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Abstract
Octopus cells in the posteroventral cochlear nucleus exhibit characteristic onset responses to broad band transients but are
little investigated in response to more complex sound stimuli. In this paper, we propose a phenomenological, but biophysically
motivated,modeling approach that allows to simulate responses of large populations of octopus cells to arbitrary soundpressure
waves. The model depends on only few parameters and reproduces basic physiological characteristics like onset firing and
phase locking to amplitude modulations. Simulated responses to speech stimuli suggest that octopus cells are particularly
sensitive to high-frequency transients in natural sounds and their sustained firing to phonemes provides a population code for
sound level.
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Introduction

The auditory brainstem consists of multiple afferent path-
ways that process different features of sound. Besides the
spectral pattern and the temporal fine structure of a sound, it
is particularly transients and amplitude modulations (AM),
i.e., fluctuations in sound intensity on an intermediate time
scale on the order of 10 ms, that provide most information
about the identity of a natural sound stimulus [9,12]. Octo-
pus cells of the posterior-ventral cochlear nucleus (PVCN)
are generally thought to encode such amplitude modulations
of high-frequency sound stimuli by means of their temporal
spike patterns [17,19]. They are thus likely to play a central
role in the processing of natural sounds, including conspe-
cific vocalizations [14,15,18].

Octopus cell spikes only occur at the onset of broad
band transients [3–6,15,21] but phase-lock persistently to
amplitude modulations in a specific AM frequency band.
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Mechanistically, this firing behavior is thought to arise from
integrating across auditory nerve fibers (ANFs) [10,13,16]
with a broad range of characteristic frequencies [4,20,24].
This suggests that the main computation underlying AM
extraction is most likely based on the tonotopic pattern of
afferent arborization. In addition, octopus cells have remark-
ably low input resistances of only few Mega Ohms [5,15]
leading to fast enough membrane time constants for process-
ing of fast transient as well as slow amplitude fluctuations.
The short membrane time constants are generated by a high
density of low-threshold potassium channels [23], which in
addition to reducing integration time also endow the neurons
with differentiation properties [1,22] that further facilitate
AM locking.

Computational theories of octopus cell function thus
require to analyze the interplay between cellular biophysical
properties and the circuit parameters describingANFpopula-
tion inputs. Here, we propose an efficient phenomenological
model for octopus cell spiking with only few parameters
that are either constrained by direct physiological measure-
ments or functional properties. We find that octopus cell
spiking over a wide range of best frequencies can be robustly
explained by only small changes in these parameters. Our
model thus provides a computationally efficient and robust
tool to simulate octopus cell spike responses to any kind of
sound stimulus. The model can therefore be used to emulate
population inputs to downstream structures in the auditory

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00422-021-00881-x&domain=pdf
http://orcid.org/0000-0002-4859-8000


332 Biological Cybernetics (2021) 115:331–341

pathway, the ventral nucleus of the lateral lemniscus and the
inferior colliculus.

Model

The general structure of the proposed effective model is out-
lined in Fig. 1. In short, the sound stimulus is translated to
simulatedANFfiring rates ri (t), where i labels the respective
frequency channel. TheANF rates are then translated into the
octopus cell input by a weighted sum over frequency chan-
nels with weight factors gi . The cellular membrane potential
is derived from these inputs by a combination of differenti-
ation and low-pass filtering. Finally, the output rate R(t) of
the octopus cell is obtained by a sigmoidal transformation
of the pseudo potential P(t). Spike trains can subsequently
be obtained by using R(t) as the density of an inhomoge-
neous Poisson process. All individual transformations will
be explained in detail in the following paragraphs.

Arborization

By integrating over ANFs with multiple characteristic fre-
quencies the information about the stimulus’ fine structure
is removed, whereas envelope information is preserved. The
model generates the cochlear output of an array of ANFs
using the (Zilany–Bruce–Carney) model described in [8,26,
27] with parameters tuned to cat physiology. The model runs

with the numerical sampling frequency of 100 kHz. For a
model octopus cell with characteristic frequency fc, we sim-
ulate 9 frequency channels (corresponding to characteristic
cochlear locations) that are logarithmically spaced in the two
octave intervals fc/2 to 2 fc. For each ANF frequency, we
simulate high, medium and low spontaneous rate fibers and
linearly combine themwith the fractions, 0.16, 0.24, and 0.6,
respectively [11]. The resulting ANF firing probability den-
sities ri (t) are linearly combined to the octopus cell’s input
current

I (t) =
9∑

i=1

gi ri (t). (1)

The weights gi are obtained from a log-normal function
around the octopus cell’s characteristic frequency (CF, here
denoted as fc):

gi = exp

⎛

⎜⎝−
(
log2

fi
fc+ f0

)2

2Δ2

⎞

⎟⎠ . (2)

For high frequency cells it is necessary to introduce an
additional frequency shift f0 to properly fit the observed
characteristic frequency, compensating for the overlap of
peripheral filters. The parameter Δ describes the width (in
octaves) of the arborization andwill be the essential fit param-
eter to model the afferent arborization.

Fig. 1 Schematic representation of the octopus cell model. Top: from
left to right—a sound pressure wave is used as an input to a modified
model of auditory nerve (AN) responses ri with characteristic cochlear
locations i = 1, .., 9. A weighted sum (with weights g) of the AN
responses is used as an input I to the octopus cell that implements a
second-order low-pass filter klp and both, a differentiation (d/dt) and
a proportional da component. The resulting potential P is transformed
to a firing rate R using a sigmoidal function. The rate is finally trans-

lated to spike times by a Poisson process making R a spike probability
density over time. Bottom: weight factors g for three example octopus
model cells with characteristic frequencies (colors) as indicated. The 9
intersections with horizontal dashed lines mark the 9 weights gi used
in the model. Note that, particularly for high characteristic frequencies,
the peak of the weight curve is offset to obtain the defined characteristic
frequency (color figure online)
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Receptive fields of model octopus cells using the plain
periphery model either showed unphysiologically strong
low-frequency tails [compared to data from [24]], even for
cells with high characteristic frequencies, or amplitude mod-
ulation locking of the model was distorted by low frequency
components from the tails of the ANF receptive fields. For
simplicity, we removed these low-frequency components by
applying an additional high pass filter

khp(t) = δ(t) − Θ(t − Δt)

t
exp(−2π fhpt) (3)

to the sound pressure wave before the periphery model,
with fhp = 450Hz, the Heaviside step function Θ(t), and
Δt = 1/(100 kHz). This filter suppresses most of the low-
frequency-tail of the receptive fields, while still preserving
the general response patterns of the model octopus cells (see
Discussion for biological feasibility). For numerical convo-
lution, we restricted the kernel khp to a duration of 3/ fhp.

Pseudo potential

The octopus cells respond to rising envelopes of the sound
stimuli, which, following [1], we model via a differentiation.
The kinetics of themembrane potential response is accounted
for by an additional second-order low pass filter

klp(t) = (2π flp t) exp(−2π flp Θ(t)) (4)

that is supposed to reflect the combination of synaptic and
potassium channel kinetics as well as membrane filtering.
The frequency flp is the second fit parameter of the model.
This leads to the pseudo potential

P(t) = klp(t) ∗
(
dI (t)

dt
+ 2π da I (t)

)
, (5)

which we consider to reflect the behavior of the membrane
voltage. The parameter da allows to include an additional
non-derivative component. If da is large, the cell has a more
primary-like response, whereas for small da the response is
more onset type. We found that the general dependence on
da is weak in that for all values 2π da � 700/s the over-
all response pattern is onset. Cells with higher CF thereby
required larger values to ensure sufficient AM entrainment.
For all simulations shown in this paper we satisfy these
demands by choosing 2π da = �50/s + fc−1.3 kHz

10Hz 1/s�+.
The magnitude of the impedance profile of the pseudo

potential P ,

Z(ω) = (iω + 2π da)
2π flp

(2π flp + iω)2
, (6)

is illustrated in Fig. 2a for the best fitting frequency parameter
flp = 300 Hz (see Fig. 4 below) and illustrates band bass
characteristics with peak frequency at 300 Hz (for da = 0).
The time constant 1/(2π flp) ≈ 0.5 ms fits into the range
of membrane time constants in octopus cells [6] and in the
auditory pathway in general [2] further supporting the model
design.

Spike generation

To derive the spike rate R(t) for an inhomogeneous Poisson
process from P(t), we use a sigmoidal function

R(t) = σ [P(t)] = Rmax

(1 + Q exp (−β(P(t) − T )))
1
γ

(7)

fixing the rate parameter for the maximal firing rate Rmax of
the neuron and allowing Q = ( Rmax

RT
)γ − 1 to set the firing

rate RT at the threshold potential T . Rmax = 12 spikes/ms is
set to fit the experimentally reported firing probability den-
sity when adding a refractory period of 2 ms [24]. Further
on, we set RT = 9 spikes/ms which yields roughly a 10%
probability of an onset spike for pure tone presentationwhich
generates a response P equal to T .

There is only little data published on the pure tone thresh-
old levels L0 of octopus cells [24], however, these appear to
be in a range of 30–60dB while cells with high characteris-
tic frequencies tend to have higher thresholds. We therefore
assumed L0 to grow linearly as

L0( fc) = 20

(
2 + fc − 1.3 kHz

6 kHz

)
dB SPL. (8)

The threshold parameter T is then taken as the peak value
of P(t) for a 12 ms pure tone at CF and threshold level L0.
The resulting threshold parameters are shown in Fig. 2b.

The slope parametersβ and γ of the sigmoid take values of
2.5/(6π) ·10−6 and 1/2, respectively. This parameter choice
generates relatively steep activation functions, which ensure
suppression of spontaneous and sustained firing owing to the
non-derivative component from Eq. (5). Furthermore, since
in model cells with low CF the pseudo potential P(t) fluctu-
ates in only a small interval, the steep slope also ensures that
the small dynamic range of P is translated to the full output
range of R.

The parameters of the sigmoid not only ensure that the
model responds reliably and temporally precise to pure-tone
stimuli above threshold.The specific choice of the parameters
β and T was also checked to not introduce unphysiological
islands in the receptive fields.
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A

B C

Fig. 2 Model design and tuning curves. a Impedance magnitude |Z |
from Eq. (6) displays bandbass characteristics with a peak frequency
at flp (blue line for flp = 300 Hz.). b Threshold parameter T as a
function of CF. The threshold of the activation function σ is adjusted to
yield 10% spiking probability on a 12 ms pure tone at the assumed pure
tone threshold level L0. c Tuning curves for three model octopus cells

with different best frequencies (as indicated on top). Color-coded are
the peak firing rates for pure tones of different frequencies and sound
pressure levels. Following [24], here and elsewhere, firing rates are sup-
posed to be interpreted as firing probability densities. Simulations were
performed for flp = 300 Hz and Δ = 0.9 (color figure online)

Basic response properties

During early electrophysiological experiments as well as
while designing our model, pure tone stimuli are a necessary
simplification to probe octopus cell responses in a controlled
way (also as compared to AM stimuli) although these stimuli
only provide sketches of these cells’ function under realistic
acoustic conditions. Nevertheless, pure tones provide a valu-
able good first benchmark for modelling. We thus confirmed
that the model’s responses can fit octopus cells’ localized
pure tone receptive fields (Fig. 2c), onset responses to pure
tones (Fig. 3 left), and locking to sinusoidally amplitudemod-
ulated sounds stimulus (Fig. 3 right). As by design, themodel

only fires at the onset of the pure tone, whereas it phase-locks
to each cycle of the amplitude modulated sound.

Mathematical analysis of a simplifiedmodel

To better understand the model dynamics, we analyze its lin-
ear part P(t) for an amplitude modulated pure tone stimulus

s(t) = Θ(t − t0) A(t) sin(2π fs t). (9)

Here, Θ represents the Heaviside function that imple-
ments the onset at time t = t0. The carrier frequency is
denoted by fs . The amplitude A(t) is assumed to vary much
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Fig. 3 Firing rates (color-coded) of the modeled octopus cells with
different characteristic frequencies CF for two representative stimuli
(top: gray). Left: pure tone stimuli of 80 dB SPL with their frequencies
matching the characteristic frequency of the octopus cell. Right: sinu-
soidal modulated white noise stimulus of 20 dB above threshold and
a modulation frequency of fm = 300 Hz and a modulation depth of

100%. Top panels show example sounds (gray) to illustrate the applied
stimulus envelopes. Simulations were performed for flp = 300 Hz and
Δ = 0.9. Noise level of 20 dB above threshold roughly corresponds to
80 dB SPL and was chosen to match the levels used in physiological
recordings in [17]. Color scales are normalized to the maximum (left:
10/ms, right: 4/ms) (color figure online)

more slowly than the carrier and thus can be taken as constant
A(t) ≈ A during the period 1/ fs .

Due to its combination of low pass and band pass filtering
the response of a single ANF to a pure tone stimulus (with
frequency fs) can be approximated as

ri (t) ≈ A(t) [ai ( fi , fs) + bi ( fi , fs) sin(2π fs t + φi )],

with a constant component ai and the oscillatory component
proportional to bi . With this, Eq. (1) for an octopus cell with
CF fc can be rewritten as

I (t) = Θ(t − t0)A(t) [ag( fc, fs) + bg( fc, fs) sin(2π fs t + φc,s)]
(10)

with

ag( fc, fs) =
∑

i

gi ( fc, fi )ai ( fi , fs) (11)

and

bg( fc, fs) =
∑

i

gi ( fc, fi )bi ( fi , fs) (12)

Due to the filtering properties of the periphery model ai
grows with fi while bi decays. Since octopus cells seem to
be most consistently modeled with input mostly from high
frequency ANFs [25], one can neglect the bg-component of
Eq. (10) and simplify it to:

I (t) ≈ Θ(t − t0) A(t) ag( fc, fs) (13)

The pseudo potential P is mostly governed by the deriva-
tive component of Eq. (5) [1]. Thus for simplicity, in the next
paragraph we will assume that da ≈ 0.

Using the input approximation (13) for a non-modulated
pure tone (A(t) = A = const.), Eq. (5) simplifies to a delta-
like pure tone (PT) response

PPT(t) ≈ A klp ∗ δ(t − t0) ag( fc, fs). (14)

Conversely, for an amplitude modulated stimulus, the dif-
ferentiation of the input approximation (13) by Eq. (5) yields
an additional additive component extracting the derivative of
A(t),

PSAM(t) = PPT(t) + klp ∗ Θ(t − t0)ag( fc, fs)
d

dt
A(t).

(15)

The term ∝ d
dt A(t) lets the octopus neurons fire on the

positive slope of their inputs. This behavior enhances fast
amplitude modulations, particularly at high modulation fre-
quencies (as concluded from a previous octopus cell model
in [7]). It thus accounts for phase locking to sinusoidally
amplitude modulated tones up to a certain modulation fre-
quency (governed by the second-order low-pass kernel klp).
Therefore, by design, the model can replicate the essential
firing characteristics for pure tone and AM stimuli.
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Fig. 4 Effects of arborization
width Δ (left panels) and low
pass frequency flp (right panels)
and as a function of
characteristic frequency (CF).
Top: the average number of
spikes as response to pure tones
(at best frequency). Middle:
entrainment to a 300 Hz
sinusoidally amplitude
modulated noise (as in Fig. 3).
Bottom: vector strength of the
response to the same stimulus as
in the middle

Fig. 5 Responses of octopus
cells with different characteristic
frequencies (as indicated) to
sinusoidally amplitude
modulated noise (100%
modulation depth, 20dB above
threshold, duration: 25 ms or at
least 10 modulation cycles). The
modulation frequency is shown
on the x-axis. The left panel
depicts the mean firing rate in
response to the stimulus. The
corresponding vector strength is
shown on the right

What remains open is, how to find the parameters
that reliably produce such physiological responses. Since
Rmax, Q, β, T , da, γ are constrained by basic cellular mea-
surements (see above) we next will explore the effect of the
two thus far unconstrained parameters flp and Δ by simula-
tions.

Simulations

The above considerations leave only two parameters that are
not directly constrained by the desired firing pattern.

1. The width of the arborization Δ (Eq. 1) and
2. the cut-off frequency flp of the low pass filter Eq. (4).
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Bothwere scannedby simulations shown inFig. 4monitoring
the quality of three functional criteria for a given parameter
configuration.

The first criterion (upper panels) is the mean number of
spikes for an 80 dB SPL pure tone stimulus at the octopus
cell’s best frequency. A mean spike count of 1 indicates that
the cell produces the experimentally reported onset response.
A mean spike count of about one is realized across CF by all

Δ-values between 0.4 and 1 and flp > 250Hz. The excep-
tion are cells with very low CF, which exhibit low levels of
sustained firing in general.

A second criterion is the entrainment E , which is defined
as the fraction of spikes per modulation cycle of a sinusoidal
amplitude-modulated noise stimulus (in this casewith amod-
ulation frequency of fm = 300Hz).High values of E are thus
desirable. We find generally low values of E at Δ < 0.8 and

A B

C D

Fig. 6 Amplitude modulated band-pass noise and a train of white noise
bursts. Responses of ANFs (blue) and octopus cells (spike rasters) with
different characteristic frequencies (as indicated) to sinusoidally ampli-
tude modulated bandpass noise (fourth order gamma tone filter with

center frequency 5 kHz) and a train of noise bursts (duty cycle 5 ms,
cosine ramp 100 µs). Modulation/burst frequency was 100 Hz in all
panels. Graphs on the right depict vector strength as a function of char-
acteristic frequency (color figure online)
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Fig. 7 Sensitivity to amplitude modulations. Three versions (columns)
of sinusoidally amplitude modulated bandpass noise with different
bandwidth (same as Fig. 6) are evaluated for their capacity of tem-
porally faithful (top: vector strength) and secure (bottom: entrainment)

amplitudemodulation detection. Grey levels depict varying percentages
of modulation depth (gray to black: 0, 20, 40, 60, 80, 100). Red lines
indicate values obtained from noise-burst stimulation (see Fig. 6). All
plots are averages from 50 repetitions of the stimuli (color figure online)

at flp > 350 Hz, which excludes these parameter regimes
from further considerations.

As a last criterion we use the vector strength V =
1
n | ∑n

j=1 exp(2π i fmt j |), where t j is the time of the j-th
spike and n is the total number of spikes. It indicates the
cell’s ability to phase-lock to amplitude modulations. High
values of V indicate good phase locking and are prefer-
able for choosing parameters. Low values of V are generally
only observable for Δ < 1.0 in the mid-CF range, and for
flp < 100 Hz, which would also exclude these parameter
regimes.

As a result of these considerations we suggest as a good
choice for the model parameters flp = 300 Hz and Δ = 0.9,
where none of the criteria exhibit extensive regions of low
unfavorable values along the CF axis.

Modulation transfer functions

Phase-locking of the model responses to varying AM fre-
quencies are experimentally quantified by modulation trans-
fer functions [17]. We thus also applied AM stimuli with
different carrier frequencies to our model (Fig. 5) reproduc-
ing experimentally reported results.

Cells show a typical best modulation frequency with max-
imal firing rate [17] and the best modulation frequency
correlateswith the characteristic frequency in the tested range
as expected from peripheral filtering. All cells phase lock
very well to the AM stimuli over a broad frequency range

as indicated by vector strength. Above some threshold fre-
quency cells cease to phase lock, and this threshold frequency
again correlates with characteristic frequency for the range
tested.

Transients

Octopus cells have been proposed to particularly encode
sound transients [5,15] that occur on a much faster time
scale than the amplitude modulations in the stimuli tested
so far. The transition from amplitude modulations to tran-
sients can be explored by manipulating spectral width of
the carrier noise and modulation depth. We first simulated
model responses to amplitude modulated noise with increas-
ing bandwidth and full modulation depth and compared them
to the responses to a sharp-onset noise-burst stimulation
(Fig. 6). For fixed sound level and increasing spectral width,
octopus cells gain in response rate (entrainment) and vector
strength, surpassing ANF vector strengths. This finding cor-
roborates that octopus cells are best driven by sharp broad
band transients.

To also quantify how well octopus cells are able to detect
amplitude modulations, we next varied modulation depths
(Fig. 7). Phase locking (if present over all CFs) only started
to clearly deviate from control levels (zeromodulation depth)
at at least 60%modulation depth and almost achieved vector
strengths obtainedwith noise-burst stimulations. Conversely,
entrainment required at least about 80% to show marked
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Fig. 8 Responses to speech sounds. Panels are outlined as in Fig. 6 with ANF firing probability densities (blue) and octopus spike raster plots
(black). As stimuli, we applied two speech signals (“Space” and “time”) at 50 dB SPL (top) 60 dB SPL (bottom) (color figure online)

differences to controls but, particularly for high frequen-
cies, remained below entrainment obtained from noise burst
responses.

We thus conclude that amplitude modulations generally
yield good phase-locking of octopus cells, whereas they do
not reach the efficiency of sharp transients in evoking secure

responses, particularly for narrow band stimuli and at char-
acteristic frequencies above 5 kHz.
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Complex stimuli

Tocompare our resultswith bandpass noise to natural stimuli,
we also applied it to two exemplary speech sounds. Fig-
ure 8 shows the results for the speech stimuli “‘time”’ and
“‘space”’ from a male speaker, presented at 50dB and 60dB
SPL.

In line with our observations from bandpass noise, the
qualitative observation from these plots is that the octo-
pus cells fire selectively on sharp transients, the strong
modulations as well as parts of the stimulus with a broad
spectrum, as typical for consonants. Cells with different
characteristic frequencies thereby select different parts of
the stimuli: The pattern is bipartite, in that cells with
characteristic frequency above some threshold only show
responses to sharp transients. This frequency threshold
is raised by increasing stimulus level, and also reflects
the recruitment of high frequency ANFs. As a result, the
threshold of sustained octopus cell firing to phonemes
approximately coincides with the CF at which the stimulus
intensity matches the cells’ pure tone threshold according to
Eq. (8).

Discussion

Owing to the high technical challenges in both in-vivo and
in-vitro physiology preparations, octopus cells, despite their
putative crucial role in the processing of natural sounds [15,
18], have not been investigated to a similarly large extent
as other cells in the ascending auditory brainstem, like, e.g.,
bushy cells, or principal cells of the MNTB and SOC. We
therefore still have a very incomplete picture on how the
octopus cell pathway processes sound. Here, we present
a modeling approach complementing detailed physiologi-
cal studies comprising a phenomenological computational
model for a population of octopus cells. The model is con-
strained by the well-studied responses of octopus cells to
pure tones and amplitude-modulated noise and implements
their basic known physiological operation of a differentiation
of its input. Such a phenomenological approach allows us to
test functional hypotheses on large sets of natural stimuli and
thereby generate new hypotheses for follow-up experimental
studies.

The disadvantage of a phenomenological approach is,
however, that making connections to the underlying biologi-
cal substrate is not always straightforward. For example, we
do not have a good justification for requiring an additional
high-pass filter applied before the established periphery
model [8,26,27] other than improving of how the model
fits the frequency tuning curve and phase locking data. A
possible explanation may be additional mechanisms that
suppress low frequency inputs to octopus cells. Despite

this drawback, our model makes a clear experimentally-
testable prediction, viz., the neurons should cease sustained
firing to ongoing amplitude modulations of a complex stim-
ulus (such as those evoked by phonemes) if the stimulus
intensity (integrated over the whole word) falls roughly
below the cell’s threshold to pure tone stimulation at CF,
whereas they should only fire to sharp transients if the stim-
ulus intensity is above the cell’s CF pure tone threshold
(Fig. 8).

So far, the pathway originating from octopus cells was
hard to probe in a functional manner, since the link between
acoustic stimulus and synaptic input was unclear. A major
benefit of our model is that it allows us to generate
physiologically realistic inputs for physiological studies
of such downstream neuronal structures, e.g., the ventral
nucleus of the lateral lemniscus or the inferior collicu-
lus.

Our simulations so far have already shown that the octo-
pus model responds strongly and selectively to rapid signal
onsets in speech stimuli (Figs. 6, 8). This suggests that speech
stimuli, with abundant sharp transients and strong modula-
tions, seem to be a suitable test set for eliciting rich activity
for octopus cell recordings. Moreover, ethologically rele-
vant sounds, such as conspecific vocalization, rustling, and
predator noise all contain transients and broad band con-
tributions and thus octopus cell populations are likely to
play a crucial role for audition in natural environments in
general.
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