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Abstract
Understanding how dexterity improves with practice is a fundamental challenge of motor control and neurorehabilitation.
Here we investigate a ball and beam implementation of a dexterity puzzle in which subjects stabilize a ball at the mid-point
of a beam by manipulating the angular position of the beam. Stabilizability analysis of different biomechanical models for
the ball and beam task with time-delayed proportional-derivative feedback identified the angular position of the beam as the
manipulated variable. Consequently, we monitored the changes in the dynamics with learning by measuring changes in the
control parameters. Two types of stable motion are possible: node type (nonoscillatory) and spiral type (oscillatory). Both
types of motion are observed experimentally and correspond to well-defined regions in the parameter space of the control
gains. With practice the control gains for each subject move close to or on the portion of the boundary which separates
the node-type and spiral-type solutions and which is associated with the rightmost characteristic exponent of smallest real
part. These observations suggest that with learning the control gains for ball and beam balancing change in such a way that
minimizes overshoot and the settling time. This study provides an example of howmathematical analysis together with careful
experimental observations can shed light onto the early stages of skill acquisition. Since the difficulty of this task depends
on the length of the beam, ball and beam balancing tasks may be useful for the rehabilitation of children with dyspraxia and
those recovering from a stroke.
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1 Introduction

It is well established that practice is required to attain and
maintain dexterity in the performance of voluntary, goal-
directed movements. Dexterity requires that an individual
is able to more effectively plan and correlate physical move-
ments in a manner consistent with underlying biomechanical
and neuromuscular constraints (Inouye and Valero-Cuevas
2016; Metcalf et al. 2014; Milton et al. 2016). The under-
lying neural mechanism involves many levels of sensory
and motor integration. This complexity makes it difficult to
uncover the guiding principles which underlie dexterity (for
a recent review of the control of complex motor tasks see
Parrell et al. (2019)). However, indirect evidence that such
principles may exist is provided by the observation that over-
all cortical activation decreases as dexterity improves with a
selective enhancement of these cortical regionsmost relevant
for task performance (Bilalic 2017; Hatfield and Hillman
2001; Milton et al. 2007; Puttemans et al. 2005).
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Ultimately theoretic studies and mathematical modeling
acting together with careful experimental observations will
be necessary to uncover the pathway toward dexterity. Pre-
vious studies involving a variety of voluntary, goal-directed
motor tasks have emphasized that the nervous system learns
by developing an internal model which predicts the sensory
consequences of the movement (Kawato 1999; Mehta and
Schaal 2002; Shadmehr et al. 2010; Milton et al. 2016). In
the neuroscience literature this is referred to as feedforward
control and in the modern engineering control theory litera-
ture as predictor feedback (Krstic 2009; Milton et al. 2016).
The role of an internal model is most important in situations
where the controller must compensate for the destabilizing
effects of a time delay (Nijhawan 2008; Nijhawan and Wu
2009). The present day efforts focus on the analysis of a num-
ber of relatively simple biomechanical tasks including tasks
based on spring compression (Lyle et al. 2013, 2015; Row-
ley et al. 2018; Venkadesan et al. 2007), rhythmic ball-racket
bouncing (Schaal et al. 1996; Ronsse et al. 2010), balance
board balancing (Chagdes et al. 2013; Cruise et al. 2017)
and a variety of virtual tasks which involve an interaction
between a human and a computer (Bazzi et al. 2018; Cabrera
and Milton 2004; Chu et al. 2016; Mehta and Schaal 2002;
Milton et al. 2013). An important practical advantage of these
tasks is that the active participation of the participants is eas-
ily gauged since with no effort the subject fails the task. A
fundamental challenge has been to determine quantitative
metrics that describe the learning process. A notable excep-
tion occurs in tasks related to learning of balance control. For
example, in the case of pole balancing at the fingertip (Cabr-
era andMilton 2002; Foo et al. 2000;Mehta and Schaal 2002;
Milton et al. 2016), control theoretic analysis suggests that
the important metric is not the time the pole can be balanced
but is the shortest pole length that can be balanced for a given
time and time delay (Insperger andMilton 2014;Milton et al.
2016).

The inherent instability of uncontrolled human balance
tasks places stringent requirements on the control strategy
since time delays are an essential component of the feed-
back Milton et al. (2009); Stepan (2009). A consequence is
that the Smith predictor, which uses an internal model to pre-
dict the actual state variables of the system, cannot be used to
compensate for the delay (Michiels and Niculescu 2003; Pal-
mor 2000). Predictor feedback controllers, e.g., the modified
Smith predictor or the finite spectrum assignment, overcome
these limitations of the Smith predictor by solving the system
over the delay interval only (Krstic 2009;Molnar et al. 2019).
The main point of predictor feedback is that consequences of
motor commands are estimated based on an internal model
over the delay period and hence the delay is eliminated from
the control loop. Thus, the infinite spectrum of the time-delay
system is reduced to a finite dimensional spectrum. However,
the internal models for novices just learning a balance task,

those undergoing rehabilitation to re-learn a balance task and
thosewith dyspraxia aremost certainly inaccurate. When the
internal model is inaccurate, the spectrum becomes infinite
again. Moreover it is unlikely that an internal model with-
out any direct feedback would be a useful control strategy in
an uncertain environment such as walking blindfolded and
barefoot on a rough gravel surface. Thus an internal model
cannot readily be used to identify practical, experimentally
measurable parameters that can be used to follow the learning
process in a variety of contexts.

Here we evaluate whether a state-dependent controller,
such as the one which incorporates proportional-derivative
(PD) feedback, can be used as a proxy for control under sit-
uations where the internal model is expected to be poorly
developed. We simplify the dexterity puzzle to a ball and
beam task in which the subject is required to stabilize a
rolling ball (in the experimental realization a rolling cart)
at the mid-point of the beam by manipulating the angle of
the beam (Fig. 1). Ball and beam systems are widely used
in engineering as a benchmark for different control schemes
(Wellstead 1979; Astrom and Wittenmark 1984). The angle
of the beam is identified as the controlled variable in Sect. 2.
Thus it becomes possible to describe ball and beambalancing
with three parameters: the time delay (τ ), the proportional
gain (Px ) and the derivative gain (Dx ). Sections 3 and 4
describe, respectively, the methods and results. It is shown
that with learning the control gains change in such a way that
the settling time and overshoot are reduced. The observation
that settling time and overshoot decrease with practice has
also been reported for certain arm pointing and trajectory-
following exercises (Burdet et al. 2001; Flanagan et al. 2003;
Franklin and Wolpert 2011; Thoroughman and Shadmehr
2000). The important point here is that we have demonstrated
that settling time and overshoot are the proper metrics for
monitoring learning in the ball and beam balancing task. The
development of dexterity puzzles of graded difficulty may
be useful for both classifying dyspraxia and following its
response to rehabilitation.

2 Model

The ball and beam balancing task shown in Fig. 1 is modeled
as twoDoFmechanical systemswhere x is the position of the
ball measured from the middle of the beam and m1, ψ are,
respectively, the mass and the angle of the beam. The ball
is modeled as a particle of mass m2. Both static and kinetic
frictions are neglected in the model.

The human control mechanism is modeled as a PD con-
troller with continuous feedback involving a reaction delay.
The time delay arises because axonal conduction times are
finite and because of the time required for perception, plan-
ning and execution of the corrective movements. Thus it
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Fig. 1 Top: The experimental device for the ball and beam system with
a rolling cart playing the role of the ball. Bottom: the mechanical model
of the ball and beam system

becomes necessary to take into account the time it takes to
detect an error and then act upon it. Mathematical investiga-
tions indicate that the controlled variable can be either the
angular position of the beam or the torque applied to the
beam, but not the angular velocity of the beam or its accel-
eration (Buza and Insperger 2018).

2.1 Angular position as manipulated variable

Experimental observations suggest that ball and beam bal-
ancing can be performed by holding the seesaw in a tilted
position for certain time relying on the gravity to roll the ball
to the desired middle position. The corresponding mechani-
cal model is a one DoF system, and the linearized equation
of motion reads

ẍ(t) = −gψ(t), (1)

where g is the acceleration due to gravity.
The angular position ψ(t) in (1) is given by the assumed

PD feedback mechanism in the form

ψ(t) = Px x(t − τ) + Dx ẋ(t − τ), (2)

where Px and Dx are the proportional and derivative gains
for the displacement x of the ball, respectively, and τ is the
reaction delay. The governing equation reads

ẍ(t) + gDx ẋ(t − τ) + gPx x(t − τ) = 0, (3)

and the corresponding characteristic equation is

D(λ) = λ2 + gDxλe
−λτ + gPxe

−λτ = 0. (4)

The stability properties can be depicted in stability diagrams.
After substituting λ = α ± iω, ω ≥ 0 and setting α = 0,
the D-curves can be given in the form (Insperger and Stepan
2011)

ω = 0 : Px = 0, Dx ∈ R, (5)

ω > 0 : Px = ω2

g
cos(ωτ), Dx = ω

g
sin(ωτ). (6)

The number of unstable characteristic exponents in the
domains separated by the D-curves can be given using
Stepan’s formula (Stepan 1989). The stability diagram with
the number of unstable characteristic exponents is shown in
Fig. 2 for τ = 250 ms. The stable region is indicated by
gray shading. Stabilizability properties can be characterized
by the critical delay, τcrit , i.e., the smallest delay for which
the fixed point can be stabilized. Parametric investigation of
(5)–(6) shows that the region of stability shrinks as the delay
increases; however, the stable region never disappears com-
pletely. Thus, (3) is delay-independent stabilizable.

Two main features of the motion of the ball are the over-
shoot and the settling time of the response. Both features are
associated with the rightmost characteristic exponents.

Overshoot: oscillatory versus nonoscillatory motion
The dashed line within the stable region in Fig. 2 separates
two types of solutions. Parameter pairs (Px , Dx ) located to
the left of the dashed line are associated with a real rightmost
characteristic exponent. The correspondingmotion is a node-
type (i.e., nonoscillatory) motion (Fig. 2 bottom left). For
node-type solutions there can be at most one overshoot. For
parameter pairs (Px , Dx ) located to the right of the dashed
line, the rightmost characteristic exponents form a pair of
complex numbers. The correspondingmotion is a spiral-type
(i.e., oscillatory) motion (Fig. 2, bottom right). For spiral-
type solutions there are more than one overshoots. The line
separating the nonoscillatory and the oscillatory behaviors
is referred to as the node–spiral separation line. It should
be noted that the node–spiral separation line indicates the
parameter values at which either the rightmost characteristic
exponent is real and has a multiplicity of 2 or a real and a
complex pair of characteristic exponents coexists with the
same real part.

Settling time
The settling time is associatedwith the real partα of the right-
most characteristic exponent. Colored lines in Fig. 2 indicate
contour levels of different α. The smaller α (more negative),
the shorter the response time to a given perturbation. The
control gains associated with the fastest response are located
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Fig. 2 Top: D-curves and stability diagrams with the number of unstable poles for the case when the angular position is the manipulated variable
with feedback delay τ = 250 ms. Bottom: node-type solution (left), fastest response time (middle) and spiral-type solutions (right)

on the node–spiral separation line. The fastest response is
shown in the bottom middle panel of Fig. 2.

2.2 Control torque as manipulated variable

The alternate hypothesis is that the manipulated variable is
the torque applied on the beam. In this case, the angular
position is no longer restricted, and the mechanical sys-
tem has two degrees of freedom. Therefore, we introduce
q(t) = (x (t) , ψ (t))T as the vector of general coordinates.
The system is now governed by

(
m2 0
0 I1

)
q̈(t) +

(
0 m2g

m2g 0

)
q(t) =

(
0

−Q(t)

)
, (7)

where I1 = m1l21/12 is the mass moment of inertia of the
seesaw and Q(t) is the control torque. Note that the gov-
erning equation in Model 1 was independent of the physical
parameters of the system. Here, however, the parameters m2

and I1 show up in (7). The control torque is assumed in the
form

Q(t) = Px x(t−τ)+Dx ẋ(t−τ)+Pψψ(t−τ)+Dψψ̇(t−τ),

(8)

where Px and Dx are the proportional and the derivative gains
for the position x of the ball, while Pψ and Dψ are those for
angular position ψ of the beam. The equation of motion can

be written in the compact form

Mq̈(t) + Sq(t) = Kdq̇(t − τ) + Kpq(t − τ), (9)

where

Kd =
(

0 0
−Dx −Dψ

)
, Kp =

(
0 0

−Px −Pψ

)
. (10)

Numerical analysis shows that this system can only be sta-
bilized by delayed PD feedback for delays less than τcrit =
180 ms (Buza and Insperger 2018). For the ball and beam
balancing τ > 180ms (see Sect. 3). Thus we do not consider
this case further. Note, however, that this model might be
of relevance when other types of control concepts are used,
such as predictor feedback (feedforward) controller.

3 Experimental methods

3.1 Construction of the ball and beam system

The ball and beam system was constructed as a cart driven
on linear bearing rail. The rail was fixed to a wooden beam,
which was connected to a wooden stand frame via a shaft
as shown in Fig. 1. The length of the beam was 1.06 m, the
length of the rail was 0.94 m, and the bounding dimensions
of the cart were 60 × 60 × 40 mm. The mass of the cart
was 0.12 kg, and the moment of the inertia of the beam was
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0.1889 kgm2. Subjects could adjust the seesaw by grabbing
the handle at either end andwere instructed tomove the cart to
themid-point of the beam by changing the angle of the beam.
(Accuracy limits were ±5mm, and they were indicated by
dark tape stripe.)

3.2 Participants

A convenience sample of 25 subjects was recruited from
the local student and faculty population (age 26 ± 5 years,
2 females, 23 males). All subjects were free of any neu-
rological or musculoskeletal impairment that could affect
balancing of a ball on a beam. The research was carried out
following the principles of the Declaration of Helsinki. All
participants provided informed consent for all research test-
ing and were given the opportunity to withdraw from the
study at any time.

3.3 Procedure

Two types of balancing sessions were performed.

Session 1
Twenty-two subjects did a single trial for each of the dif-
ferent initial positions x(0) = 450, 380, 280, 170, −170,
−280, −380, −450 mm (8 trials in total) without any prior
practice. In this way the effect of familiarity with the taskwas
eliminated. Subjects were instructed to guide the cart to the
mid-point of the beam as fast as possible with the smallest
overshoot. The task was considered to be completed when
the subjects declared that the cart is stopped at the desired
position, i.e., between the two dark tape stripes indicating the
middle of the beam with ±5 mm tolerance. After complet-
ing the task, the subjects themselves positioned the cart at
the instructed initial position and started the next trials. All
subjects were able to successfully complete the task within
6 s. In this session, subjects were completely unfamiliar with
the task since they performed the trials from different initial
conditions.We assume that the employed control mechanism
is based only on the state (position and velocity) of the cart
and hence a delayed PD feedback was used rather than a
predictor feedback.

Session 2
Ten subjects (7 fromSession 1) performed 20 balancing trials
per day, all from the same initial position x(0) = −450 mm,
for five consecutive days (100 trials per subject in total). This
experiment was performed two months after Session 1. The
decision to repeat the trials on consecutive days was based on
previous observations for pole balancing on the fingertip that
the increase in skill between two practices on consecutive
days is typically more pronounced than when two practice
sessions are performed on the same day (Milton et al. 2016).
The parameters τ, Px , Dx for ball and beam balancing on

Day 1 of Session 2 for the 7 subjects who had participated
in Session 1 were unchanged compared to those estimated
based on the trials in Session 1. In this session, subjects get
more and more familiar with the task day by day, which
allows the possible detection of the learning process.

3.4 Measurements

An OptiTrack motion capture system was used to track the
movements of the cart and the seesaw. Three reflective spher-
icalmarkers (12.7mmdiameter)were used: onewas attached
to the rolling cart, and the other two were attached at each
end of the beam. The sampling frequency was 120 Hz. All
programs were written in MATLAB. For motion capturing
the commercialmotive software of theOptiTrack systemwas
used.

3.5 Parameter estimation

For each balancing trials, the feedback delay τ was varied
from τ = 0 to τ = 0.7 s with step Δτ = h = 8.33 ms.
For each τ , the best fitting pair (Px , Dx ) was determined by
linear regression (Myers 1990). Then numerical simulation
was performed for these control gains for initial conditions
taken from the measured time series x(t) over the interval
t ∈ [0, τ ]. The time delay was selected such that the accu-
mulated error E = ∑N

i=1 (|xsim(ti ) − xmeas(ti )|) between
the simulated and the measured signal was minimal over
the whole trial. Here, ti is the instants of measurements,
Δt = ti − ti−1 = 8.33 ms and NΔt indicates the end of
the trial. Figure 3 shows an example for the measured time
signal and the parameter estimation.

(a) (b)

(c) (d)

Fig. 3 Time histories for Session 1 by subject S2 (a), fitted control
parameters in the stability diagram (b), time-delay estimation (c) and a
sample for the measured and the fitted time history (fitted parameters:
τ = 270 ms, Px = 0.511 m−1 and Dx = 0.2963 sm−1)
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For the estimation of the control gain parameters Px and
Dx , Eq. (3) is rewritten as

ż(t) = Az(t) + bKz(t − τ), (11)

where

z(t) =
(
x(t)
ẋ(t)

)
, A =

(
0 1
0 0

)
, b =

(
0

−g

)
, (12)

and K = (
Px Dx

)
. The solution by means of explicit Euler

method gives the discrete map

zi+1 = zi + h(Azi + bKzi−r ), i ∈ N, (13)

where r = round(τ/h) is the delay resolution, h = 1/ fs
is the time step size with fs = 120 Hz being the sampling
frequency, and the notation

zi = z(ti ), ti = ih (14)

is used for the sake of brevity. Similarly to Mehta and Schaal
(2002), the control gains in K can be estimated by linear
regression analysis of (13) using the measured data (Fig. 3b).

Due to the structure of vector b, the elements ofK appear
in the second equation of (13) only, which can be rewritten
as

ẋi − ẋi+1

gh
= K

(
xi−r

ẋi−r

)
. (15)

Augmentation of (15) over i = r +1, r +2, . . . , N −1 gives

y = XKT + u, (16)

where u is the error term and

y =

⎛
⎜⎜⎝

ẋr+1−ẋr+2
gh
...

ẋN−1−ẋN
gh

⎞
⎟⎟⎠ , X =

⎛
⎜⎝

x1 ẋ1
...

...

xN−r−1 ẋN−r−1

⎞
⎟⎠ . (17)

Here, N is the number of time instances used for the param-
eter identification. Following Mehta and Schaal (2002), we
employed ridge regression to achieve numerical robustness.
This way K is obtained from the regression formula as

KT = (XTX + εI)−1XT y. (18)

The ridge regression parameter ε was determined by mini-
mizing themean-squaredPRESS residual error (Myers 1990)

J =
N−r−1∑

1

(yi − Kzi )2

(1 − zTi (XTX + εI)−1zi )2
(19)

for each individual balancing test and for each subject.

3.6 Reaction delaymeasurement

Three classic forms of reaction delay test were used (Tal-
land and Cairnie 1961; Welford 1988; Woods et al. 2015). In
the first task (referred to as the “Single Flash”), the subject
pressed a button in response to a single light flash. In the
second task (referred to as the “Individual Flash”), the sub-
ject was presented with three sets of buttons and lights and
was asked to press the button associated with the flashing
light. In the third task (referred to as the “RGB Flash” task),
the subject was presented with one light which could pro-
duce red, blue and green flashes and three buttons (red, blue,
green). They were asked to press the button that matches
the color of the flash. In all cases, the time increments
between flashes were randomized (uniform distribution over
the period between 4 and 6s). Every subject performed each
task 10 times without prior practice. These tests were per-
formed before Session 1 and on the first day of Session 2.
The result of the reaction delay measurement can directly be
related to the reaction delay obtained by parameter estima-
tions described in Sect. 3.5.

4 Experimental results

The mean time delay for the ball and beam dexterity test in
Session 1was 316.4ms (range 200−475ms for 22 subjects).
Since the time delays are greater than 180 ms for all of the
subjects we can eliminate the possibility that themanipulated
variable is the torque (see Sect.2.2). Time delays for a variety
of visuomotor tracking are typically larger than 180 ms in
both humans (Brenner and Smeets 1997; Mehta and Schaal
2002; Miall 1996; Milton et al. 2016; Talland and Cairnie
1961;Woods et al. 2015) and rhesusmonkeys (Georgopoulos
et al. 1981; Miall et al. 1986).

Ten (10) subjects performed repeated trials over five con-
secutive days (Session 2). At the completion of this training
we observed that the subjects could be separated into two
groups (compare with Figure 2). Five subjects classified as
Group 1 subjects exhibited spiral-type dynamics, and there
was greater trial-to-trial variability. (An example is shown
in Fig. 6 top.) The other five subjects classified as Group 2
subjects exhibited node-type dynamics, and there was less
trial-to-trial variability. (An example is shown in Fig. 7 top.)
After 5 days of practice all subjects exhibited node-type
dynamics with reduced trial-to-trial variability (see bottom
of Fig. 7 and 6). The training did not affect the time delay
(mean delay 310.8 ms on Day 1 and 309.2 ms on Day 5,
P-value = 0.83, paired t test) suggesting that the duration of
the neural processing had not changed.

Figure 4a and 4b show the variation of the magnitude of
the first overshoot for Subject 17 (typical Group 1 subject)
and for Subject 16 (typicalGroup 2 subject) during Session 2,
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(a)

(b)

(c)

Fig. 4 Variation of the overshoot for Subject 17 (a) and Subject 16 (b)
over the trials. Red curve is an exponential function fitted to the data.
Variation of the mean overshoot with min–max error bars for Group 1
andGroup 2 subjects and for all subjects as a function of days of practice
(c). Black crosses indicate the daily average overshoot of Subject 17
(Group 1) and Subject 16 (Group 2)

(a)

(b)

(c)

Fig. 5 Variation of the settling time for Subject 17 (a) and Subject 16
(b) over the trials. Red curve is an exponential function fitted to the data.
Variation of the mean settling time with min–max error for Group 1 and
Group 2 subjects and for all subjects as a function of days of practice
(c). Black crosses indicate the daily average settling time of Subject 17
(Group 1) and Subject 16 (Group 2)

respectively. Overshoot was assessed as the maximum pos-
itive position of the cart (note that the initial condition was
x(0) = −450 mm). Red line indicates a least-squares fit of
an exponential function to the data following Burdet et al.
(2001). Figure 4c shows the average ± min/max overshoot
over the days of practice for Group 1, Group 2 and all sub-
jects. The mean overshoots for Subject 17 (Group 1) and
Subject 16 (Group 2) are indicated by black crosses. On
Days 1 and 2 the mean overshoot for Group 1 subjects is
about twice that observed for Group 2 subjects, while the
variance is about triple of that. However, by Days 3 through
5 the magnitude of the first overshoot and its variance are
about the same for the two groups. This observation sug-
gests that significant learning of these tasks occurs between
Day 2 and 3 of practice for the least skilled ball and beam
balancers. The mean overshoot for Group 1members on Day
1 and Day 5 was 57.8 mm and 28.0 mm, respectively, while
for Group 2 members, the mean overshoot decreased from
34.9 to 21.0 mm. The P-value for the t test comparing the
mean change in the overshoot to zero was 0.283 for Group 1
and 0.001 for Group 2. Thus, Group 1 members significantly
reduced their overshoot, while the reduction of the overshoot
for Group 2 members is not so pronounced.

Figure 5a and b shows the variation of the settling time,
which is required to position the ball at the mid-point with
accuracy of ±10 mm, for Subjects 17 and 16. Thus, set-
tling time was assessed as the time instant ts for which
|x(t)| < 10 mm if t > ts. Figure 5c shows the average ±
min–max settling time over the days of practice. The mean
settling times for Subject 17 (Group 1) and Subject 16 (Group
2) are indicated by black crosses. For both groups the set-
tling time becomes slightly shorter with days of practice. For
Group 1 members, the mean settling time was 3.89 s on Day
1 and 2.88 s on Day 5, while for Group 2 members, the mean
settling time decreased from 3.30 to 2.66 s. The P-value for
the t test comparing the mean change in the settling time to
zero was 0.043 for Group 1 and 0.077 for Group 2. Thus, the
improvement in the settling time in Group 1 is slightly more
pronounced than in Group 2.

The changes in the settling time and overshoot shown in
Figs. 4 and 5 are similar to those observed in other studies that
associate learning with a decrease in settling time (Flanagan
et al. 2003; Franklin and Wolpert 2011; Thoroughman and
Shadmehr 2000). Taken together the observations in Figs. 4
and 5 suggest that skilled subjects have a common strategy
that minimizes the response time and reduces the overshoot
as much as possible.

The values of Px , Dx were always located within the sta-
ble region for (1). However, the trial-to-trial distribution of
the gains was different for Group 1 and Group 2 subjects.
For Group 1 subjects on Day 1, the values of Px , Dx were
scattered within the region of stability on both sides of the
node–spiral separation line. By Day 5 the values of Px , Dx
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Fig. 6 Time histories (left) for Subject 17 from Group 1 and the cor-
responding control gain parameters plotted on the stability diagram
(right) during Session 1 (top) and Session 2 in Day 1 (middle) and Day
5 (bottom)

were distributed close to or on the node–spiral separation line,
particularly, in the region where the real part α of the char-
acteristic exponent is the smallest (see right-hand column
of Figs. 6 and 7). This observation suggests that learning of
this task involves tuning of the important control parameters
close to the node–spiral separation line. In contrast the values
of Px , Dx for Group 2 subjects were close to the node–spiral
separation line on both Days 1 and 5. Thus subjects who
already know the better strategy on Day 1 do not substan-
tially change it with practice, suggesting that this strategy is
a goal of the learning process.

We observed that the measured time delay for ball and
beam balancing was quite variable (see Figs. 6 and 5). Fig-
ure 8 compares time delay measured for ball and beam
balancing to the values obtained for three classic forms of
the reaction delay test for the same subjects. For the reaction
delay tests, both the mean delay and the standard devia-
tion increased as task complexity increased. The mean time
delay for ball and beam balancing most closely resembles
that obtained for the “Individual Flash” test, but the variance
resembles most closely the range observed for the RGB test.
These observations suggest that during ball and beambalanc-
ing subjects do not simply react to changes in the angle of
the beam as fast as possible (“Single Flash” test), but rather
respond in a more planned manner to a task that itself is
changing.

Fig. 7 Time histories (left) for Subject 16 from Group 2 and the cor-
responding control gain parameters plotted on the stability diagram
(right) during Session 1 (top) and Session 2 in Day 1 (middle) and Day
5 (bottom)

Fig. 8 Time delays measured for 10 subjects determined by parameter
fitting (ball andbeam) andmeasuredby reaction tests (single, individual,
RGB) before performing the ball and beam balancing task

5 Discussion

There are two advantages of balance tasks for the investi-
gation of dexterity. First, the “plant,” namely the task to
be controlled, can be precisely described using Newtonian
dynamics. Thus, it becomes possible to focus on the nature
of the neuromuscular control. Second, the fact that the uncon-
trolled position is unstable places very stringent requirements
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on the nature of the feedback. Here we identified the control
system for a ball and beam dexterity task. Since the control
system can be identified, important parameters, namely τ ,
Px and Dx , can be easily measured using a linear regression
analysis. Thus, the early stages of development of dexterity
with practice can be monitored quantitatively in the dynam-
ical space of the important control parameters.

Our observations indicate that during the early stages of
learning the ball and beam dexterity task a PD controller with
three parameters provides a good description of the observed
dynamics. With practice the settling time and overshoot for
the ball and beam task decrease. Mathematical analysis and
the measurements of the time delay established that the con-
trolled variable is the angular position of the beam. The
addition of a derivative term in the controller is essential for
the control of any mechanical task with time-delayed feed-
back (Stepan 1989, 2009). In this situation it is known that
the addition of an integral term, such as for a PID controller,
does not improve stability performance against reactiondelay
over that afforded by PD feedback (Lehotzky 2017). We
emphasize that our observations do not imply that the nervous
system is not in the process of developing an internal model-
based method for control. Our observations merely suggest
that a PD controller serves as a reasonable proxy in situations
in which the internal model has not been well developed by
the nervous system.We note in passing that most individuals
perform tasks that have not beenwell learned on a daily basis.

One can argue that humans have developed internal mod-
els for the interaction with inertial systems (Newtonian
dynamics) over their lifetime. Still, positioning tasks cannot
be performed precisely based on only feedforward control.
This is due to the inaccurate information about the environ-
ment,which are required for an inverse dynamics calculation.
For instance, in the ball and beam task, the mass of the ball,
the inertia of the beam, the friction and the initial position
are all partially unknown to the subjects. This implies that
the employed control law shall involve some direct feed-
backs in order to compensate the inaccurate prediction by
the internal model. On the other hand, it is possible that by
practicing the same task regularly, the role of an internal
model-based feedforward mechanism becomes more domi-
nant part of the balancing process. This phenomenon is also
captured by the delayed PD feedback in the sense that the
gains of the PD feedback after practice become close to the
ones that result in a fast control with minimal overshoot.
Thus, although delayed PD control might not be physiologi-
cally adequate control concept, it describes well the changes
in its parameters during a learning process.

After the completion of this study the same subjects were
asked to guide the ball to the middle of the beam with eyes
closed (i.e., in the absence of visual feedback). In all cases
the subjects were unable to accomplish this task successfully.
This supports the idea that even though feedforward control

with internal models may partially be involved, additional
visual feedback is also necessary component of the control
task.

Predictor feedback and delayed PD feedback present two
extremes of a range of possible control concept candidates
for human balancing. Predictor feedback accounts for the
consequences of motor commands and estimates the state
based on an internal model over the delay period. A per-
fect predictor feedback (with an accurate internal model,
with perfect implementation and without any sensory uncer-
tainties and noise) totally eliminates the feedback delay and
gives a delay-free PD feedback. In this case, any positive
values of the gains Px and Dx result in a stable control
process, i.e., the stable region represented in Fig. 2 trans-
forms to the positive quarter of the plane (Px , Dx ). This
implies that control performance can be improved without
limits: any large perturbations can be compensated in any
short time. This is not the case in reality; human perfor-
mance has limitations both in gaining sensory information
and in exerting control force. These can also be considered
as imperfection in the implementation of the control law.
It shall be mentioned that there are many other candidates
to the control concepts, e.g., clock-driven or event-driven
intermittent predictive control (Gawthrop et al. 2011, 2014;
Yoshikawa et al. 2016), act-and-wait control (Insperger and
Milton 2014), proportional-derivative-acceleration feedback
(Insperger and Milton 2014), hierarchical control concepts
with different level organizations (Valero-Cuevas et al. 2009)
can be mentioned as possible examples.

There are two possible explanations for our success in
describing ball and beam balancing using PD feedback con-
trol. First, it is possible that the subjects have not practiced
this task long enough to develop a reliable internal model.
For example, expertise in pole balancing on the fingertip for
seated individuals requires weeks of practice (Milton et al.
2016). It should be noted that during the early stages of acqui-
sition of pole balancing skill the observed balance times are
also consistent with a PD controller. In this case with practice
extending over weeks the minimum pole length that could be
successfully balanced became so short that the balance times
could not be explained by time-delayed PD feedback, but
were consistent with balance times predicted by feedforward
control (Flanagan et al. 2003; Franklin and Wolpert 2011;
Thoroughman and Shadmehr 2000). Unfortunately there is
no formal way to reduce a predictor feedback controller to a
PD feedback controller. Thus it is not yet possible to identify
the stage of learning process at which a PD controller is no
longer useful as a proxy.

The second possibility is that there may be tasks, such
as ball and beam balancing, for which feedforward control
is neither required nor beneficial. Ball and beam is an 1-D
example of 2-D dexterity puzzle (e.g., ball and plate). These
puzzles were developed by Charles Martin Crandell in 1889;
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an example is the Pigs in Clover puzzle. In these tasks a sub-
ject tilts a maze in order to guide one or more balls toward
a goal. These tasks place a premium on perseverance and
patience rather than on critical thought and logic as required
for other types of puzzles. Intuitively, this observation sug-
gests that this task is controlled using primarily feedback
control.

The difficulty of the ball and beam dexterity task increases
as the length of the beam decreases and/or the handle is
moved to change the length of the effort arm. This is because
for a given beam displacement the change in angle is greater
the shorter the effort arm of the beam. Children with dys-
praxia and those undergoing neural rehabilitation often find
tasks related to spring compression and stick balancing ini-
tially intimidating. However, as dexterity increases, task
difficulty must be increased to maintain the challenge. In
this context it is important to keep in mind that most non-
linear types of state-dependent feedback, i.e., feedback that
depends on x , ẋ , can be reduced to a PD feedback after lin-
earization. Thus, as task difficulty increases we cannot rule
out the possibility that the control strategy also changes to
accommodate, for example, biomechanical and neuromuscu-
lar constraints. In other words, the road from novice to expert
is likely to be complex. It may be possible to design a range
of dexterity tasks each of which favors one control strategy
over the others. By the judicial use of such tasks together
with mathematical modeling it may be possible to obtain a
quantitative description of the development of dexterity.
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