
function of VIP cells could be to influence output selectivity,
by disinhibiting PV cells and hence increased somatic inhibi-
tion in the local pyramidal cell population (Yang et al. 2016).
Many examples of VIP-mediated disinhibition have been
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demonstrated recently (for example: Hertäg and Sprekeler
2019), but the influence on oscillatory mechanisms remains
unclear. In the context of the model analyzed here, VIP cells
could be considered, through its predominant projections to
the LTS population, as a switch between high SOMdrive and
low SOM drive, i.e., between the first row of Fig. 3e (exter-
nal drive) and motif I in Fig. 3a (no SOM drive), or between
the third and the second row of Fig. 3e. Additional modeling
work is required to develop these predictions further.

4.8 Concluding remarks

In recent years, modeling of circuits with PV and SOM
cells has led to interesting new insights into the many com-
plex computations this circuit can sustain. Yet, more work is
needed to comprehend the full scale of possible interactions
seen in experimental work and to understand the often coun-
terintuitive or contradictory results in optogenetics studies.
Indeed, the model presented here demonstrates that even in a
minimalistic model of Izhikevich point neurons, a wide vari-
ety of oscillatory behaviors can be generated. These results
therefore stress the need for a comprehensive understand-
ing of circuit dynamics, before appealing to more complex
intrinsic mechanism in order to explain these oscillatory
phenomena. Our findings provide a first step toward such
a comprehensive description of circuits with PV and SOM
interneurons.
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Appendix I: Characterization of input currents

See Fig. 9.
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Fig. 9 Characterization of synaptic and noise currents. a: Example post-
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FS (dotted), or LTS (dashed) cells; b: Distributions of peak height (left),
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correspond to the right-hand side y-axis. Distributions show data from
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(circles), 75 and 95% boundaries; c: Example membrane potentials for
each of the cell types receiving only noise current Inoise (i.e., with no
synaptic inputs and no background inputs Ibg); d: Membrane potential
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Appendix II: Characterization of frequency bands

See Fig. 10.
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Fig. 10 Distribution of average peak frequencies across all simulations
per cluster. Color indicates the cluster, using the same color convention
as in Figs. 3, 4 and 5. Dotted lines indicate boundaries of traditionally
recognized frequency bands in electrophysiological recordings; theta:

4–8 Hz, alpha: 8–12 Hz; beta: 12–30 Hz and gamma: 30–90 Hz. The
observed frequencies largely fall within these bands, although for the
simulations, the alpha band seems to extend to approximately 15 Hz
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Appendix III: Exploration of model parameters

Motif I:
See Fig. 11.
Motif VIII:
See Fig. 12.
Motif IX:
See Figs. 13 and 14.
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