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Abstract Balanced networks are a frequently employed
basic model for neuronal networks in the mammalian neo-
cortex. Large numbers of excitatory and inhibitory neurons
are recurrently connected so that the numerous positive and
negative inputs that each neuron receives cancel out on aver-
age. Neuronal firing is therefore driven by fluctuations in the
input and resembles the irregular and asynchronous activ-
ity observed in cortical in vivo data. Recently, the balanced
network model has been extended to accommodate clus-
ters of strongly interconnected excitatory neurons in order to
explain persistent activity in working memory-related tasks.
This clustered topology introducesmultistability andwinner-
less competition between attractors and can capture the high
trial-to-trial variability and its reduction during stimulation
that has been found experimentally. In this prospect article,
we review the mean field description of balanced networks
of binary neurons and apply the theory to clustered net-
works. We show that the stable fixed points of networks with
clustered excitatory connectivity tend quickly towards firing
rate saturation, which is generally inconsistent with exper-
imental data. To remedy this shortcoming, we then present
a novel perspective on networks with locally balanced clus-
ters of both excitatory and inhibitory neuron populations.
This approach allows for true multistability and moderate
firing rates in activated clusters over a wide range of param-
eters. Our findings are supported by mean field theory and
numerical network simulations. Finally, we discuss possible
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1 Introduction

Neural responses in the mammalian neocortex are noto-
riously variable. Even when identical sensory stimuli are
provided and animal behaviour is consistent across repeti-
tions of experimental tasks, the neuronal responses look very
different each time. This variability is found on a wide range
of temporal and spatial scales (see e.g. Dinstein et al. 2015).
To this day, it remains a matter of discussion how the brain
can cope with this variability or whether it might even be an
essential part of neural computation (e.g. Arieli et al. 1996;
Masquelier 2013; Renart and Machens 2014).

Classically, neural variability has been interpreted as
noise. In this view, there is a signal in the neural activity
which is buried under some noise. By averaging over tri-
als aligned to some experimental task, the noise is cancelled
out and the trial averaged firing rate emerges as the signal.
An obvious problem of this view is that trials are a con-
struct imposed by the experimenter which the animal is likely
unaware of. In contrast, animal behaviour works fine on a
single trial basis where averaged signals are unavailable. It
has been argued that averages could be taken instantaneously
over populations of neurons coding for the same entity. If the
noise carried by the individual neurons is uncorrelated, it can
be eliminated in that way (Shadlen and Newsome 1998).

A potential source of the noise could be the thermo-
dynamic or quantum mechanical randomness inherent in
external stimulus modalities (Faisal et al. 2008). But then
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averaging should tend to reduce the amount of noise with
increasing distance from the sensory periphery. Instead the
opposite has been observed: cortical firing becomes increas-
ingly variable in higher brain areas (Kara et al. 2000) being
particularly high in motor cortex and again decreasing in
motor periphery (Prut and Perlmutter 2003).

In earlier years, researchers attempted to explain neural
variability using stochastic elements in detailed single neu-
ronalmodels (e.g. Stein 1967). Later, it was shown that single
neurons can precisely reproduce the same spike trains when
repeatedly injectedwith identical current traceswhich resem-
ble their integrated natural inputs (Mainen and Sejnowski
1995). Likewise, dendritic integration and synaptic variabil-
ity cannot account for the large trial-to-trial variability in
vivo (Nawrot et al. 2009; Boucsein et al. 2011). This in vitro
observation of highly reliable signal integration and output
firing patterns in single neurons raises the question how such
seemingly chaotic activity can be induced in networks of
deterministic units.

In neocortex, individual neurons receive large numbers of
excitatory and inhibitory synaptic inputs from the surround-
ing network (e.g. Braitenberg and Schüz 1991; Larkman
1991;Destexhe et al. 2003). It has been shown that in network
models of randomly connected excitatory and inhibitory neu-
rons a condition exists inwhich these neurons fire in a chaotic
manner at lowfiring rates. This conditionwas termed theBal-
anced State and occurs if excitation and inhibition to each
cell cancel each other on average so that spike emission is
triggered by fluctuations in the input current rather than by
elevation of the mean input current (van Vreeswijk and Som-
polinsky 1996, 1998;Brunel 2000).Using networks of binary
units, van Vreeswijk and Sompolinsky (1996) showed that
this dynamic equilibrium occurs without much fine tuning of
the parameters if a few conditions are met. Few years later,
now for networks of spiking (LIFs), Brunel (2000) charac-
terised different types of firing activity in networks of LIFs as
a function of the strength of an external drive to the network
and the relative strength of excitation and inhibition. These
balanced networks, however, could not yet explain the full
extent of experimentally observed neuronal variability.

A recent series of studies (Deco andHugues 2012; Litwin-
Kumar and Doiron 2012; Doiron and Litwin-Kumar 2014;
Mazzucato et al. 2015) have shown that competition between
attractors can induce rate variation in balanced networks.
Attractors were introduced into the networks by defining
sub-populations or clusters in the excitatory populations of
the networks and by increasing the synaptic efficacies (or
weights) between units inside clusters relative to those to the
remaining units. If the ratio of intra-cluster weights to inter-
cluster weights is low, no change in the dynamics occurs.
If the ratio is high, the attractors become deep, resulting in
winner-take-all dynamics where one cluster has a high fir-
ing rate and suppresses the activity in the other assemblies

(Lagzi et al. 2015). In themore interesting intermediate range
of intra-cluster weights, the variance in the population firing
rates causes the networks to switch between different states,
each defined by a specific set of active clusters with higher
firing rates (winnerless competition). This results in a sce-
nario where individual units exhibit multistability in their
firing rates and as a result introduce variance in firing rates
that increases the trial-to-trial variability to levels that match
those observed in vivo. In addition, selective stimulation of
subsets of clusters causes certain attractors to become more
stable, which in turn quenches the switching-dynamics, a
mechanism that has been proposed as a potential model for
workingmemory and perceptual bistability (Amit andBrunel
1997; Renart et al. 2007)

One problem with this family of models is that the active
clusters tend to have firing rates close to saturation, where
spike trains become very regular (clock-like). Also, the range
of synaptic strength ratios in which state switching can occur
is quite narrow.

In the present study, we analyse the dynamics of cluster
competition and investigate possible improvements to the
model. We first recapitulate the conditions of the balanced
state using a binary neuron model for which an extensive
mean field theory has been described (van Vreeswijk and
Sompolinsky 1998; Renart et al. 2010).We then use themean
field approach to analyse the attractors of clustered networks
and show that the introduction of inhibitory clustering can
moderate the firing rates of the active clusters and facilitate
winnerless competition among clusters.

2 Balanced networks of binary neurons

We consider networks of NE excitatory and NI inhibitory
binary units with asynchronous updates. Unless stated oth-
erwise, a total of NE = 4000 and NI = 1000 units are used
for numerical simulations. The ratio NE = 4NI is commonly
used in cortical network simulation studies (e.g.Brunel 2000)
and in accordancewith anatomical statistics (Braitenberg and
Schüz 1991). In each simulation step t , one unit is randomly
chosen and its state σ ∈ 0, 1 is updated according to the rule

σi (t + 1) = �

⎛
⎝

N∑
j=1

Ji jσ j (t) − θi + Ji XmX

⎞
⎠ , (1)

where � is the Heaviside step function, Ji j is the synap-
tic weight between pre-synaptic unit j and postsynaptic unit
i , θi is the threshold, and mX is the rate of some external
drive to the unit which is modelled as a constant (rather
than a spike source) weighted by Ji X . If a unit is updated
to the up-state (σ = 1), it remains in that state until the
next update. Hence, we may say that the network has an
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integration time scale τ equal to the average time between
updates. Since time is not explicitly modelled, we assign
a value of τ = 10 ms similar to neuronal membrane time
constants for illustration purposes only. Note that here τ is
proportional to N due to the asynchronous update rule where
the average time between consecutive updates of a specific
unit depends on the total number of neurons. The update
rule results in exponentially and independently distributed
intervals between updates. van Vreeswijk and Sompolinsky
(1998) have shown that the asynchronous and irregular activ-
ity of the model is independent of this aspect. The resulting
spike statistics (transition times from σ = 0 to σ = 1) can,
however, not meaningfully be compared to those of physio-
logical data.

The connection strengths J i jαβ from unit j in population β

to unit i in population α (α, β ∈ E, I ) are set to Jαβ with
probability pαβ and to zero otherwise. Uniform connection
probabilities between 1 and 20% are commonly used in the
literature (e.g. Brunel 2000; Renart et al. 2010; Ostojic 2014;
Kriener et al. 2014; Litwin-Kumar and Doiron 2014). To
allow a comparison to other clustered network studies, we
here adopt the approach taken by Litwin-Kumar and Doiron
(2012) and Mazzucato et al. (2015) and set the connection
probability of excitatory to excitatory units to pEE = 0.2
and all those involving the inhibitory population to pE I =
pI E = pI I = 0.5. However, the principal results also hold
for sparser connectivities.

Conditions for the values of the remaining model param-
eters arise from an analysis of the balanced state using the
mean field description of the network dynamics described
below.

2.1 Mean field description of the balanced state

The following conditions for the balanced state and its stabil-
ity arising from mean field considerations are adapted from
van Vreeswijk and Sompolinsky (1998) and Renart et al.
(2010). We guide the reader through some of the derivations
as the references do not show them for the specific types of
networks that we used here.

The balanced state requires spiking to be fluctuation
driven, i.e. the mean inputs to each unit need to cancel while
the variance has to be on the order of the spiking threshold.
Since the number of inputs is proportional to the network size
N , the synaptic weights have to be scaledwith the square root
of N to keep the variance constant for different network sizes.
Hence, the synaptic strengths are scaled with network size
as Jαβ = jαβ/

√
N where jαβ is a constant. Also, the num-

ber of input spikes required to reach the threshold needs to
be small. We adopt the scaling used in van Vreeswijk and
Sompolinsky (1998) so that

√
K excitatory spikes arriving

during one time constant suffice to elicit a postsynaptic one,
where Kαβ = pαβNβ is the average number of connections

a unit in population α receives from population β. Inserting
these assumptions into Eq. (1), this condition implies:
√
pαE NE JαE = θα. (2)

To achieve balance between excitation and inhibition, we
need the excitatory and inhibitory inputs to each population
to cancel. If excitatory and inhibitory population rates are
equal, this means [again by Eq. (1)]:

0 = NE pEE JEE + 1

g
NI pE I JE I , (3)

0 = NE pI E JI E + NI pI I JI I . (4)

Here, we have introduced a factor g to control the relative
strength of excitation and inhibition. When g = 1, excitation
and inhibition are equal, for g > 1 inhibition dominates.
This excess inhibition also allows for the accommodation of
excitatory external inputs. Combining Eqs. (2) and (3), we
can now compute the excitatory weights as:

jEE = θE√
pEEnE

(5)

jE I = −g jEE
pEEnE
pE I nI

(6)

where nE = N/NE . Similarly, for the inhibitory population:

jI E = θI√
pI EnE

(7)

jI I = − jI E
pI EnE
pI I n I

. (8)

The central assumption of the mean field approach is that
for large N , the central limit theorem allows the treatment of
the synaptic input to each unit as a Gaussian random variable
(Renart et al. 2004). The dynamics of the mean population
rates mα(t) in networks of asynchronously updated binary
units can then be described as (van Vreeswijk and Som-
polinsky 1998; Renart et al. 2010):

τα

d

dt
mα(t) = −mα(t) + H

(
− μα(t)√

s2α(t)

)
. (9)

Here, the population activity-ratemα is defined as the average
of the instantaneous states σ ∈ [0, 1] in population α [see
Eq. (1)], mα(t) = 〈σα(t)〉 and H is the complementary error
function

H(z) = 1√
2π

∫ ∞

z
dxe− x2

2 . (10)

Note thatmα is not equivalent to the firing rate because spikes
are only counted when units update their state from 0 to 1,
while σ remains at the value 1 until the next update. The
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population time constant τα corresponds to the average time
between successive updates of the states. μα and s2α are the
mean and variance of the input to population α. The popu-
lation average input is expressed as a function of the other
population activities:

μα(t) =
∑
β

J̄αβmβ(t) + JαXmX − θα (11)

where J̄αβ = jαβ pαβnβ

√
N is the average weight from pop-

ulation β to α.
The variance s2α arises from correlations between the

inputs to a population as well as variance in the synaptic
connectivity between units. Following van Vreeswijk and
Sompolinsky (1996), we neglect correlations. The variance
of the input is hence determinedby the variance in theweights
J̄ (2)
αβ (van Vreeswijk and Sompolinsky 1998; Renart et al.

2010), such that

s2α(t) =
∑
β

J̄ (2)
αβ mβ(t). (12)

For constant weights, J̄ (2)
αβ is determined by the stochasticity

in the connectivity. Since individual weights are either 0 or
Jαβ with probability pαβ , the variance is that of a Bernoulli

distribution and is computed as J̄ (2)
αβ = pαβ

(
1 − pαβ

)
j2αβnβ .

Equations (9) through (12) describe the transient dynamics
of the system. When the external drive mX is constant, the
activity rates eventually reach a steady state:

mα = H

(
− μα√

s2α

)
. (13)

For large networks, the steady state rates can be found
without explicitly solving Eq. (13). Since the number of
synaptic inputs each unit receives is proportional to N , but
the number of spikes required to make it fire is proportional
to

√
N , the total magnitude excitation and inhibition arriving

at each neuron is much larger than the firing threshold. Since
the rates are required to be neither zero nor at the saturation
limit, these large inputs have to cancel. This cancellation can
happen only at precise values of the firing rates (Renart et al.
2010):

J̄αEmE + J̄α I m I + JαXmX = 0. (14)

Rearranging Eq. (14), we can hence deduct the steady
state population rates in the balanced state without solving
Eq. (13):

mE =
(
JEX J̄I I − JI X J̄E I

)

J̄E I J̄I E − J̄EE J̄I I
mX (15)

mI =
(
JEX J̄I E − JI X J̄EE

)

J̄EE J̄I I − J̄E I J̄I E
mX (16)

Using the definition of J̄αβ and the expressions for the
weights in Eqs. (5) through (8), we can express the balanced
rates in terms of the network parameters and the strength of
the external input:

mE = mx√
NE (g − 1)

(
JEX

θE
√
pEE

− g
JI X

θI
√
pI E

)
, (17)

mI = mx√
NE (g − 1)

(
JEX

θE
√
pEE

− JI X
θI

√
pI E

)
. (18)

For mE and mI to be positive and finite and assuming that
θE = θI , we thus require either

g < 1,
JEX

JI X
< g

√
pEE√
pI E

(19)

or

g > 1,
JEX

JI X
> g

√
pEE√
pI E

. (20)

If either Eq. (19) or (20) is satisfied, a fixed point with finite
rates is ensured.

2.2 Stability of the fixed points

Having deduced the steady state solutions or fixed points of
the system, we now need to establish conditions for their
stability. To assess the stability of fixed points of the network
activity, we need to compute the partial derivatives of Eq. (9)
with respect to mβ ,

∂

∂mβ

(
dmα

dt

)
=

− 1

τα

(
∂mα

∂mβ

+ H ′
(

−μα

sα

) J̄αβsα − 1
2μα J̄

(2)
αβ s−1

α

s2α

)

(21)

where

H ′(x) = −e− x2
2√

2π
. (22)

If we denote the partial derivatives in Eq. (21) evaluated at
a fixed pointm0 as fαβ

∣∣
m0

, we can write the stability matrix
S as:

S =
[
fEE |m0

fE I |m0

f I E |m0
f I I |m0

]
. (23)

For a locally stable fixed point of the firing rates, the real

parts of both eigenvalues λ1,2 = 1
2

(
TS ±

√
T 2
S − 4δS

)
of
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this matrix are required to be negative. Here, TS and δS are
the trace and determinant of S. The eigenvalues are hence
negative and real if the following conditions are fulfilled:

TS < 0 (24)

|TS| >

√
T 2
S − 4δ (25)

T 2
S ≥ 4δ. (26)

The partial derivatives (21) contain the population time
constants τα . Since the values of τα can be arbitrarily chosen,
the stability of a fixed point depends only on their ratio (van
Vreeswijk and Sompolinsky 1996). We can hence simplify
the analysis by setting τE = 1. Defining f ′

αβ = fαβ

∣∣
m0

τα ,
we can then make the dependence of the stability on the
inhibitory time constant explicit and write:

TS = f ′
EE + f ′

I I /τI (27)

δS = 1

τI

(
f ′
EE f ′

I I − f ′
E I f

′
I E

)
. (28)

Condition (24) is satisfied if τI < − f ′
I I

f ′
EE

. Equation (25) is

satisfied as long as g > 1. Inserting (27) and (28) into (26)
results in a quadratic equation in τI . The systemconsequently
has three bifurcations at the critical time constant ratios:

r1 = A −
√
A2 − B2 (29)

r2 = −B (30)

r3 = A +
√
A2 − B2 (31)

with

A = f ′
EE f ′

I I − 2 f ′
E I f

′
I E

( f ′
EE )2

(32)

B = f ′
I I

f ′
EE

(33)

The values of those ratios depend on the specific parame-
ters, and their effect on the fixed point is illustrated in Fig. 1a.
The system can show four qualitatively different types of
behaviour as illustrated by the vertical grey stripes in the fig-
ure. For τI /τE < r1, both eigenvalues are real and negative
and the fixed point is a stable node, i.e. all trajectories in its
vicinity converge directly towards it along the eigenvector
corresponding to the largest eigenvalue. Above r1, the eigen-
values become complex and the activity rates show damped
oscillations towards the fixed points. When τI /τE > r2,
the fixed point becomes unstable and the firing rates escape
towards an oscillatory limit cycle with large amplitude (see
Fig. 1c). In simulations, different time constants for the popu-
lations are achieved by scaling the probability PUα that a unit
from population α is updated so that PUE/PU I = τI /τE .

The mean field theory described above shows good agree-
ment with network simulation even for moderate values of
N . Figure 1b–d shows some characteristic examples for the
parameters given in Table 1. The activity rates for an exci-
tatory and an inhibitory population are plotted against each
other and arrows represent the derivatives at sample points
in phase space. In panel b, the stability condition in Eq. (20)
is met and τI /τE < r1. The fixed point is hence a stable
node and the simulated network rates behave as predicted
by mean field theory and follow the flow field directly to the
fixed point. In panel c, τI /τE > r2 and the rates cycle through
large amplitude oscillations. The match between mean field
theory and simulation is also good when conditions (19) and
(20) are violated (panel d).

Unless stated otherwise, we use the parameters sum-
marised in Table 1 throughout.

3 Clustered networks

Having established the conditions for the balanced state,
we turn to introducing clustered connectivity in the excita-
tory population. Amit and Brunel (1997) modelled working
memory and persistent activity in attractor networks using
this approach, but did not consider variability dynamics.
Their model consists of an unstructured background popula-
tion and a number of attractor assemblies which are formed
by increasing the weights between units belonging to the
same assembly by a factor J+, while across-cluster weights
are decreased by a factor J− to maintain overall balance.
A similar approach was taken by Mazzucato et al. (2015)
and Deco and Hugues (2012) although the latter did not
explicitly model the background or inhibitory populations.
Litwin-Kumar andDoiron (2012) on the other hand increased
the synaptic strength as well as the connection probabilities
within clusters. In the following, we will analyse the fixed
points of such networks using the mean field theory outlined
in Sect. 2.1.

3.1 Excitatory clusters

As we will see, an excitatory background population is not
necessary for the clustering effects (see Fig. 4) and a simul-
taneous adjustment of synaptic strengths and connection
probabilities complicates the analysis. We therefore choose
in the present work to divide the excitatory population into Q
equally sized clusters with uniform connection probabilities.
Connections between units in the same cluster are multiplied
by a factor J+ > 1, and to maintain a balance of weights,
connections between units belonging to different clusters are
multiplied by a factor
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Fig. 1 Illustration of stability and phase space analysis of binary bal-
anced networks. a Dependence of eigenvalues of the stability matrix at
the fixed point on the ratio of inhibitory and excitatory time constants.
b–d Comparison of mean field description and simulations for net-
works with NE = 4000 illustrating various parameter settings. Dashed

trajectories are mean field theory, grey traces are network simulations.
Arrows represent derivatives of Eq. (9). Nullclines are drawn as solid
black lines. Filled (empty) circles indicate stable (unstable) fixed points.
b g = 1.2, τI /τE = 0.5 c g = 1.2, τI /τE = 2, d g = 0.8. Remaining
parameters are given in Table 1

Table 1 Parameters used in the binary network simulations

Parameter Value

θ 1

τI 0.5τE
pEE 0.2

pE I , pI E , pI I 0.5

g 1.2

JEX
√
pEE NE

JI X 0.8
√
pEE NE

mX 0.03

J− = Q − J+
Q − 1

. (34)

Consequently, J+ = 1 leads to homogeneous connectivity
while at J+ = Q the populations are completely decoupled.
A schematic depiction of a network with Q = 2 excitatory

clusters and all occurring connections between populations
is given in Fig. 2a.

A common measure to quantify the effect of winnerless
competition on the dynamics of networks of LIFs is the Fano
Factor (FF) (Deco and Hugues 2012; Litwin-Kumar and
Doiron 2012). The FF is defined as the variance of spike-
counts over trials divided by the mean count (Shadlen and
Newsome 1998; Nawrot et al. 2008; Nawrot 2010). Due to
the random update process, the FF of spike trains from binary
networks has nomeaningful interpretation.When the activity
rates saturate, i.e. when units fire each time they are updated,
the FF is unity while for lower rates FF > 1. Instead, to
quantify the effect of clustering on the network dynamics
we proceed as follows: We pool the activity of units in each
cluster and calculate the mean instantaneous activity rates.
We then compute the variance of these cluster rates over
time. Finally, we average over clusters to obtain σ 2

m as an
indirect measure. In unstructured networks, rate correlations
between units are very low and hence there is little variance
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Fig. 2 Architectures of networks with clustered connectivity. For clarity, only two clusters are used to show all connection types. a EE-clustering:
two excitatory assemblies and a single unstructured inhibitory population. b E I -clustering: each excitatory cluster has an associated inhibitory
population

Fig. 3 Activity rate variance in
excitatory cluster networks.
Average variance of the
instantaneous mean cluster
activity rates σ 2

m of 20 trials of
1000 ms duration for different
values of the excitatory cluster
strength J+. The line shows the
average over 20 network
realisations. Insets show sample
trials of spiking activity. Spikes
were interpreted as the transition
of a unit’s state σ from 0 to 1

in the population-averaged activity rates. An increase in σ 2
m

signifies correlated rate fluctuations of the units in a cluster.
This means that individual clusters switch between activity
stateswhich is an indirectmarker forwinnerless competition.

Figure 3 shows the dependence of this variance on the
cluster strength J+ for networkswithQ = 20 clusters.At low
values of J+, the dynamics are not influenced by the clustered
connectivity and σ 2

m does not change much compared to the
unstructured case at J+ = 1. Around J+ ∼ 2, there is a sharp
increase in rate variance. This is due to random activations of
individual clusters in a winnerless competition regime that
can be seen in the more structured looking raster plots in
Fig. 3.After a sharp peakσ 2

m quickly drops again as clustering
becomes so strong that clusters tend to remain active for
increasingly long times, effectively producing winner-take-
all dynamics (right-most raster plot). Note that the location
of the peak with respect to J+ depends on the number of

clusters as well as on the size of the network (Litwin-Kumar
and Doiron 2012).

To gain a better understanding of the underlying mecha-
nisms, we employ the mean field approach to examine the
stationary rate points of the clustered network. For this pur-
pose, for each of the Q clusters aswell as for the I -population
an activity rate equation (Eq. (9)) is formed. Similar to the
method described in Mazzucato et al. (2015), we then solve
the resulting system of equations for the stationary states and
check for stability as described in Sect. 2.1. It is worth noting
that we consider only stable fixed points here. Themean field
description is valid for very large N . For smaller networks,
these attractors become meta-stable and switching between
states occurs due to finite-size fluctuations in the population
rates (Schwalger et al. 2017). This is different from the com-
petition in Lotka–Volterra-like systems, where winnerless
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competition can be described by heteroclinic orbits between
different saddle nodes (e.g. beim Graben and Hutt 2014).

Numerically solving such a multidimensional system of
coupled differential equations requires that the initial guess
for the solution is close to afixedpoint. To sample the space of
possible rate configurations, we therefore initialised the rates
randomly between 0 and 1 and then integrated the system for
a number of time steps before finding the exact fixed points
using the Nelder–Mead simplex algorithm implemented in
scipy (Jones et al. 2001). This process was repeated many
times to ensure that most of the existing fixed points will be
found. Note that the method can only find stable solutions of
the system.

The resulting stable fixed points for different network
structures are shown in Fig. 4. The solid lines with high rates
indicate the rates of the clusters in the active state, while the
lower solid lines represent the rates of the remaining pop-
ulations. For a given parameter J+, several solutions may
exist, as indicated by the lines in different shades of grey.
The numbers on the plots indicate how many populations
occupy each state simultaneously. The remaining excitatory
clusters occupy the down state. The activities of the inhibitory
population are drawn as dashed lines, and the dotted line
represents the homogeneous state where all excitatory popu-
lations fire at the same rate. To justify our choice of clustering
method, the figure includes the attractor landscapes for net-
works with 10% of the units not belonging to any cluster
(i.e. background population, panel a) as in Mazzucato et al.
(2015), and for clustering of the connection probabilities as
in Litwin-Kumar and Doiron (2012) (panel b). The cluster-
ing parameter REE = pin/pout quantifies the ratio between
connection probabilities within clusters to those across clus-
ters. The results are not qualitatively different from networks
without background population and cluster independent con-
nection probabilities (panel c). As the cluster strength J+
increases, more stable states occur with increasing numbers
of simultaneously active clusters, resulting in multistability
of the rates. At some critical value, the base-state in which
all populations share the same low firing rate disappears.
The common property of all three cases is that the up-states,
i. e. the rates of the active clusters, show high activity rates
and quickly approach the saturation value of 1 as the cluster
parameter increases.

It is evident in Fig. 4 that the state with the highest activity
rate is always that with a single active cluster. That means
that this rate forms an upper bound for the active cluster rates.
We therefore carry on our analysis of the cluster dynamics by
solving only for those cases. This is achieved by constraining
Q − 1 of the cluster populations to have equal rates. (Note
that this could be extended to any number of active clusters.)
Also, since the above-described method of random sampling
of the activity space is costly and can yield only stable fixed

points we employ a more systematic procedure for analysing
the dynamics.

3.2 Effective response functions

For single populationmodels, the fixed points of neural activ-
ity can be found graphically by plotting the neurons’ gain
function and the firing rates against the synaptic input and
finding the intersections of the two lines (Gerstner et al.
2014). However, when the input to the gain function depends
not only on one population rate, i.e. when there are several
coupled differential equations, the graphical approach is no
longer feasible. Mascaro and Amit (1999) describe an effec-
tive response function (EFR) approach for multipopulation
models which puts one or more populations in focus while
still incorporating the full dynamics of the remaining popu-
lations.

For a network model with P populations, the individual
population rates can be expressed as functions of all the pop-
ulation rates in the network.

m1 = �1 (m1,m2 . . . ,mP )

m2 = �2 (m1,m2 . . . ,mP )

...

mP = �P (m1,m2 . . . ,mP )

For the present case, � takes the form of Eq. (13). The EFR-
approach (Mascaro andAmit 1999)works by treating the rate
of a focus population as a parameter. That is, we fixm1 = m̄1

and solve the P − 1 equations for the remaining rates.

m2 = �1 (m̄1,m2 . . . ,mP )

...

mP = �P (m̄1,m2 . . . ,mP )

The solutionm′ (m̄1) to those equations will drive the rate of
the focus population to a value m1out given by

m1out = �1
(
m̄1,m

′ (m̄1)
) = �e f f (m̄1) . (35)

Mascaro and Amit (1999) called the resulting input–
output relation for the focus population the EFR. When
m1out = m̄1, i.e. when the EFR intersects the diagonal,m1out

is a fixed point of the system. If the slope of the EFR at the
intersection is larger than unity, the fixed point is unstable.
For slopes smaller than unity, the fixed point is stable for
m1out given m′ (m̄1). Since this is a one-dimensional repre-
sentation of potentially multidimensional systems and since
the stability of fixed points depends additionally on the ratios
of population time constants which are not captured by the
EFR, those points are not generally globally stable for the
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Fig. 4 Stable state configurations in excitatory cluster networks. Sam-
pled stable fixed points of the mean field equations for networks with 20
excitatory clusters versus the clustering parameter. Solid lines represent
activity rates of E populations. For each solution, the number of clus-
ters occupying a certain active state is written next to its onset. Dashed
lines represent I -rates. The dotted lines show the case where all popu-
lations have the same rate. a Clustering by weight increase with 10% of

the E-units as an unstructured background population as in Mazzucato
et al. (2015), b clustering by increase in connection probability and
synaptic strength as in Litwin-Kumar and Doiron (2012), c clustering
by weight increase of the entire E-population as used in the present
study. Vertical dashed lines correspond to the clustering strength where
the homogeneous state is no longer stable
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whole system (Mascaro and Amit 1999).We therefore assess
the stability of fixed points by examining the eigenvalues of
the stability matrix.

Figure 5 illustrates the EFR for Q = 20 clusters and a sin-
gle unconstrained cluster (corresponding to the line labelled
1 in Fig. 4c). Panel a shows the full EFR for J+ = 2.0
where Eq. (35) has been evaluated on a dense grid for the
whole range of activity rates. This representation reveals an
additional unstable fixed point between the low rate attractor
where all excitatory populations have the same firing rate and
the up-state of the focus population. In panel b, the EFR has
been calculated for different cluster strengths and only the
fixed points of the system are plotted versus J+. At J+ = 1,
the EFR is simply a flat line. That is, an increase in min

has no significant effect on mout. As J+ increases, the self-
amplification of the focus population causesmout to increase
with min until the EFR touches the diagonal. At this point
(J+ ∼ 1.8), a stable up-state with an intermediate unstable
fixed point emerges.

To switch between up-states of different populations, the
variance in the population activities has to be sufficient to
cross the unstable fixedpoint. It can be seen in panel b that this
becomes increasingly less likely as the separation between
fixed points widens with increasing J+. The peak of σ 2

m in
Fig. 3 occurs only in the narrow range where stable up-states
exist at rates below the saturation limit.Apotential solution to
the problem of high firing rates could be to simply increase
the strength of inhibition. Changing the relative inhibition
parameter g has, however, not yielded qualitatively different
attractor structures. In Fig. 6a, the plot from Fig. 5b has been
reproduced for higher values of g. The dashed lines again
represent the value of J+ at which the homogeneous state
becomes unstable. At these points, the active states are again
approaching the saturation rate also for stronger global inhi-
bition. Since inhibition is global, an increase in firing rate of
a single population leads only to a small rise in inhibitory
activity, so that the self-excitation of the active cluster is not
balanced and the rate saturates at the upper limit.

We, therefore, hypothesise that in order to reduce the firing
rates of active clusters it is necessary that inhibition is also
cluster specific so that a rate increase in an excitatory cluster
is balanced by a corresponding inhibitory population. This
idea will be explored in the following section.

3.3 Excitatory–inhibitory clusters

We have seen in the previous section that excitatory clusters
in networks with global inhibition lead to rate saturation in
active clusters which impedes state switching because the
active and inactive cluster states are far apart (Fig. 5b). We
will now show how this problem can be overcome by intro-
ducing structure in the inhibitory connections as well.

Excitatory–inhibitory (EI) clusters have previously been
described in the context of persistent activity (Aviel et al.
2004; Renart et al. 2007). Litwin-Kumar and Doiron (2012)
briefly describe how clustering the inhibitory units leads to
stimulation-induced variability reduction in the inhibitory
units. We will now investigate the concept of inhibitory clus-
tering in detail, with specific focus on its effect on activity
rates.

In EI-clustered networks, we require that an E-population
selectively excites its corresponding I population which in
turn selectively inhibits the E units. It is therefore neces-
sary to close the loop and cluster both the E I and I E
synapses. Like the E-population, the inhibitory units are
equally divided into Q clusters, resulting in a total of 2Q
populations. We rename the clustering factor for the exci-
tatory population as JE+. For simplicity, all connections
involving the inhibitory population are lumped into a sin-
gle cluster parameter JI+. Balance is again maintained by
rescaling across-cluster connections according to Eq. (34) so
that the average row sum remains constant in each quadrant
of the connectivity matrix. An overview over the possi-
ble connections is given in Fig. 2b for Q = 2, where
within/across-cluster connections are denoted by the super-
script in/out. So, we have J inEE = JE+ JEE , J outEE = JE− JEE

and J inαβ = JI+ Jαβ, J outαβ = JI− Jαβ for αβ ∈ (E I, I E, I I ).
Since we have seen before that the highest up-state rates

(mup) are always reached by a single active cluster, we again
constrain the population equations, so the Q − 1 excitatory
as well as their corresponding inhibitory populations have
the same rate, resulting in a total of four distinct equations to
solve. To examine the effect of inhibitory clustering, we start
by keeping JE+ fixed at 2.9 (the first point in Fig. 5 where
the homogeneous state is unstable) and then increase JI+.
The resulting fixed points are shown in Fig. 6a.

For low values of JI+, mup is again at the saturation
limit. As the inhibitory cluster strength increases, however,
the active cluster rates decrease and the stable homogeneous
state reappears. When JI+ increases further, a bifurcation
occurs and the active cluster state no longer exists. This can
be understood intuitively. An increase in JI+ strengthens
the coupling between the active cluster and its correspond-
ing inhibitory population. When the coupling becomes too
strong this selective inhibition prevents the focus population
from attaining higher firing rates. It can therefore be con-
cluded that low firing rates in active clusters can be obtained
if the inhibitory cluster strength is present but smaller than
the excitatory parameter.

Having established that the inhibitory clustering needs to
be weaker than that of the E population, we introduce a pro-
portionality factor RJ , so that

JI+ = 1 + RJ (JE+ − 1) . (36)
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Fig. 6 EFRfixedpoints for a single active population for networkswith
excitatory and varying degree of inhibitory clustering. Filled/empty cir-
cles represent stable/unstable fixed points. amup versus J+ for different
values of global inhibitory strength g. bmup vs JI+ with JE+ held con-

stant at the value where the homogeneous fixed point becomes unstable
if JI+ = 1. c–e Proportional increase of JE+ and JI+ for different
strength ratios RJ . f Stablemup as a function of JE+ and RJ . Hatching
indicates that no stable up-states are present

That is, when RJ = 0, the inhibitory connections are un-
clustered and for RJ = 1 we have JE+ = JI+. Having
defined a relationship between the excitatory and inhibitory
cluster parameters, we can now examine the fixed point land-
scape for different values of RJ . This is shown in Fig. 6c–e.

Here, JE+ is varied over a wide range. It can be seen in the
sequence of plots that increasing RJ has three effects. Firstly,
it moves the appearance of up-states to higher values of JE+.
Secondly, it causes the up-states to become unstable when
both RJ and JE+ are high. Finally, an increase in RJ leads
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Fig. 7 Stable state configurations and activity rate variance for E I -
cluster networks. Network dynamics with Q = 20 and RJ = 3/4
with excitatory cluster strength varied from JE+ = 1 to full excitatory

decoupling at JE+ = Q. a Stable rate fixed points of the unconstrained
mean field equations of the system. b Instantaneous variance in mean
cluster activity rates averaged over 20 network realisations

to a gradual decrease in the maximum rates reached by the
active cluster. For RJ close to one, the regime where sta-
ble up-states exists becomes increasingly narrow and when
JE+ = JI+ the active cluster states vanish (Fig. 6e). Fig-
ure 6f shows only the stable up-states with a single active
cluster for a wide range of RJ and JE+. If configurations
with more than one active cluster are considered, the range
in which stable solutions are found increases (not shown).

We have hence shown that increasing excitatory and
inhibitory cluster strength proportionally can yield the
desired effect of preventing the active cluster rates from
saturating and consequently reducing the gap between up
and down states which should in turn facilitate spontaneous
switching between active clusters.

Figure 7 illustrates that this is indeed the case. Panel a
shows sampled fixed points of a network with 20 clusters
and RJ = 3/4 in analogy to the illustration in Fig. 4c (no

inhibitory clustering). This time we have increased JE+ all
the way to Q, at which point the inter-cluster connections of
the excitatory populations vanish. It can be seen that over the
whole range of cluster strengths, the maximum rates do not
exceed 0.7. Also, even when the excitatory clusters are fully
decoupled, there are still multiple different configurations of
active clusters. The dashed lines below the up-states repre-
sent the inhibitory counterparts to the active clusters. This
selective increase in inhibition is what prevents the active
states from saturating.

Panel b shows the corresponding rate variance plot with
sample raster plots. Compared to the equivalent plot for exci-
tatory clustering only in Fig. 3, the peak of σ 2

m has shifted
to higher clustering strengths, while its amplitude and width
have at the same time increased substantially. The interest-
ing range for neural computation is likely to lie in the rising
branch of the σ 2

m curve where winnerless competition occurs
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Fig. 8 Comparison of E and E I -cluster simulations. Cluster dynam-
ics with JE+ = 2.9, RJ = 0 (left) and JE+ = 4, RJ = 3/4 (right).
a, b Sample raster plots of E and I spiking activity, c, d mean cluster
activity rates mc for the trial shown above. Dashed lines show cluster

rates smoothed with a Gaussian kernel with σ = 75 ms. e, f Distribu-
tions of instantaneous maximum cluster activity rates max (mc) for 100
random network realisations. Fixed points from mean field theory are
indicated as dashed lines

but for illustration purposes, the whole range is shown. At
JE+ = 4, the point where the homogeneous state becomes
unstable, the activity cycles through the clusters with mod-
erate firing rates as desired. For higher cluster strengths, the
activities of the down-state clusters become increasingly sup-
pressed and the active clusters remain in the up-states for
increasingly long times. The sample raster plots show, how-
ever, that switching between states still occurs even when the
excitatory clusters are fully decoupled at JE+ = 20.

In Fig. 8, two cases with and without inhibitory clustering
are compared inmore detail. Since inhibitory clustering shifts
the onset of cluster dynamics to higher values of JE+, we

compare the dynamics at the point where the homogeneous
state has just become unstable for each architecture. The left
panels of the figure show the case where JE+ = 2.9 and
RJ = 0. On the right-hand side (RHS), RJ was 3/4 and
JE+ = 4.

Since the homogeneous state is unstable for the param-
eters chosen, the activity quickly moves from the random
initial state to an active cluster in both cases. In the raster
plot in panel a, it is evident that the network remains in that
state for the remainder of the simulation period for EE-only
clustering. The firing rate plot in panel c confirms that the
active cluster immediately goes into rate saturation. Since
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this increases the rate of the inhibitory population, all other
E-populations experience a reduction in rate, which further
widens the gap between the high and low cluster states. In the
E I -clustered network on the other hand (panel b), the activity
cycles through different attractors and multiple clusters can
be active simultaneously. It can be seen that the inhibitory
clusters closely follow the rate excursions of their excitatory
counterparts. Although all cluster have equal sizes and the
weights of the same type (i.e. within or across populations)
are all identical, the switching between active clusters seems
to occur at random. As is made evident from the individual
cluster activity rates depicted in panel d, different clusters
fall into active states at different times with moderate rates.

The firing rates for the E I -clustered network also seem to
follow the predictions obtained from the mean field model.
To illustrate this, we have plotted the distributions of instan-
taneous maximum cluster activity rates for 100 repeated
network simulations in the bottom panels of Fig. 8. The
dashed lines and dots represent the stable up-states predicted
by the mean field model. For the E-only cluster model, the
theory predicts three different stable configurations (one,
two and three active clusters, respectively). However, in 100
separate simulation runs almost exclusively the state with
a single saturated active cluster was reached (panel e). For
the E I -case, the theory yielded two stable configurations.
The maximum rates obtained from network simulations had
a wider distribution, but the shape coincides with the theoret-
ical fixed points. The configuration with two active clusters
at lower rate seems to occur more frequently than the higher
rates of individual clusters. Maximum rates were higher than
the stable points predicted by the model. Note, however, that
the probability of finding activity rates higher than∼ 0.7was
zero, i.e. rate saturation occurred in none of our simulations.

4 Discussion

4.1 Clusters, winnerless competition and inhibition

Various configurations of excitatory cluster architectures
have been examined with respect to winnerless competition
(Deco and Hugues 2012; Litwin-Kumar and Doiron 2012;
Doiron and Litwin-Kumar 2014; Mazzucato et al. 2015)
and some previous reports exist of attractor dynamics with
inhibitory assemblies. Schaub et al. (2015) demonstrated
winnerless competition between inhibitory and excitatory
clusters, while Litwin-Kumar and Doiron (2012) showed
that the stimulation-induced reduction in spike count vari-
ance can also be found in inhibitory assemblies. However,
neither of these studies implemented specific and reciprocal
pairwise interactions between excitatory and inhibitory clus-
ters in both directions which avoid rate saturation. Renart
et al. (2007) used recurrently coupled excitatory–inhibitory

clusters and showed that persistent activity at low rates with
irregular firing is possible. They did, however, not vary the
cluster strengths for excitation and inhibition separately and
therefore required fine tuning of the parameters to obtain
bistable configurations. Instead, the E I -cluster configura-
tion presented here allows for winnerless competition over a
wide range of cluster strengths (cf. Fig. 7).

4.2 Plausibility of cluster-specific inhibition

Having established the dynamical advantages of E I -cluste-
ring, the question arises whether such an architecture can
be justified based on anatomical, morphological and physi-
ological evidence. For excitatory neurons, local connections
are much more likely than longer projections [e.g. Schnepel
et al. (2015), for review see Boucsein et al. (2011)] and small
world structures have been reported on many spatial scales
(Sporns and Zwi 2004). Bidirectional connections as well as
clustered three-neuron patterns are much more frequent than
would be expected in a random network (Song et al. 2005).
Such motives would also tend to have stronger connections.

In network simulations, the units are commonly only
divided into excitatory and inhibitory cells, while anatom-
ical studies have identified various different types inhibitory
interneurons (e.g. Markram et al. 2004; Harris and Shepherd
2015) and a single excitatory neuron may make connec-
tions with several interneuron types (Markram et al. 1998).
An intermediate physiological level of detail is the dis-
tinction between fast-spiking (FS) and non-FS inhibitory
interneurons. In addition to their different spiking behaviour
implied by their names, these two cell types exhibit differ-
ent connection schemes which imply functional differences.
Fast-spiking cells are mainly locally connected, while non-
FS neurons make translaminar connections (Dantzker and
Callaway 2000; Levy and Reyes 2012; Kätzel et al. 2011;
Otsuka and Kawaguchi 2009). On a finer scale, most connec-
tions between excitatory and FS-interneurons are reciprocal
(Holmgren et al. 2003) with inhibitory postsynaptic currents
being three times larger in reciprocal connections than for
unidirectional ones (Yoshimura and Callaway 2005). With
distance from an excitatory unit in a small volume, the con-
nection probability with local inhibitory units varies only
slightly, but the fraction of reciprocal connections decreases
(Holmgren et al. 2003). Reciprocally connected cell pairs
also share more common input than non-connected or uni-
directionally connected pairs, while non-FS-cells share little
common input, connect to excitatory units with lower prob-
ability and reciprocal connections are rare and not stronger
than unidirectional ones (Yoshimura and Callaway 2005).
Also, interneurons of different types are frequently con-
nected with each other (Reyes et al. 1998) and inhibition
can also be exerted bisynaptically so that excitatory axons
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excite inhibitory cells local to other populations (Binzegger
et al. 2005).

It is hence safe to say that there is a lot of structure in the
inhibitory cortical connectivity. The strong reciprocal and
local inhibition of the FS-cells and the weaker longer range
connections of the non-FS-interneurons could provide a sub-
stance for the type of inhibitory clustering we have proposed.
Whether inhibition is less localised than excitation, as pre-
dicted by our model, cannot be conclusively answered at this
time. The current physiological evidence certainly does not
rule out the possibility.

The connectivity scheme presented here is of schematic
nature. For excitatory connections, it has been shown that
slow firing rate variations can also be achieved with over-
lapping clusters (Litwin-Kumar and Doiron 2012), mutually
connected weight hub units with strong inward synapses
(Setareh et al. 2017) or a range of other connectivity types
(Doiron and Litwin-Kumar 2014). Although the exact imple-
mentation may vary, we believe that our proposal of local
balancing of structured networks provides a very robust
solution for metastability. A natural step for extending our
work would be to introduce a spatial topology that maps to
structural and functional local excitatory and inhibitory con-
nectivities in cortical networks (see e.g. Rosenbaum et al.
2017). Local balance could then be achieved by strong short-
range and weaker long-range inhibitory connections without
explicitly assigning clusters in the inhibitory population.

5 Conclusions and prospects

In this article, we have applied the mean field theory of net-
works of binary neurons to balanced networks with clustered
sub-populations. We have shown that multistability with
moderate firing rates can be achieved in balanced networks
with joint excitatory and inhibitory clusters. This architecture
allows for robust winnerless competition dynamics without
rate saturation over a wide range of cluster strengths.

5.1 Spike-train statistics in EI-networks

The binary neuron model does not meaningfully allow the
analysis of spike-train statistics. It will hence be interest-
ing to investigate the variability in E I -cluster networks of
spiking LIFs. Networks with excitatory clusters capture the
high spike count variance as measured by the FF (Deco and
Hugues 2012; Litwin-Kumar and Doiron 2012) as well as
its reduction during stimulus presentation which has been
found in a range of cortical data sets (Rickert et al. 2009;
Churchland et al. 2010). But the high firing rates in active
(E-only) clusters lead to very regular firing. As shown by
Renart et al. (2007), balancing excitatory and inhibitory clus-
ters can lead to persistent activity with irregular inter-spike

intervals. We therefore predict that the model presented here
can conserve the irregular firing observed in cortical data
during winnerless competition. The behaviour of count and
interval statistics during external stimulus application remain
a subject of further study. It has been suggested that the cel-
lular mechanisms of spike frequency adaptation can further
contribute to the experimentally observed variability dynam-
ics (Farkhooi et al. 2011, 2013). In future modelling studies,
cellular and network effects on the FF should be integrated.

5.2 Increased robustness

Winnerless competition relies on the switching of activity
between attractors which is due to fluctuations in the firing
rates of individual clusters. In networks with excitatory clus-
ters, switching will therefore only occur if clusters are small
enough for the average rates to retain some variance. Further,
inhomogeneities in cluster size can hamper competition so
that larger clusters will tend to win once they switch to an
active state. Because the firing rates of high and low states
are closer together in E I -cluster networks, the model pre-
sented here alleviates both issues and will likely show more
robust winnerless competition over a wider range of parame-
ters and in the case of heterogeneous network parameters. In
cortex, network conditions are constantly changing (Arieli
et al. 1996; Schmidt et al. 2016). Robustness thus is likely to
be a requirement for more realistic cortical network models.

5.3 Computational role of winnerless competition

So far, we have discussed the dynamics of activity switching
between clusters only from the perspective that it provides a
mechanistic explanation for the high rate variance observed
in cortex and its quenching by stimulation.

Traditionally, stable patterns or attractors in networks are
used to model working memory (e.g. Hopfield 1982; Amit
and Brunel 1997; Aviel et al. 2004). A network is pushed
into a certain attractor by some external drive and maintains
a certain configuration of firing rates which can be read out
or retrieved at a later point. The difference between this sce-
nario and the dynamics of winnerless competition is simply
the depth of the attractors as characterised by the strength
of clustering in the connectivity structure. This relationship
lends itself to the interpretation that the stability of attractors
is related to the probability of some variable encoded in their
firing rate.

Mounting physiological indications exist for the hypoth-
esis that some correlate of prior probability over previously
observed states is encoded in the spontaneous activity in the
neocortex. Berkes et al. (2011) report that the spontaneous
activity in the visual cortex of ferrets before eye-opening
is unstructured and becomes more and more similar to that
evoked by visual stimuli during development. They con-
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sequently interpret the spontaneous activity as the prior
probability of observing certain patterns and fit a Bayesian
model to their data. This observation is well matched by the
results of Kenet et al. (2003) and Luczak et al. (2009) who
found that in auditory and somatosensory cortex of rats, spon-
taneous states resemble those evoked by sensory stimulation.

There is also more direct evidence that these priors are
actually used during perception. Supèr et al. (2003) report
that significant differences were detected in the firing rates
in monkey visual cortex between trials where monkeys cor-
rectly reported the occurrence of a stimulus and those where
theymissed it. Similarly, Hesselmann et al. (2008) found that
perceptual decisions can be predicted from ongoing activity
in fMRI signals in humans 1.5 s prior to stimulus presenta-
tion in a face-or-vase task. In light of the theory presented
here, it can be interpreted that the attractor that a network is
currently in influences what decision is made.

Contrary to our fixed random network connectivity, struc-
ture is shaped by synaptic plasticity in vivo. A number of
studies have recently been published, where clusters of exci-
tatory units form in balanced networks through spike-time
dependent plasticity (STDP) and selective stimulation (Ocker
et al. 2015; Zenke et al. 2015; Litwin-Kumar and Doiron
2014). The resulting connectivities exhibit high rate vari-
ability in the spontaneous state. In a related study, binary
networks with synchronous updates using STDP-inspired as
well as homeostatic learning rules were shown to perform
Bayesian-like inference in sequence-learning tasks (Lazar
et al. 2009).

In all the above studies, some form of inhibitory plas-
ticity was used as a homeostatic mechanism. Homeostasis
seems to be generally required for networks with excitatory
plasticity to prevent positive feedback loops (Zenke et al.
2013). For example Litwin-Kumar and Doiron (2014) use
an inhibitory STDP rule for the E I -connections, i.e. the
synapses that mediate inhibition from the inhibitory to the
excitatory population to prevent winner-take-all dynamics.
Our results predict that the E I as well as the I E connections
are to some extent plastic to achieve the specificity required to
obtain local balance in each assembly. It remains a subject of
further study how such self-organisation can be achieved in
simulations andwhether it can be found in biological circuits.
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