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Abstract In this paper, we introduce a novel simplifica-
tion method for dealing with physical systems that can be
thought to consist of two subsystems connected in series,
such as a neuron and a synapse. The aim of our method is to
help find a simple, yet convincing model of the full cascade-
connected system, assuming that a satisfactory model of one
of the subsystems, e.g., the neuron, is already given. Our
method allows us to validate a candidate model of the full
cascade against data at a finer scale. In our main example, we
apply our method to part of the squid’s giant fiber system.
We first postulate a simple, hypothetical model of cell-to-
cell signaling based on the squid’s escape response. Then,
given a FitzHugh-type neuron model, we derive the verifi-
able model of the squid giant synapse that this hypothesis
implies. We show that the derived synapse model accurately
reproduces synaptic recordings, hence lending support to
the postulated, simple model of cell-to-cell signaling, which
thus, in turn, can be used as a basic building block for network
models.
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1 Introduction

1.1 The need for (network) simplifications

In theoretical neuroscience, when modeling neurobiologi-
cal systems, scientists are faced with a structural problem:
“What details should be included, and what details should
be left out?” Although nervous systems are studied at many
levels of abstraction, there is no general agreement on which
details matter, at a particular level, and which do not. Hence,
with the increasing amount of neurophysiological knowledge
gained, it can be tempting to include more and more detail
in models of, e.g., nerve cell behavior. However, detailed
models are not necessarily better (Dayan and Abbott 2001;
Herz et al. 2006). For one, they need to be compared with
data, and models with too many variables and parameters
can often be made to fit almost any data. These may there-
fore be too general to provide any real insight. Second, the
main reason for studying nerve cells is to better understand
nervous systems, in particular, their functional role in adap-
tive, animal behavior. Yet, nervous systems typically consist
of many thousands of neurons, while movements, such as
head, eye, and limb movements, have relatively low degrees
of freedom. In other words, starting from the neuron level,
a working understanding or model of this functional role is
still far a way. Not surprisingly, efforts to gain insight and to
reduce the number of variables and parameters have resulted
in elegant simplified neuron models (Knight 1972; FitzHugh
1961; Ermentrout and Kopell 1986; Hansel and Mato 2001;
Izhikevich 2003; Touboul 2008). Still, even when composed
of such simplified models, the analysis of networks (which
from the neuron-level form the next level up) remains daunt-
ing, and hence, many simplifying assumptions are usually
made in theoretical neuroscience (Dayan and Abbott 2001).
These considerations lead us to the following questions. How
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Fig. 1 Top a schematic representation of a complete signal path from
presynaptic conductance u(t) to postsynaptic conductance y(t). Two
intermediate quantities are indicated along the way: the presynaptic
potential υ(t), and the transmitter concentration Γ (t). Bottom a ‘build-
ing block’ representation of the path from a functional input–output
point of view

can we simplify and reduce the number of variables and
parameters without making too many assumptions? How to
loose details without loosing the essentials? Where to start?

Since our goal is to reach a functional network level of
abstraction that allows for network models with feedback
connections, we will start by considering complete signal
paths, that is, paths from conductance to conductance, from
potential to potential, or from transmitter concentration to
transmitter concentration (Fig. 1). Thismeans that apart from
neurons and their models (which typically only model an
incomplete path from an input conductance or current to an
output potential) wewill have to consider synapses too. Once
we have established valid models of such complete paths, we
can use these as building blocks to ‘wire-up’ neurons into
networks. We call a model of such a complete signal path a
high-level model ΣH . The question is: How can we obtain
and validate such a model?

In this paper,wedevelop a novel procedure, partly inspired
by Eliasmith and Anderson (2003), by which a candidate
high-level model can be verified against data at the lower
level. It involves an implicit matching constraint and applies
to physical systems that can be viewed as converting some
input u into some output y and that can be thought to consist
of two subsystems connected in series such as the above
complete signal path consisting of a neuron and a synapse.
The aim of our method is to help find a simple, yet valid
model of the full cascade-connected system, and the purpose
of this high-level model is to describe the behavior of the full
system from a functional point of view, stripped from details
of implementation that, from an input–output perspective,
could be considered inessential. Our method is specifically
designed to help determine the appropriate level of detail

by keeping the number of variables and parameters of the
high-level model to a minimum.

1.2 A novel approach to simplification

To start with, we introduce a few concepts and describe the
situation to which our method applies. Consider a physi-
cal system as described above. Since it is natural to study
complex systems through their subsystems, we make two
reasonable assumptions.

1. We assume that a satisfactory model for one of the sub-
systems (e.g., the neuron) has already been established
and is given, describing in more detail how part of the
system is realized. We call this model of the identified
subsystem the given model ΣG .

2. We assume that measurement pairs (u, υ), relating the
inputs and outputs of the first subsystem, and measure-
ment pairs (υ, y), relating the inputs and outputs of the
second subsystem, are either available or relatively easy
to obtain.

(Of course, if measurement pairs (u, y), relating the inputs
and outputs of the full system, were available, we could try
to model the desired higher level directly; however, for com-
plex systems, this is generally not the case). What is thus
still required, in order to complete the cascade, is amatching
model of the remaining, unidentified subsystem, i.e., a model
whose combinationwith the givenmodel reduces to a simple,
high-levelmodel.We call such amatchingmodel the comple-
mentary model ΣC (Figs. 2, 3). For instance, given a neuron
model (the step from u to υ in Fig. 1) what is still required
for a complete signal path is a complementary model of the
synapse (the step from υ to y in Fig. 1). Or, vice versa, given
a synapse model, what is still required is a complementary
model of the neuron. Of course, in order to lead to a high-
level reduction, the complementary model should not only
match with the model already given; in addition, it should,
by itself, also be valid. That is, it should agree with the data,
so that its combination with the given model reduces to a
high-level model that is valid as well as simple. How can
this be achieved?

The solution to the above problem lies in adopting the sci-
entific method: postulate a hypothesis and verify or falsify
its validity. First of all, note that the complementary model
could in principle be expressed abstractly in terms of the
given model and the high-level model (as ΣC = ΣH ◦ Σ−1

G

in case of Fig. 2, or as ΣC = Σ−1
G ◦ ΣH in case of Fig. 3).

Of course, at this point, the simple, high-level model has
not yet been established. In fact, this is exactly the model
that we are after. The crucial idea now is, however, that
this obstacle can be overcome by postulating a hypothesis.
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Fig. 2 A schematic representation of a physical ‘input–output’ system
that can be thought to consist of two subsystems connected in series.
Our goal is to establish a simple, high-level model ΣH , describing the
behavior of the full system froma functional, input–output point of view.
We assume that amodelΣG of the first subsystem is given, describing in
more detail howpart of the system is realized.What is thus still required,
in order to complete the cascade, is a matching, complementary model
ΣC of the second subsystem

Fig. 3 A schematic representation of a physical ‘input–output’ system
that, as in Fig. 2, can be thought to consist of two subsystems connected
in series. Again, our goal is to establish a simple, high-level modelΣH ,
describing the behavior of the full system from a functional, input–
output point of view, except now we assume that a model ΣG of the
second subsystem is given, and we require a matching, complementary
model ΣC of the first subsystem, in order to complete the cascade

Our method can be summarized as follows: postulate a sim-
ple, high-level model ΣH of the full system and then use
the inverse Σ−1

G of the given model to derive a verifiable,
complementary model ΣC of the remaining, unidentified
subsystem. In the case of a complete signal path, for instance,
we first postulate a hypothetical model of cell-to-cell signal-
ing and then use an appropriate, established neuron model to
derive a complementary model of the synapse. The derived,
complementary model can then be verified against measure-
ments to either support or reject the hypothesis. As we shall
show, the technical tools necessary to develop this idea,
such as systems inversion, are already available in the lit-
erature.

We must stress that the complementary model introduced
above is ‘merely’ a means to an end. In particular, it need not
be simple itself. In fact, inmost cases it will be quite the oppo-
site and considerably abstract. Nevertheless, by construction,
it is such that it can be verified against data. Furthermore,
as our neurotransmitter example will show (Sect. 4.1), our
method can also help with finding an equivalent physically
meaningful realization for this derived, abstract model. More
to the point however, the results from our squid example

(Sect. 3.2) suggest that, at least in the case of cell-to-cell sig-
naling, it is possible to obtain andvalidate simple, yet faithful,
high-level models with our method, and these, after all, form
our end goal.

Our method was developed with the neuron and synapse
in mind, and, as outlined below, we will motivate and present
our method with the aid of a relatively transparent, yet real-
istic example of a complete signal path that belongs to the
squid’s giant fiber system.We also provide results for (small)
networks with both excitatory and inhibitory connections,
and our method may have even wider applicability. How-
ever, there are, of course, also other ways to reach the desired
higher level, so in order to substantiate the claim that our
method addresses a real need (which may not be immedi-
ately obvious) we now address some drawbacks associated
with these alternative routes.

1.3 The limitations of straightforward simplification

As another approach to reaching the desired, network level
mentioned above, one could, in principle, complete the sig-
nal path by connecting an established neuron model in series
with an established synapse model. Indeed, in the more or
less traditional approach to neuronal modeling (Dayan and
Abbott 2001) simplified neuron models (Izhikevich 2007)
and simplified synapsemodels (Tsodyks andMarkram 1997;
Morrison et al. 2008; Rowat and Selverston 1993) are often
developed independently from each other. This, however,
introduces several problems. To begin with, in general, it
does not result in the desired reduction, since the combined
model will, almost always, be too elaborate for the desired
network level of abstraction. Furthermore, an arbitrary com-
bination of neuron model and synapse model is likely to
be at least somewhat questionable, since it is well known
that in cascades of nonlinear models (and synapses do also
have interesting nonlinear features) even small parameter
variations may lead to wildly different input–output behav-
iors. In other words, given the ever present small modeling
‘errors’ in both neuron model and synapse model (not to
mention those introduced by independent simplification), it
follows that this approach is vulnerable to misinterpreta-
tion. Furthermore, even if the combined model, in some way,
allows for a simple, high-level interpretation, one could eas-
ily miss it. In fact, one could claim that choosing the ‘right’
combination of neuron model and synapse model requires
prior knowledge, an interpretation of joint neuron-synapse
behavior.

Alternatively, one could try to model the higher level, the
joint input–output behavior of neuron and synapse, directly,
more or less as in classical artificial neural networks, see,
e.g., Hunt et al. (1992). In this case however, note that mea-
surements may not be available for the complete signal path.
In the case of the squid for instance, measurements are avail-
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able for the membrane potential in response to an injected
input current (Clay 1998) and for the postsynaptic current
in response to presynaptic depolarizations of the membrane
potential (Augustine et al. 1985), but not, at least not to our
knowledge, for a complete path from conductance to con-
ductance. In reality, setting up an experiment to isolate such
a complete path may not even be feasible. In addition, in
this direct approach, the question of how the joint behav-
ior is realized physically would remain largely unanswered.
Although, apart from these obvious alternatives, there are
other ways to reach the higher network level, these generally
require many assumptions, e.g., that neurons ‘encode’ their
stimulus in a firing rate (Hopfield and Tank 1986; Hopfield
1984), that (within a localized subpopulation of neurons)
the relevant, dynamic variable is the proportion of active
cells per unit of time (Wilson and Cowan 1972), and so
on (Chapeau-Blondeau and Chambet 1995; Abbott 1994;
Dayan and Abbott 2001). Such assumptions are not always
plausible.

1.4 Our main (squid) example

In order to illustrate how our method can help reach the
desired network level, we will use it to verify a hypotheti-
cal, high-level model of a complete signal path in a neuronal
system that has been studied extensively, and for which an
abundance of data is available, the squid giant fiber sys-
tem. This system plays an important role in the jet-propelled
escape responses of squid. For instance, a powerful single-jet
escape response can be triggered by a sudden visual stimulus,
a flash of light (Otis and Gilly 1990). Hence, a connection
with observable, outward behavior has already been estab-
lished and can serve as a starting point for our hypothesis.

The giant cells that are involved in the single-jet, flash-
evoked escape response of the squid are arranged in bilateral
symmetry, and they include the giants that make up our
complete signal path. Described briefly, the fused first-order
giants receive their input from the optic lobe. These then
synapse onto the paired second-order giants, which in turn
(each on their respective sides) make synaptic contact with
the axons of the third-order motor giants emanating from the
stellate ganglion. Activation of the third-order giants causes
the muscles in the mantle to contract and a jet of water to be
expelled from the funnel (Otis and Gilly 1990). Our example
of a complete signal path startswith the synaptic conductance
input to the second-order giant and ends with the resulting
postsynaptic conductance in the receiving third-order giant
(Fig. 4).

Given the central place that the above complete signal path
takes in the squid’s giant fiber system, and given its implied
role in escape behavior, it is tempting to interpret its input–
output behavior as realizing an escape ‘threshold’. That is, as
the total conductance input u(t) due to escape-initiating stim-

Fig. 4 Simplified schematic representation of the squid giant fiber
system in a single-jet, flash-evoked escape response: from the fused
first-order giants (gray), to the paired second-order giants (black) via
the stellate ganglion to the paired third-order giants (gray, only one
side shown). One second-order giant is shown enlarged to indicate the
complete path from presynaptic conductance u(t) to postsynaptic con-
ductance y(t) that we seek to capture with a simple, yet valid, high-level
model, in order to illustrate our method. (Based on various sources)

uli crosses a critical threshold, the output conductance y(t)
suddenly becomes high and the squid ‘decides’ to escape.
However, seemingly obvious interpretations may, of course,
not be right. A model based on this view still needs to be
validated or falsified. This is where our method comes in.
We postulate a simple, high-level model based on an escape
threshold (23), and then, given a FitzHugh-type model of a
squid neuron (20), we use our method to derive the comple-
mentary synapse model (28) required to complete the signal
path from u(t) to y(t) in Fig. 4 (remark 1). The dynamic
responses of this derived synapse model (Figs. 5, 8) are in
remarkable agreement with the measurements (Figs. 5, 7)
reported in Augustine et al. (1985), hence lending support
to the postulated simple model of cell-to-cell signaling. This
indicates that simple, yet faithful, network-level models are
feasible with our method.

A priori, it may seem unlikely that it is possible at all
to reduce our complete signal path to a simple high-level
model, given the intricate behaviors of the measured, inter-
mediate quantities. What we must realize, however, is that
these intricate behaviors may partly arise from requirements
other than input–output function. They may be necessary to
overcome noise, to conserve energy, to ensure that the sig-
nal travels from A to B, and so on. Hence, some of their
features, although interesting in their own right, may not be
essential from a functional input–output point of view. In
other words, the ‘actual’ input-output transformation may be
far more simple than the measurements initially suggest, as
our results indeed demonstrate.

Remark 1 In the case of a complete signal path, we assume,
in this paper, that a model of the neuron is given, since the
conductance-based approach to neuron modeling has been
widely accepted. One could also consider the case where a
model of the synapse is given; however, the physiological
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Fig. 5 A pictographic summary of our method as applied to cell-to-
cell signaling in the squid giant fiber system (cf. also Figs. 4, 7, and 8).
Given a model ΣG of a squid neuron, it is possible to derive a comple-
mentary model ΣC of the squid giant synapse, by postulating a simple,
high-level model ΣH , describing what the giant fiber system does from
a functional, input–output point of view. Left voltage responses υ(t) to
step input conductances u(t) as produced by the FitzHugh-type neu-
ron model ΣG given by (20).Middle the objective, a simple, high-level

modelΣH of cell-to-cell signaling, represented here by a complete sig-
nal pathmapping a presynaptic conductance input u(t) to a postsynaptic
conductance output y(t). This is the system for which we postulate a
hypotheticalmodel (23).Right superimposed postsynaptic conductance
responses y(t) to depolarizing presynaptic potentials υ(t) as produced
by the derived, complementary synapse model ΣC given by (28), next
to experimental data faithfully traced fromAugustine et al. (1985). Pos-
itive conductances are plotted downwards

effects of neurotransmitters and their mechanisms of release
can vary considerably from transmitter to transmitter, and
manymechanisms are questioned, debated or unknown (Lan-
gley and Grant 1997; Tauc 1997; Vautrin 1994; Vyskocil
et al. 2009). For instance, in the case of the squid, many
suitable neuron models are already available (Hodgkin and
Huxley 1952; FitzHugh 1961; Rinzel 1985; Kepler et al.
1992; Clay 1998), while suitable models for the squid’s giant
synapse seem less numerous (Llinás et al. 1976, 1981a,b).
Note also that, in the case where the neuron model is given,
our approach conveniently avoids unnecessary assumptions
by circumventing the unknown mechanisms of neurotrans-
mitter release just mentioned, yet, it does not ignore their
dynamic effect.

1.5 Physical realism: from basic cases to networks

A large part of the paper is concerned with establishing suit-
able classes of high-level models [Eqs. (19), (34), (39), (63),
and (76)] from which hypotheses can be drawn. In particu-
lar, apart from the matching constraint mentioned earlier, we
also impose a ‘physical’ realizability constraint on our mod-
els, so that our procedure results in complementary models
and, therefore, in high-level models that are realistic. Hence,
for hypothetical, high-level models drawn from these real-
izable classes (which are associated with classes of given
models) the hardwork of establishing a ‘physical’ realization
of the complementary model has been done, and for these,

our verification procedure can be followedwithout additional
burden. In fact, for the squid’s complete signal path, we will
explicitly follow our verification procedure, once we have
established the realizable class (19). The more general of
these classes are preceded by a motivational example and
subsequently followed by another concrete example.

1.6 Outline

The paper is structured as follows. First we set forth the gen-
eral method in all its detail in Sect. 2.We distinguish between
two cases, the case where a model of the first subsystem is
given (Fig. 2), and the case where a model of the second
subsystem is given (Fig. 3). We then introduce the ‘physical’
realizability constraint that our models need to satisfy in the
interest of physical realism and illustrate the problems that
this constraint introduces with a simple example on signal
representation. In Sect. 3, we cover the case where a model
of the first subsystem is given. We extend the example on
signal representation to include more general signal transfor-
mations by complete signal paths and then apply the method
to the squid giant fiber system, where we use it to derive the
synapse model required to complete the signal path indicated
in Fig. 4. (The more general case is treated in the appendix,
along with a network example). In Sect. 4, we cover the case
where a model of the second subsystem is given. We start
with an example where a model of transmitter-dependent,
postsynaptic conductance is given and then treat the more
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general multi-input multi-output case (with a network exam-
ple, again, provided in the appendix). We end this section
with some final remarks. Section 5 concludes the paper.

2 A novel simplification procedure

In this section, we reiterate the main idea and go into it in
more detail. We also introduce our additional realizability
constraint. We then start our investigation with signal repre-
sentation and give an illustrative example.

2.1 The main idea: two cases to consider

Aswe stated before, the goal of ourmethod is to help establish
a simple, high-level model of a physical system that can be
thought to consist of two subsystems connected in series and
for which a model of one of the subsystems is already given
(assumption 1). To this end, we provide a way to derive and
validate a complementary model of the remaining, unidenti-
fied subsystem, where, as already mentioned, we distinguish
between two cases. In the case where a model of the first
subsystem is given (Fig. 2), our method can be described as
follows:

1. We postulate a simplemodelΣH for the full system at the
desired, higher level, based on what we think the system
does from a functional point of view. This model takes
the form of an input–output dynamical system mapping
time-varying inputs u(t) to time-varying outputs y(t).

2. We derive the complementary model in terms of the
hypothesis and the given model as follows:

(a) We derive a (left) inverse Σ−1
G of the given model.

That is, we derive an inverse model which, when
given the output υ(t) fromΣG , reconstructs the input
u(t) that caused it.

(b) We connect the two systemsΣH andΣ−1
G in series to

obtain the complementary model ΣC = ΣH ◦ Σ−1
G

of the second subsystem.

3. We verify the derived, complementary model ΣC (and,
hence, indirectly the simple hypothesis) againstmeasure-
ments, which (by assumption 2) are available.

Of course, if the model is falsified, one can reiterate the
process by updating the hypothetical, high-level model ΣH ,
i.e., by returning to the first step. Similarly, in the case where
amodel of the second subsystem is given (Fig. 3), one derives
a (right) inverse of the givenmodel to obtain a verifiable com-
plementary model ΣC = Σ−1

G ◦ ΣH of the first subsystem.
As one iterates the above model-prediction loop, the key

is to keep the model ΣH as simple as possible. This will not
only facilitate further analysis, but will also help to avoid
overfitting, since, if the hypothetical high-level model is too

general, the complementary model can be made to fit virtu-
ally any data and such generality should be avoided. On the
other hand, note that the complementary model is not only
constrained by the data it is supposed to describe, but also
by the high-level model and the data that the given model is
supposed to describe, since, by its very construction, it incor-
porates the inverse of the given model. This, of course, also
means that, if the high-level model is too simple, it will be
impossible to find a reasonable fit (in which case a discrep-
ancy between the data and the postulated hypothesis has been
identified). In short, the high-level model should be general
enough to approximate or mimic the data, but not so general
as to fit almost any data.

Choices for the hypothetical, high-level model ΣH could
be guided by theory (Kreinovich and Quintana 1991; Zhang
and Sejnowski 1999), observations (Kouh and Poggio 2008),
and even intuition. Classical examples of simplified, high-
level representations in theoretical neuroscience include
firing rate models or population models such as the Hopfield
model (Hopfield 1984; Hunt et al. 1992) and the Wilson–
Cowan model (Wilson and Cowan 1972). Such simplified
representations can form the basis for network ‘modules’ in
models at an even higher level of abstraction such as themod-
ular models in Doya (1999); Doya et al. (2001) and Tin and
Poon (2005).

2.2 An additional constraint: realizability

Since we are interested in physical systems, our input–
output models need to satisfy certain physical constraints,
such as realizability and causality, in order to be realistic.
Informally, an input–output system is said to be realiz-
able if an input–output-equivalent state-space representation,
called a realization, exists, cf. Kotta and Mullari (2006).
Causality is an intrinsic property of input–output dynamical
systems in state-space form (Khalil 2002), and not surpris-
ingly, such state-space systems arise frequently as models
of physical systems. Note however that, from an input–
output perspective, the state variables of a system, or its
details of implementation, are irrelevant. Any invertible state
transformation results in a different realization of the same
input–outputmapping.Hence, for the hypothetical high-level
model (Figs. 2 or 3), one could, in principle, consider direct
mappings of the form y = ϕ(u), where u is the input and y is
the output, or input–output differential equations of the form
ẏ = ϕ(y, u), and so on. However, recall that we intend to
use inverse models in our derivation, the input–output map-
pings associated with such inverse models are, in general,
not realizable. Hence, in order to maintain physical realism,
it is important to ensure realizability.

In line with our aim for physical realism, we will demand
realizability of the derived, complementary model in this
paper. This, in turn, will limit the choice of possible hypo-
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thetical models, as we shall see. In the case where a model of
the first subsystem is given (Fig. 2), we impose that the com-
plementary model has a state-space realization of the form:

ΣC :
{
ż = F(z, υ)

y = H(z, υ),

(1a)

(1b)

where z(t) is a suitably initialized, k-dimensional state,
F( . , υ) is a k-dimensional vector field parameterized by the
time-varying input υ(t), and H is the output map, mapping
the state and the input to the output y(t). Similarly, in the case
where a model of the second subsystem is given (Fig. 3), we
impose that the complementary model has a realization of
the form:

ΣC :
{
ż = F(z, u)

υ = H(z, u),

(2a)

(2b)

where now u(t) is the input and υ(t) is the output. More-
over, in the examples we provide in this paper, partly based
on Abbott (1994) and FitzHugh (1961), realizations will be
derived explicitly.

The constraint introduced above could, in principle, con-
flict with our aim for simplicity, since, in general, it is not
satisfied by the inverse models that we intend to use in our
derivation and this limits the choice of possible hypothetical
models. Fortunately, however, it does not stand in the way of
simple, high-level models with a simple interpretation, as the
next example will show. Still, as a consequence of the above
realizability constraint we cannot blindly follow the steps
introduced in Sect. 2.1. Instead, for certain classes of given
models, wewill establish corresponding classes of high-level
models from which hypothetical models can be drawn that
do result in realizable complementary models, and for which
the steps thus can be followed. For instance, we will follow
the above steps explicitly, in our squid example, once we
have established the class (19).

2.3 An illustrative example: signal representation

As a first demonstration of our approach, and in order to
show that the above realizability constraint limits the choice
of possible hypothetical models, we start with an academic
example. We consider the problem of recovering the input
u(t) from the output response υ(t) of some given modelΣG .
This allows us to identify the problems we run into with one
of the simplest possible equations. We focus on realizability.
Instead of verifying a high-level hypothesis for some existing
physical system, we consider whether or not it is possible,
in principle, to complement the given model with another
model ΣC in order to realize the most simple, high-level
behavior ΣH , the identity map:

y = u, (3)

with input u(t) and output y(t) (Fig. 2). Hence in this exam-
ple, the verification step, which in a realistic setting would
be part of our procedure, does not apply and is omitted. Nev-
ertheless, as an added bonus, the example may already tell
us something about graded non-impulsive neurons and about
quiescent spiking neurons in their ‘subthreshold’ regime.

Consider the following problem. Let a model be given by:

ΣG : υ̇ = u + β(υ), (4)

where u(t) is the input, υ(t) is the state output for some ini-
tial value υ(0), and β is some, possibly nonlinear, function.
For instance, this model could represent the subthreshold
part of an integrate-and-fire-type neuron model, where either
β(υ) = υ2, in case of a quadratic integrate-and-fire model
(Hansel andMato 2001; Izhikevich 2007), or β(υ) = −υ, in
case of a leaky, or forgetful, integrate-and-fire model (Knight
1972; Izhikevich 2007). (Note that integrate-and-fire-type
models normally include a reset and that in the quadratic
case, solutions can escape in finite time. Hence, in this case
one would consider subthreshold inputs and initial values
only, i.e., those inputs u(t) and initial values υ(0) that do
not result in spiking, so that the reset of the model can be
ignored). The problem we first want to address is as follows.
Is it possible to recover the input u from the output υ of the
given model, with a realizable complementary system ΣC?

Note that in the above problem the required complemen-
tary model is the (left) inverse of the given model. That
is, given the output υ(t) from ΣG , we seek the system
ΣC = Σ−1

G that reconstructs the input u(t) that caused it.
In this case, the cascade ΣC ◦ ΣG would reduce to the high-
level identity map introduced above. By combining Eqs. (3)
and (4), we see that the inverse is given by:

ΣC = Σ−1
G : y = υ̇ − β(υ) , (5)

where now υ(t) is the input and y(t) is the output.
We claim that the complementary model (5) does not have

a classical state-space realization, i.e., it cannot be brought
into the form (1). Hence, it does not satisfy our ‘physical’
constraint. In particular, note that in systems of the form (1)
input derivatives, i.e., terms involving υ̇, do not appear. Given
our aim for simplicity, and given the simplicity of the high-
level identity map in this case, the proposed method would
be useless if this problem could not somehow be resolved.

In order to overcome the above realizability problem, we
alter the high-level identity map y = u slightly and approx-
imate it with the following system:

ΣH :
{

εζ̇ = u − ζ

y = ζ,

(6a)

(6b)
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where ε > 0 and the state ζ(t) is initialized at a suitable point
ζ(0). Note that this system is stable and that in the limit
ε → 0 (and for sufficiently well-behaved inputs u(t)) the
identity is recovered. In this case, by combining (6) and (4),
the corresponding complementary model ΣC = ΣH ◦ Σ−1

G
is given by:

ΣC :
{

εζ̇ = υ̇ − β(υ) − ζ

y = ζ,

(7a)

(7b)

where now υ(t) is the input, y(t) is the output, and ζ(t) is
the state.

Unlike (5), the complementary model (7) can be given a
classical state-space realization. In fact by introducing the
new variable z = ψυ(ζ ) = εζ − υ with ζ = ψ−1

υ (z) =
(z + υ)/ε the system is explicitly brought into the classical
state-space form (1):

ΣC :

⎧⎪⎪⎨
⎪⎪⎩
ż = −β(υ) − 1

ε
(z + υ)

y = 1

ε
(z + υ),

(8a)

(8b)

in which input derivatives υ̇ no longer appear. In other words,
as a hypothesis for some physical system, this model would
be more realistic than the previous exact inverse.

In sum, although in the quadratic integrate-and-fire case,
for instance, both ΣG and ΣC are nonlinear, their cascade
reduces to a simple, in this case even linearΣH . Furthermore,
by taking ε > 0 small enough, the above complementary
system can recover sufficiently well-behaved inputs u(t)
with any desired degree of accuracy. Since the given model
above includes the subthreshold part of integrate-and-fire-
type models, and since we will later extend this result to a
general class of single-compartment models (Sect. 3, Fig. 6),
this arbitrary degree of accuracy may point to the possibility
that in ‘stubby’ neurons with short axons even ‘subthreshold’
stimuli are well represented. If so, then, in local circuits of
neurons with short processes, subthreshold signal processing
may play a larger role than is sometimes assumed.
The above is an example of the casewhere amodel of the first
subsystem is given and there are two things to note: (1) not
every high-level model results in a realizable complemen-
tary model, and (2) if a realization does exist, then finding it
involves finding a change of variable z = ψυ(ζ ) that depends
on the inputυ. The latter is inherent to the casewhere amodel
of the first subsystem is given and such a change of vari-
able is an example of a generalized state transformation or
extended state coordinate transformation (Kotta and Mullari
2005). In general, finding a transformation that results in a
realization involves solving a system of PDE’s (Glad 1989).
Fortunately, however, for numerical verifications of hypothe-

ses, establishing the existence of a realization is sufficient,
since in off-line verification the future iterates that appear
in the numerical inverse are available (e.g., the inverse of
υt+1 = fυt (ut ) becomes ut = f −1

υt
(υt+1), if it exists).

The case where the second subsystem is given, in a sense,
is easier, as we shall see in Sect. 4. Although finding an
explicit realization may (or may not) involve solving an
implicit function, it does not require a generalized state trans-
formation. Furthermore, the results aremoregeneral.We start
however, with the case where a model of the first subsystem
is given.

3 The first subsystem is given

In this section, we cover the case where a model of the first
subsystem is given. We first extend the results obtained for
signal representation above to a more useful class of single-
compartment, conductance-based neuron models, and at the
same timewe take our first step toward signal transformation.
This forms the bases for our next, and main example, the
squid giant fiber system.

3.1 A representative example: conductance-based
models

Consider the following problem. Let a neuronmodel be given
by a single-compartment, conductance-based model of the
fairly general form:

ΣG :
{
C υ̇ = −I (υ, η) + (υs− υ)u︸ ︷︷ ︸

−Is (t)
η̇ = q(υ, η)

(9a)

(9b)

where the output υ(t) represents the membrane potential, the
parameter C represents the membrane capacitance, and the
input u(t) represents the total synaptic conductance, result-
ing in a synaptic current Is(t) with driving force υs − υ

and reversal potential υs . (We will deal with distinct ion-
specific reversal potentials and conductances in Sects.A.2,
A.3). The other membrane current I (υ, η) represents the
total of all remaining voltage-dependent ionic currents, and
the other state variables η = (η1, . . . , ηn) represent activa-
tion and inactivation variables, often called gating variables.
We assume that the model has a stable rest state for u(t) ≡
0 and that it is initialized at rest. The problem we now
want to address is as follows. What class of hypothetical
high-level models ΣH from conductance to conductance
(Fig. 1) would result in a realizable complementary synapse
model ΣC?

In order to tackle the above problem, we first derive the
inverse of the given model. For υ �= υs , the model has an
inverse given by:
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Σ−1
G :

⎧⎨
⎩

η̇ = q(υ, η)

u = 1

υs− υ
{C υ̇ + I (υ, η)}

(10a)

(10b)

where now υ(t) is the input, u(t) is the output, and η(t)
is the suitably initialized state. Note the input derivative υ̇

in the output Eq. (10b). We claim that this inverse system
does not have a classical state-space realization. Note also
that the output u(t) of this inverse system depends on the
solution η(t) of the forced system (10a), driven by υ(t). In
particular, it depends on the initial conditions η(0). Since
the internal state η(t) of the given model ΣG will not be
available from the output υ(t) of ΣG , we assume that the
inverse system is sufficiently stable, so that solutions with
different initial conditions all converge to the same solution.
This may seem restrictive, but, as shown, e.g., in Röbenack
and Goel (2007), it is typically satisfied by the activation and
inactivation dynamics:

η̇ = [τ(υ)]−1{η∞(υ) − η} =: q(υ, η) (11)

of neuronmodels,where τ(υ) is a diagonalmatrix of positive,
voltage-dependent time constants, and where each com-
ponent of the steady-state solution η∞(υ) is a monotonic
function of υ.

We now extend the previous result on signal representa-
tion to include high-level models other than the approximate
identity map (6). Our aim is to establish a larger class
of hypothetical, high-level models, for which a realization
of the complementary model ΣC = ΣH ◦ Σ−1

G can be
derived explicitly. Such complementary models can then be
used as synapse models, so that hypotheses for cell-to-cell
signaling, drawn from the proposed class of high-level mod-
els, can be tested against synaptic data, which is exactly
what we will do in our squid example. We first con-
sider the subclass consisting of high-level models of the
form:

ΣH :
{

εζ̇ = u − f (ζ )

y = h(ζ ),

(12a)

(12b)

where ζ(t) is a suitably initialized, one-dimensional state,
u(t) is an input conductance, y(t) is an output conductance
(Fig. 1), and f and h are appropriatemaps.Note that this class
includes the previous approximate identity (6) with h(ζ ) =
f (ζ ) = ζ . Note also that the suggestive parameter ε > 0
is only relative. In particular, it can be scaled away by a
rescaling of time.

Combining Eqs. (10) and (12), we find that the comple-
mentary synapse model ΣC = ΣH ◦ Σ−1

G is given by:

ΣC :

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

εζ̇ − C υ̇

υs− υ︸ ︷︷ ︸
ż1

= I (υ, η)

υs− υ
− f (ζ )

η̇ = q(υ, η)

y = h(ζ )

(13a)

(13b)

(13c)

where the presynaptic potential υ(t) is the input, the post-
synaptic conductance y(t) is the output, and (ζ(t), η(t)) is
the state. Note that this system is not yet of the form (1); it
still contains input derivatives υ̇. As before however, and as
already indicated by the introduction of the ż1-label above,
this problem can be alleviated by a coordinate change.

In order to convince ourselves that the complementary
synapse modelΣC could, in principle, be realized by a phys-
ical system, we seek an equivalent state-space realization of
the form (1) in z-coordinates in which input derivatives no
longer appear. To this end, we introduce a coordinate trans-
formation Ψυ of the form:

(ζ, η)
Ψυ�−−−−→ z = (ψυ(ζ ), η), (14)

that changes only a single coordinate, the first coordinate.
In other words, except for a new name or label, the other η-
coordinates remain unchanged. The transformation is further
specified by:

z1 = ψυ(ζ ) = εζ + C ln |υs − υ|, (15)

and its inverse Ψ −1
υ (z) is determined by:

ζ = ψ−1
υ (z1) = 1

ε
{z1 − C ln |υs − υ|}. (16)

One can check that, for υ �= υs (remark 2), this transforma-
tion results in an explicit realization of the complementary
synapse model, given by:

ΣC :

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ż1 = I (υ, η)

υs − υ
− f

(
ψ−1

υ (z1)
)

η̇ = q(υ, η)

y = h
(
ψ−1

υ (z1)
)

,

(17a)

(17b)

(17c)

or

ΣC :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
ż =

[
I (υ,z2,...,zk )

υs−υ
− f

(
ψ−1

υ (z1)
)

q(υ, z2, . . . , zk)

]

y = h
(
ψ−1

υ (z1)
)

,

(18a)

(18b)

which is clearly of the form (1) and, hence, no longer con-
tains input derivatives. In order to underline the value of this
result, note that this state-space model is indeed such that the
nonlinear cascadeΣC ◦ΣG reduces toΣH . Furthermore, one

123



318 Biol Cybern (2017) 111:309–334

Fig. 6 Several reconstructions y(t) of the step input conductance
u(t) from the voltage response υ(t) of a neuron model. The real-
izable complementary model used for these reconstructions is based
on the approximate ‘identity’ (6), which is of the form (12) with
h(ζ ) = f (ζ ) = ζ . Each reconstruction y(t) corresponds to a different
value of the parameter ε in this approximate identity. Note that we can
get arbitrarily close to the original input provided that we choose the
parameter ε sufficiently small

is still ‘free’ to postulate any hypothetical high-level model
from the subclass (12) by specifying f , h, and ε. When ver-
ified, such high-level models can be used in networks with
feedback connections.

The above immediately extends the result obtained in our
illustrative example (Sect. 2.3) to the general class of neuron
models (9). That is, given the output response of any neuron
model from this general class, we can reconstruct the input
conductance that caused it with any desired degree of accu-
racy, by using the complementary model that corresponds
to the approximate identity (6), see Fig. 6 (remark 3). (Here
we used the neuron model from our main squid example in
Sect. 3.2 for convenience). Again, since the class (9) repre-
sents spiking and graded non-impulsive neurons alike, this
arbitrary degree of accuracy may point to the possibility that
in ‘stubby’ neurons even ‘subthreshold’ stimuli are well rep-
resented. Of course, the reason for using the approximate
identity here and in our previous example is not its plausi-
bility or realism; we will get to that in our main example,
it is to show that (should the data support it) our method
allows for one of the simplest possible reductions. Our aim,
after all, is simplicity. In addition, note that the full cascade
behaves as one would expect from the simple ‘hypothesis’
(6) and, as a consequence, how severely this simplicity con-
strains the dynamic behavior of the complementary model
in response to the modeled nerve impulse. Clearly, in ‘shap-
ing’ the response, the single parameter ε provides only one
degree of freedom. This illustrates why keeping the number
of parameters in the high-level model to aminimumwill tend
to avoid overfitting.

It is straight forward to generalize the above results for the
subclass of models of the form (12) to an even more general
class of high-level models of the form:

ΣH :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

τ ζ̇1 = f1(ζ )

...

τ ζ̇m−1 = fm−1(ζ )

τ ζ̇m = u − fm(ζ )

y = h(ζ ),

(19a)

(19b)

(19c)

(19d)

where ζ(t) is now anm-dimensional state and the output y(t)
consists of an arbitrary number of distinct output conduc-
tances. Recall however that the key is to keep the hypothetical
high-level model as simple as possible. (Again, the param-
eter τ is only relative and can be removed by a rescaling of
time). We use this idea to verify a hypothetical high-level
model for the complete signal path in the squid next.

Remark 2 When the invertibility condition υ �= υs is vio-
lated, some input information may be lost and we have to
give up the possibility of perfect recovery or lossless repre-
sentation in the case of a single conductance input. On the
other hand, when multiple, distinct conductances are taken
into account (Sects.A.2, A.3), the corresponding invertibility
conditions are unlikely to ever be violated. Furthermore, even
in the single-input case above, there is still a way for nature
to avoid a violation of the invertibility condition: the synap-
tic reversal potential υs could lie outside the normal range
of membrane potentials. Moreover, even when the condition
is violated (e.g., during the upstroke and downstroke of an
action potential), then the loss of information could still be
minimal. Indeed, the rate of change |υ̇| near υ = υs deter-
mined by |I (υs, η)| in (9) could be large or maximal, so that
the membrane potential υ spends a minimal amount of time
there.

Remark 3 Although in this paper we derive explicit real-
izations for our examples, for numerical verifications of
hypotheses such explicit realizations are not required. It is
sufficient to establish their existence. Hence, in the input-
reconstruction example, and our main squid example, we
used the more generally applicable numerical analogue pro-
vided in the appendix, Sect.A.1.

3.2 Main example: the squid giant fiber system

In order to illustrate our approach, we now apply the real-
izability results above and use our method to verify a
hypothetical, high-level model of a complete signal path in
the squid giant fiber system. The aim of our example is to
convince the reader that themethod is useful and to show that
simple, yet faithful high-level models are feasible. Our com-
plete path starts with the synaptic conductance input to the
second-order giant and ends with the resulting postsynaptic
conductance in the receiving third-order giant (Fig. 4).
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Since we use existing data (instead of data tailored to our
need), we replace one of our previous assumptions with a
slightly stronger assumption. Recall that, in order to apply
our method, we assume: (1) that a satisfactory model for
one of the subsystems, the neuron, is already given and
(2) that measurements for the subsystems are available in
the form of input–output pairs. Unfortunately, the second
assumption, to our knowledge, is not completely satisfied.
Although it is likely that L-glutamate is a transmitter at the
squid giant synapse (Messenger 1996), there may be others,
and this forces us to lump all transmitter-dependent conduc-
tances together in one total synaptic conductance, with one
reversal potential. The assumption that this is a valid simplifi-
cation replaces the second assumption above, since it allows
us to use existing data. Although such a stronger assumption
should, in general, be avoided, the fact that we can use exist-
ing data is a strong plus. It emphasizes our aim to summarize
data with theory.

We can sum up the problemwewant to address as follows.

– Our aim is to establish a simple, high-level model ΣH

from input conductance u(t) to output conductance y(t)
describing what the complete signal path does from a
functional point of view (Fig. 4 and remark 4).

– We can take a FitzHugh-type neuron modelΣG as given,
describing the voltage response υ(t) of the second-order
giant to an input conductance u(t). Here we assume that
we can lump together all synaptic input conductances
converging onto the second-order giant into one total
synaptic input conductance u(t) with one synaptic rever-
sal potential υs .

– What we seek, in order to complete the signal path
(Fig. 2), is a complementary modelΣC of the squid giant
synapse, that is a model from presynaptic potential υ(t)
to postsynaptic conductance y(t).

Our method allows us to derive this complementary synapse
model as follows (Fig. 5):

1. Wepostulate a hypothetical, high-levelmodelΣH , drawn
from the class (19), and based on what we know about
squid.

2. We derive the complementary model in terms of this
hypothesis and the inverse Σ−1

G of the given neuron
model.

3. We verify the derived synapse model ΣC = ΣH ◦ Σ−1
G

against the measurements reported in Augustine et al.
(1985).

It is important to note that, since the model of the squid
giant synapseΣC incorporates the inverse of the givenneuron
model, it is not only constrained by the measurements in

Augustine et al. (1985), but also by the typical nerve impulses
observed in squid giant axons (Clay 1998).

The given neuron model There are many candidate neuron
models to choose from.ThemodelΣG thatwe use to describe
in more detail how part of the high-level model is realized is
of the form (9) and is based on the FitzHughmodel (FitzHugh
1961; Izhikevich 2007). It is given by:

C υ̇ =
−I (υ,η)︷ ︸︸ ︷

κ(υ−υr )(υ−υt )(υ−υp) − η +
−Is (t)︷ ︸︸ ︷

(υs− υ)u (20a)

η̇ = 1

τη

{λ(υ−υr ) − η} =: q(υ, η) (20b)

where υ(t) is taken to represent the membrane potential and
η(t) is a recovery current. The parameter C represents the
membrane capacitance, the parameter υr is the resting poten-
tial, the parameter υt is the instantaneous threshold potential,
cf. Izhikevich (2007), andυp roughly corresponds to the peak
potential. The input that usually characterizes a current in the
FitzHughmodel has been replaced by a synaptic current Is(t)
with driving force υs − υ and synaptic reversal potential υs ;
hence, the input u(t) is now a conductance input. The param-
eter τη > 0 is a time constant, and the other parameters κ

and λ are assumed to have appropriate dimensions. Note that
strictly speaking the FitzHugh model is a model of the squid
giant axon, a third-order giant, not a second-order giant.

Step 1: A high-level model based on escape The powerful
single-jet escape response of squid can be triggered by a sud-
den visual stimulus, a flash of light (Otis andGilly 1990). It is
an example of what is often called a fixed action pattern, that
is, as a releasing stimulus crosses a certain critical threshold
a stereotyped, behavioral pattern is elicitedwith full strength.
(Non-cephalopod examples of such fixed acts include sneez-
ing and vomiting). The giant neurons involved in such escape
responses are often viewed as decision-making interneurons:
preprocessed sensory information converges onto the cell and
the giant fiber responds in a threshold-type fashion (Reichert
1992; Dorsett 1980).

The first hypothetical model ΣH that we found to agree
with the measurements is based on viewing the inflection
point of a bounded S-shaped function:

y ≈ S(μ(u − ρ)) , (21)

as an escape threshold. Here μ > 0, and S is the standard
logistic function:

S(x) = 1

1 + e−x
. (22)
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This initial threshold hypothesis is influenced by the units in
artificial neural networks. By construction, we take it that,
as the total, presynaptic conductance due to preprocessed,
escape-initiating stimuli crosses the critical threshold u(t) >

ρ, the postsynaptic conductance y(t) suddenly becomes high,
and the squid ‘decides’ to escape. Although this view (which
is almost implicit in biological texts) is very simple, themodel
based on this view, below, agrees remarkably well with the
available experimental data.

Unfortunately, the crude threshold function (21), which
forms the basis for our hypothesis, is not yet of the form (19).
Hence, in order to ensure realizability of the complementary
synapse model ΣC , we repeat the trick in the introductory
example, three consecutive times this time (remark 5), and
approximate the initial hypothesis with:

ΣH :

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

τζ ζ̇1 = ζ2 − ζ1

τζ ζ̇2 = ζ3 − ζ2

τζ ζ̇3 = u − ζ3

y = S(μ(ζ1 − ρ)),

(23a)

(23b)

(23c)

(23d)

where τζ > 0, and in the limit τζ → 0, the initial hypothesis
(21) becomes exact. The system (23) is of the form (19), and
it follows that a state-space realization (1) of the resulting,
complementary model ΣC can be derived explicitly. In fact,
we will derive a realization of this synapse model shortly.

If verified, the hypothetical model (23) represents a sig-
nificant simplification over composite models based on
physiology alone. It has only three parameters, a parameter
ρ for shifting the threshold of the output map, a parame-
ter μ > 0 for adjusting its slope, and a parameter τζ for
adjusting the amount of input smoothing. (The latter can be
scaled away by a rescaling of time). Note that it is a Wiener
model, i.e., a linear dynamical system followedbyanonlinear
static map (Hunter and Korenberg 1986; Henson and Seborg
1997). Such models are frequently used as ‘processing units’
or ‘nodes’ in artificial neural networks (Hunt et al. 1992) and
are members of a larger class of cascade models (Hunter
and Korenberg 1986; Herz et al. 2006). Their appeal lies in
their conceptual simplicity; the resulting abstract networks
are amenable to analysis and hence facilitate the derivation
of learning rules. Of course, we do not expect such a simple
hypothesis to result in exact agreement with the measure-
ments. Our aim is to show that the method is useful.

Step 2: The complementary synapse model In order to derive
the resulting complementary synapse model, note that, since
our given model (20) is of the general form (9), its stable
inverse is given by (10). Hence, combining Eqs. (10) and
(23), we find that the complementary synapse model ΣC =
ΣH ◦ Σ−1

G is given by:

ΣC :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

τζ ζ̇1 = ζ2 − ζ1

τζ ζ̇2 = ζ3 − ζ2

τζ ζ̇3 − C υ̇

υs− υ︸ ︷︷ ︸
ż3

= I (υ, η)

υs− υ
− ζ3

η̇ = q(υ, η)

y = S(μ(ζ1 − ρ)),

(24a)

(24b)

(24c)

(24d)

(24e)

where the presynaptic potential υ(t) is the input, the post-
synaptic conductance y(t) is the output, and (ζ(t), η(t)) is
the state. As before, and as already indicated by the ż3-label,
this model can be given a state-space realization by changing
coordinates.

An explicit realization of the synapse model In order to con-
vince ourselves that the complementary synapse model ΣC

could, in principle, be realized by a physical system, we,
once again, seek a state-space realization of the form (1) in
z-coordinates. As before, we introduce a coordinate transfor-
mation Ψυ of the form:

(ζ1, ζ2, ζ3, η)
Ψυ�−−−−→ z = (ζ1, ζ2, ψυ(ζ3), η) , (25)

that changes only a single coordinate, the third coordinate,
i.e., the other coordinates remain unchanged. The transfor-
mation is further specified by:

z3 = ψυ(ζ3) = C ln |υs − υ| + τζ ζ3 , (26)

and its inverse Ψ −1
υ (z) is determined by:

ζ3 = ψ−1
υ (z3) = 1

τζ

{
z3 − C ln |υs − υ|

}
. (27)

For υ �= υs , this transformation results in an explicit realiza-
tion of the complementary synapse model, given by:

ΣC :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ż =

⎡
⎢⎢⎢⎢⎢⎣

1
τζ

(z2 − z1)

1
τζ

(
ψ−1

υ (z3) − z2
)

I (υ,z4)
υs−υ

− ψ−1
υ (z3)

q(υ, z4)

⎤
⎥⎥⎥⎥⎥⎦

=: F(z, υ)

y = S(μ(z1 − ρ)),

(28a)

(28b)

which is clearly of the form (1).
In order to underline the value of our result, note that the

state-space realization derived above is such that the non-
linear cascade ΣC ◦ ΣG , given by (20) and (28), reduces to
ΣH , given by (23). This high-level model has a very simple
interpretation and, if validated, it leaves out a lot of the bio-
physical detail, without loosing the input–output essentials.
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Fig. 7 Recordings from the squid giant synapse: post synaptic cur-
rents (lower traces) in response to presynaptic depolarizing, 6ms pulses
(upper traces) from a holding potential of −70mV. Faithfully traced
from Augustine et al. (1985)

Of course, the realization of the synapse model (28) is highly
abstract and one may want to relate its variables to quanti-
ties other than the presynaptic potential and the postsynaptic
conductance, such as the neurotransmitter concentration.Our
method indeed also allows for this, and we will show how
in Sect. 4.1. However, since we are unaware of any docu-
mented transmitter time courses recorded at the squid giant
synapse, we will not include the transmitter concentration in
our validation of the model.

Step 3: Verification In order to verify the complementary
model ΣC (and hence, indirectly, the hypothetical high-
level model), we compare it to the measurements reported
in Augustine et al. (1985), which are faithfully redrawn in
Fig. 7 for our convenience. During the original experiment,
postsynaptic currents were recorded, while the presynaptic
potential was depolarized by brief 3–6ms pulses. The postsy-
naptic potential was held constant near its rest potential. The
pulses were separated by at least 60 s, and their duration was
deliberately kept short to avoid adaptation such as synaptic
depression or facilitation.

As with the actual synapse in the experiments, the model
ΣC is subjected to a series of presynaptic depolarizing pulses
υ(t). The model ΣC then converts these into postsynaptic
conductances y(t) (Fig. 8). In order to compare thesewith the
postsynaptic currents in Fig. 7, we recall that, in the original
experiment, the postsynaptic potential of the giant axon was
held constant at its resting potential υr . Hence, since we
lump all transmitter-dependent conductances together in one
total postsynaptic conductance with one synaptic reversal
potential υs , we can take this total conductance y(t) to be
proportional to the postsynaptic current:

Fig. 8 An approximate reproduction of the measurements in Augus-
tine et al. (1985) by our theoretically derived model ΣC : υ → y,
where the postsynaptic conductance y(t) is taken to be proportional
to the postsynaptic current Ipost (t) in the original figure, cf. Eq. (29).
Presynaptic depolarizing pulses υ(t) are as in the original figure except
that the parameters below are for equivalent decivolts. Also shown in the
lower right corner are voltage responses υ(t) of the neuron model ΣG
to step input conductances u(t), in 0.021 increments from zero, for the
same parameters and timescale. The voltage responses for the more tra-
ditional step input currents (not shown) are very similar. Parameters of
theFitzHugh-typeneuronmodelΣG and its inverse:C = 1,κ = −1.38,
υr = −0.69, υt = −0.52, υp = 2.42, υs = 4.7, τη = 1, λ = 3.44.
Parameters of the hypothesisΣH : τζ = τη,μ = 130, ρ = 0.201. Initial
conditions: ζ1(0) = ζ2(0) = ζ3(0) = η(0) = u(0) = 0 and ξ(0) = υr .
(Note that the timescale of processing τζ = τη at the desired network
level agrees with that of the ‘slow’ recovery dynamics (20b) of the
neuron, not that of the ‘fast’ membrane dynamics)

Ipost(t) = y(t) {υr − υs}︸ ︷︷ ︸
constant

∝ y(t). (29)

In other words, the output conductances y(t) of the model
shown in Fig. 8 can be compared directly with the recorded
postsynaptic currents Ipost(t) shown in Fig. 7.

Due to the simplicity of the hypothesis, it is not easy to
find parameters that agreewith themeasurements (remark 6).
In fact, one of the main goals of our method is to ensure that
the interdependent models are sufficiently constrained by the
data. Since the synapse model ΣC shares the parameters of
the neuron model ΣG , these must not only be chosen such
that ΣC agrees with the measurements in Augustine et al.
(1985), but also such that the neuron model ΣG generates a
nerve impulse for certain step input conductances (and more
traditionally step input currents). Hence, these parameters
are constrained by both synapse behavior (Augustine et al.
1985) and squid axon behavior (Clay 1998).

Despite the heavy constraints just mentioned, the results
come strikingly close (compare Figs. 7, 8) especially given
the fact that the synapse model ΣC was derived from a sim-
ple hypothesis! Note the characteristic features in the results.
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As in the original experiment, the postsynaptic conductance
y(t), produced by the model, first grows steadily around the
‘off’ commandwith each increasing, depolarizing, presynap-
tic pulse υ(t). Then, a dimple starts to appear around the ‘off’
commands, resulting in a bimodal conductance response.
As the pulses are increased further, the pre-dimple part of
y diminishes until it dies out completely. The post-dimple
part also diminishes, but slower, until, eventually, only a
small after-effect remains. Note that we did not explicitly
account for these features in our simple hypothesis. They
arise from, and can be completely attributed to, our use of
the inverse neuron model. Hence, these results are indicative
of the potential predictive power of our approach.

In order to contrast our method with the more traditional
approach (Sect. 1.3), consider, now, one of the simplest inde-
pendently obtained synapse models:

τ ẏ = −y + wS (μ(υ − ρ)) , (30)

where S is as in (22), and the parameters τ , w, μ, and ρ

have appropriate dimensions (Rowat and Selverston 1993).
Despite its simplicity, this model, combined with the neuron
model, does not result in a simpler high-level model, and,
even though it is based on data obtained from the squid giant
synapse (Katz and Miledi 1967), it also does not explain the
dimple, i.e., the bimodal synaptic response (Fig. 7). In fact,
explicit modeling of this feature with independent models
would only move us further away from a high-level simpli-
fication. This underlines one of our guiding principles, i.e.,
that joint simplification under interdependent constraints is
preferable over independent simplification. In our approach,
neuron and synapse are ‘in tune’ with one another, expressed
by their shared model parameters, in order to carry out their
joint functional behavior, expressed by ΣH .

Summary and discussion In sum,we have a relatively simple
modelΣH of cell-to-cell signaling, specifically, a model (23)
from conductance to conductance with only three param-
eters ρ, μ, and τζ , that, through an appropriate choice of
intermediate neuron model and its inverse, results in striking
agreement with the measurements. Such simplified models
of complete signal paths can be used inHopfield-like network
models with feedback connections and are likely to reduce
the computational cost in network simulations. Furthermore,
in the case of the squid, the high-level model provides us
with a clear, but tentative, description of what the particu-
lar signal path does from a functional, input–output point of
view: it realizes an escape threshold that enables the animal
to evade predators. The given neuron model and the derived
synapse model describe in more detail how this behavior
is realized physically. The assumptions made are relatively
mild and their number relatively small, not only for the field
of neuroscience, but also for the obtained level of abstraction.

Furthermore, in this particular example, these assumptions
are for the most part supported by the results.

Of course, we cannot expect the derived model to fit
detailed data sets exactly, and, although the qualitative
agreement is striking, there are still some quantitative dis-
crepancies left. For instance, the peak potential of the neuron
model is still too high (approximately 190mV) and the
responses in Fig. 7 appear ‘wider’ or ‘broader’ than those
in Fig. 8. The reason for these discrepancies can be traced
back to either our threshold hypothesis, perhaps the most
likely suspect, or to one of our two assumptions: (1) that a
FitzHugh-type model suffices for a second-order giant and
(2) that we can lump together all synaptic conductances. On
the other hand, it may still be that we have not yet found the
right parameters. What ever the case may be, other hypothe-
ses can be drawn from the class (19) for verification, other
neuron models can be drawn from the class (9), and distinct
synaptic conductances are covered next.

Remark 4 One could also consider a signal path from poten-
tial to potential or from transmitter concentration to trans-
mitter concentration. The reason for choosing a path from
conductance to conductance is that, for excitable cells, we
expect the synaptic conductance to be the ‘smoothest’ ormost
gradual signal representation in the chain and therefore the
easiest to ‘read’ or interpret by humans. The ‘diffuse’ trans-
mitter concentration may also be a good candidate, while,
for graded neurons without impulses, a path from potential
to potential may be more appropriate for interpretation.

Remark 5 Our reasoning for using three intermediate vari-
ables in (23) is as follows. Consider the synaptic data from
Augustine et al. (1985), which is faithfully redrawn in Fig. 7
for our convenience. Note that although there are ‘jumps’ or
‘steps’ in the presynaptic depolarizations υ(t) of the mem-
brane potential, there are no jumps or steps in the resulting
postsynaptic response y(t), which we can take to be pro-
portional to the postsynaptic current, cf. Eq. (29). Modeling
the synapse with a direct function y = ϕ(υ) would cause
the modeled synaptic response to have jumps or steps too.
Modeling the synapse with a first-order system ẏ = ϕ(y, υ)

would result in a response with sharp corners. Hence, the
‘smooth’ response of the synapse suggests using a system
ÿ = ϕ(y, ẏ, υ) of at least second order, or a state-space
model of relative degree at least two (Sect. 4.3). This, then,
is our modeling choice, which could be relaxed, if, e.g., one
does not care about corners in the response. Note now that
the full cascade includes a neuron model of relative degree
one, that is, one has to differentiate the output υ of the neuron
model once with respect to time in order for its input u to
appear explicitly. Hence, since neuron and synapse are con-
nected in series, the hypothetical high-level model should
have a relative degree of at least three, and as one can see
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one indeed has to differentiate the output y of the model (23)
three times in order for the input u to appear explicitly.

Remark 6 Since ourmethod ismainly aboutmodel construc-
tion, quantitative criteria for model validation are beyond
the scope of the present article. Hence, we tuned the model
parameters by hand. Nevertheless, we do give some pointers
here on how to use existing methods for parameter tuning
and validation (van Geit et al. 2008). One approach would
be as follows.
(a) Use existing methods to fit the given model to its data.
(b) Fix the parameters obtained in step (a). (Note that

these, by construction, are shared by the complementary
model).

(c) Use the few remaining free parameters, i.e., those of
the simple, high-level model, to fit the complementary
model to its data.

Note that, since we cannot expect (simplified) models to fit
data sets exactly, and since data sets are usually obtained
independently in different experimental setups, wemaywant
some more freedom. To this end, we note again that the
complementary model and the given model, by construction,
are constrained to share some of their parameters. Another
alternative approach would now be as follows. Temporar-
ily remove this shared parameter constraint and use existing
methods to tune both the givenmodel and the complementary
model independently first. Then, ‘move’ each of the param-
eters of the given model as far as possible in the direction of
its corresponding value in the complementary model without
loosing the essentials of its behavior, that is as far as the tol-
erance of the performance measure allows. (There are most
likely several allowed parameter combinations that form a
continuous set or manifold). Next, fix these parameters in
both the given model and the complementary model, i.e.,
use them as new parameters for the complementary model
as well. And finally, re-tune the few parameters of the high-
level model to fit the adjusted complementary model to its
data again, as in step (c) above.

3.3 Distinct excitatory and inhibitory inputs

So far we have considered neuron models with only one
synaptic reversal potential.However, even though their corre-
sponding high-level models can already be used in networks
with feedback connections (Fig. 9), we need to consider neu-
ron models with at least two synaptic reversal potentials,
in order to allow for simultaneous excitatory and inhibitory
inputs. Our method indeed also allows for this, as we show in
the appendix. There, we generalize the case where a model
of the first subsystem is given, so as to include multi-input
multi-output systems (Sect.A.1). We then consider a given
model consisting of a pair of neurons with two distinct input
conductances each and derive an interesting class of high-

Fig. 9 Left a schematic representation of a (minimal) conductance-
to-conductance network with feedback connections. Right models of
complete signal paths can be used as building blocks in the construction
of networkmodelswith feedback connections. In the high-level network
model, some details no longer appear, in this case the intermediate
voltage responses and transmitter concentrations. Only the input–output
essentials are retained

level models for which a complementary synaptic system
can be derived explicitly (Sect.A.2). To keep the presenta-
tion of our method as transparent as possible, however, we
do not include these natural and necessary extensions in the
main body of the text; instead, we focus in the next section
on the case where a model of the second subsystem is given.

4 The second subsystem is given (from transmitter
release to networks)

In this section, we cover the case where a model of the sec-
ond subsystem is given. We start with a neuronal example,
emphasizing further how our method can be used to circum-
vent unknownmechanisms of synaptic transmission.We then
address the general multi-input multi-output case.

4.1 Unknown mechanisms of transmitter release

As a first example, we use our method to deal with unknown
mechanisms of transmitter release (Fig. 10).We assume that a

Fig. 10 Left a simplified schematic representation of synaptic trans-
mission. Fluctuations in presynaptic membrane potential υ(t) can bring
about the release of neurotransmitter into the synaptic cleft, effecting the
transmitter concentration Γ (t) in the cleft. The transmitter may bind to
receptors or receptor channels in the postsynaptic membrane. This can
lead to the opening or closing of ion channels, which in turnwill alter the
membrane conductance y(t) of the postsynaptic neuron. Right synap-
tic transmission viewed as a cascade of subsystems: voltage-dependent
release ΣC and transmitter-dependent conductance ΣG
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suitable or satisfactorymodel of transmitter-dependent, post-
synaptic conductance y(t) is given. Our aim is to establish
a class of high-level models ΣH from presynaptic poten-
tial υ(t) to postsynaptic conductance y(t), for which we
can explicitly derive a ‘physical’ state-space realization of
the complementary model of transmitter release, that is, the
model from presynaptic potential υ(t) to transmitter con-
centration Γ (t). Note that in this case the high-level model
does not yet represent a complete signal path from conduc-
tance to conductance, frommembrane potential tomembrane
potential, or from transmitter concentration to transmitter
concentration.

The given model: transmitter-dependent postsynaptic con-
ductance Let the given model for transmitter-dependent,
postsynaptic conductance y(t) be based on the reaction kinet-
ics of a postsynaptic receptor channel, where we assume
that the conductance y(t) is proportional to the fraction of
channels that are in the open, conducting state. In a sim-
ple two-state model, n transmitter molecules T bind to the
receptor channel according to the following scheme:

C + nT
r2

O
r1

, (31)

where C denotes the closed state of the channel, O denotes
the open state and r1, r2 > 0 denote reaction rates (Abbott
1994; Dayan and Abbott 2001; Destexhe et al. 1994). The
associated evolution equation for the above scheme is given
by:

ΣG :
{

ξ̇ = r2Γ
n(1 − ξ) − r1ξ =: Ξξ(Γ )

y ∝ ξ ,

(32a)

(32b)

where the fraction ξ(t) of receptor channels in the open state
O takes values between zero and one, that is, 0 < ξ(t) < 1,
the fraction of channels in the closed state C is represented
by 1− ξ , and the transmitter concentration is represented by
Γ (t) ≥ 0.

Since we assume that the output conductance y(t) is
proportional to ξ(t), it is convenient to choose the unit of
conductance such that y = 1 · ξ , so that the inverse of the
given model ΣG above reads:

Σ−1
G : Γ = Ξ−1

y (ẏ) =
{

ẏ + r1y

r2(1 − y)

}1/n
. (33)

This inverse is valid if ∂Ξy
∂Γ

= nr2(1 − ξ)Γ n−1 �= 0, that is,
if either n = 1 or else Γ �= 0, or in biological terms if:

1. either the number of transmitter molecules n needed to
open a channel is only 1, or else,

2. the transmitter concentration Γ is never zero, i.e., there
is always some residual transmitter left in the synaptic
cleft.

High-level models with explicit realizations Wewill demon-
strate that a ‘physical’ state-space realization of the com-
plementary model ΣC of transmitter release can be derived
explicitly, if we choose our hypothetical, high-level model
ΣH of synaptic transmission from a general class of
models. The proposed class consists of models of the
form:

ΣH :
{
ż = F(z, υ)

y = h(z),

(34a)

(34b)

where z(t) is a suitably initialized state of arbitrary dimen-
sion, F( . , υ) is an appropriate vector field parameterized by
the presynaptic potential υ(t), and the map h is such that
the postsynaptic output conductance takes values between
zero and one, i.e., such that 0 < y(t) < 1. Recall that, even
though the form (34) is very general, the aim is to keep the
hypothesis ΣH as simple as possible.

The complementary model of transmitter release We can
now derive a realization of the complementary model of
transmitter release. Using (34), we can replace each y in (33)
with h(z) and each ẏ with ∂h

∂z F(z, υ) to obtain a realization

of the complementary model ΣC = Σ−1
G ◦ ΣH of transmit-

ter release. An explicit state-space realization is then given
by:

ΣC :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ż = F(z, υ)

Γ =
{

∂h
∂z F(z, υ) + r1h(z)

r2(1 − h(z))

}1/n

.

(35a)

(35b)

In sum, the nonlinear cascade ΣG ◦ ΣC reduces to ΣH ,
and one is still free to postulate any hypothetical, high-level
model ΣH of the form (34).

We could now, in principle, verify whether or not the
derived model of transmitter release ΣC is consistent
with some postulated, hypothetical model ΣH of synaptic
transmission, assuming of course that the given model of
transmitter-dependent conductance ΣG is satisfactory. To
do so requires measurements. In particular, it requires the
measured time courses of transmitter concentration Γ (t)
elicited by presynaptic potentials υ(t) in measurement pairs
(υ(t), Γ (t)). Although we will not verify a hypothesis here,
it is interesting to note that, in the case of the squid giant
synapse, the previously derived synapse model (28) can
immediately be written in the biologically more detailed
form:
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ΣC :

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ż = F(z, υ)

Γ (t) =
{

∂h
∂z F(z, υ) + r1h(z1)

r2(1 − h(z1))

}1/n

ẏ = r2Γ
n(1 − y) − r1y,

(36a)

(36b)

(36c)

where the intermediate transmitter concentration Γ (t) now
appears explicitly, that is of course, if the given model based
on the kinetic scheme (31) is indeed satisfactory for the squid
giant synapse. This can be seen by noting that the model (28)
is of the form (34). In other words, the cascade consisting of
the biologically detailed complementary model (36) and the
given neuron model (20) reduces to the simple, hypotheti-
cal model (23), and yet, it can still be related to the highly
detailed signal path depicted in Fig. 1. Note that the full cas-
cade now consists of three subsystems. The models for the
first and the last subsystem (the neuron and the transmitter-
dependent conductance) are, respectively, given beforehand
by (20) and (36c), and we essentially derived the comple-
mentary model for the middle subsystem, that is, the model
of transmitter release (36a, 36b) from presynaptic potential
υ(t) to transmitter concentration Γ (t).

Although this model of release itself remains abstract, this
is acceptable given that many mechanisms of release are still
questioned, debated or unknown (remark 1). Furthermore,
the above suggests that our method can be used to fill in such
holes in present knowledge step by step as more and more
details become known.

4.2 The general case (Fig. 3)

We now consider for completeness the more general, multi-
input multi-output case. Consider a physical system that can
be thought to consists of two subsystems connected in series.
Again, our aim is to establish a simple, high-level modelΣH ,
describing the behavior of the full system from a functional,
input–output point of view. We assume that a satisfactory
modelΣG of the second subsystem is already given, describ-
ing in more detail how part of the system is realized (Fig. 3).
What is thus still required in order to complete the cascade
is a complementary model ΣC of the first subsystem.

The form of the given model and its inverse Since we intend
to use the inverse of the given model in our derivation, we
make a few assumptions. We assume that the given model
ΣG is such that (possibly after an appropriate state transfor-
mation) it is in the normal form (Nijmeijer and van der Schaft
1990):

ΣG :

⎧⎪⎨
⎪⎩

ξ̇ = Ξ(ξ, η, υ) =: Ξξ,η(υ)

η̇ = q(ξ, η, υ)

y = ξ,

(37a)

(37b)

(37c)

where the input υ(t), the output y(t), and the external state
ξ(t) are all d-dimensional variables, the internal state η(t) is
an n-dimensional variable, Ξ is sufficiently smooth, and the
square matrix ∂Ξξ,η(υ)

∂υ
is nonsingular, in a neighborhood of

the points of interest. The system is initialized in a suitable
state. By the implicit function theorem, again assuming its
conditions hold, an inverse system is then implicitly given
by:

Σ−1
G :

⎧⎨
⎩

η̇ = q
(
y, η,Ξ−1

y,η(ẏ)
)

υ = Ξ−1
y,η(ẏ),

(38a)

(38b)

where now y(t) is the input, υ(t) is the output, and η(t)
is the suitably initialized state, cf. Nijmeijer and van der
Schaft (1990). We assume again that the inverse system,
driven by reasonable y(t) and ẏ(t), is sufficiently stable,
e.g., exponentially stable, so that solutions with different
initial conditions all converge to the same solution, cf.
Eqs. (10a) and (11). Systems with this property are said to
be (exponentially) convergent, for the admissible class of
inputs, cf. (Pavlov and Petterson 2008; Pavlov et al. 2004).
Again, this convergence assumption may seem restrictive,
but ‘slow’ recovery processes, such as tonic adaptation,
seem ubiquitous in neurobiological systems. Note the input
derivatives ẏ in the inverse system above. We claim that
this inverse system does not have a classical state-space
realization.

The general form of the high-level model We will demon-
strate that the complementary model ΣC is guaranteed to
have a ‘physical’ state-space realization if we choose our
hypothetical, high-level model ΣH , meant to describe the
full system’s functional behavior, from a general class of
models. In fact, as we will see, when ΣG is of a slightly less
general form, such realizations can be derived explicitly. The
proposed class consists of models of the form:

ΣH :
{

ζ̇ = Z(ζ, u)

y = h(ζ ),

(39a)

(39b)

where ζ(t) is a suitably initialized, m-dimensional state,
Z( . , u) is an appropriate,m-dimensional vector field param-
eterized by an input u(t) of arbitrary dimension, and h is a
sufficiently smooth map, resulting in a d-dimensional output
y(t). Recall that, even though the form (39) is very general,
the aim is to keep the hypothesis ΣH as simple as possible.

The complementary model We can now derive a realization
of the complementary model. Using (39), we can replace
each y in (38) with h(ζ ) and each ẏ with ∂h

∂ζ
Z(ζ, u) to obtain

a realization of the complementary modelΣC = Σ−1
G ◦ΣH .

The realization is implicitly given by:
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ΣC :

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ζ̇ = Z(ζ, u)

η̇ = q

(
h(ζ ), η,Ξ−1

h(ζ ),η

(
∂h

∂ζ
Z(ζ, u)

))

υ = Ξ−1
h(ζ ),η

(
∂h

∂ζ
Z(ζ, u)

)
,

(40a)

(40b)

(40c)

with state z = (ζ1, . . . , ζm, η1, . . . , ηn), input u(t), and out-
put υ(t). This system is clearly of the form (2). Hence,
with hypotheses ΣH of the form (39), our derived model
ΣC is guaranteed to have a realization and therefore satis-
fies our ‘physical’ realizability constraint. Whether or not
we can make this realization explicit, depends on the par-
ticular Ξ . For instance, when it is of the form Ξξ,η(υ) =
β(ξ, η) + α(ξ, η)υ, one can, in principle, derive Ξ−1

ξ,η(.)

explicitly, although it may still be computationally intensive
for large systems.

In sum, the nonlinear cascade ΣG ◦ ΣC reduces to ΣH ,
and one is still free to postulate any hypothetical, high-level
model of the form (39) by specifying Z and h, where of
course the aim is to keep ΣH as simple as possible. In the
appendix (Sect.A.3) we explain how this applies to voltage-
to-voltage networks where the given model of the second
subsystem consists of several neurons with ion-specific input
conductances.

4.3 Final remarks on concepts from control theory

In this paper, we have made use of results in the literature
on nonlinear control systems (see, e.g., Terrell (1999a,b) and
Khalil (2002) for some of the fundamentals). For instance,
both the form (37) above and the form (41) below are normal
forms for systems with the same number of inputs as outputs,
so-called square systems (with uniform relative degree one,
to be more specific, as we explain shortly). In other words,
many systems can be transformed into the forms (41) and
(37) by an appropriate (local) coordinate transformation. The
normal form (41) is limited to control-affine systems, i.e.,
systems that are linear, or better affine, with respect to the
input, cf. Isidori (1995), while the form (37) is its direct gen-
eralization to systems that are not necessarily control-affine,
cf. Nijmeijer and van der Schaft (1990). These normal forms
are particularly convenient for systems inversion, and it is
interesting to note that essentially all single-compartment,
conductance-based neuron models with input current or con-
ductance and output potential are already in normal form.
This includes such models as the Hodgkin–Huxley model
(Hodgkin and Huxley 1952) and its reductions (FitzHugh
1961; Rinzel 1985; Kepler et al. 1992).

We have made extensive use of inverse systems, and these
play an important role in feedback linearization (Terrell
1999b; Isidori 1995), i.e., linearization of nonlinear input–

output systems by means of a state feedback, where, with
the aid of the above normal forms, the inverse system is
used (often implicitly) to cancel out the nonlinearities. The
stability of the inverse system is important in this context
and is determined by the stability of the internal dynam-
ics of the system under consideration. In control, when the
desired output is a fixed set point, the internal stability can
be checked locally with the aid of the so-called zero dynam-
ics (Isidori 1995), and systems with stable zero dynamics
are often termed (locally) minimum phase, cf., e.g., Khalil
(2002). Our use of inverse systems, however, has more in
common with their use in the problem of reproducing a ref-
erence output, where the reference output is a trajectory, and
where the inverse is used to achieve exact (or asymptotic)
tracking, cf. Isidori (1995). In this case, the internal stabil-
ity of the system along the reference output trajectory must
be taken into account. The corresponding internal dynam-
ics are sometimes called the tracking dynamics (Pavlov and
Petterson 2008), the reference dynamics (Zhao and Chen
1998), or the forced zero dynamics (Henson and Seborg
1997), and they coincide with the dynamics of the inverse
system when driven by the reference output trajectory. In
this paper, we assumed these to be sufficiently stable for all
trajectories.

Inverse models can introduce input derivatives and are,
in general, not realizable. Realizability conditions for sys-
tems with input derivatives can be found in Freedman and
Willems (1978) and are generalized in Delaleau and Respon-
dek (1995). A constructive procedure for finding a realization
of a system with input derivatives (if it exists) can be found
in Glad (1989). It involves generalized or extended state
transformations, and to ensure realizability, when postulat-
ing high-level models, we must stress to keep an important
invariant of state transformations inmind: the relative degree.
For single-input single-output systems, the relative degree is
the number of times r that one has to differentiate the output
with respect to time in order for the input to appear explic-
itly. Similarly, for multi-input multi-output systems, each ri
in the vector relative degree {r1, . . . , rd} of the system rep-
resents the number of times one has to differentiate the i th
output in order for one of the inputs to appear explicitly. In
our approach, the relative degree of the given model cannot
exceed that of the high-level model. For instance, the general
forms (39) and (43) are deliberately chosen such that both
have a vector relative degree {r1, . . . , rd} with ri ≥ 1. Our
reasoning is as follows. Since the given model and the com-
plementarymodel are connected in series, and since the given
models (37) and (41) have uniform relative degree one, it fol-
lows that one has to differentiate each individual output of
the full cascade at least once in order for one of the inputs to
appear explicitly. The relative degree is also sometimes called
the relative order (Tsinias andKalouptsidis 1983) or the char-
acteristic number (Nijmeijer and van der Schaft 1990). For
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more on the relative degree, see, e.g., Terrell (1999b); Isidori
(1995); Tsinias and Kalouptsidis (1983); Henson and Seborg
(1997); Nijmeijer and van der Schaft (1990).

5 Conclusion

In this paper, we have introduced a novel simplification
method for dealing with physical systems that can be thought
to consist of two subsystems connected in series, such as a
neuron and a synapse. The aim of our method is to facilitate
finding a simple, yet convincing model of the full cascade-
connected system, assuming that a satisfactory model of one
of the subsystems is already known, or better given. Our
method can be summarized as follows. First postulate a sim-
ple, hypothetical model of the full system and then use the
inverse of the given model to derive a model of the remain-
ing, unidentified subsystem. For instance, given a neuron
model, derive a synapse model based on a simple, hypo-
thetical model of cell-to-cell signaling. The derived model
can then be verified against measurements to either support
or reject the hypothesis. The necessary tools are provided by
nonlinear systems theory. The results from our squid exam-
ple suggest that simple, yet faithful models of cell-to-cell
signaling are feasible with our method.

There are several advantages to our approach. These
stem from the fact that our method exploits the relationship
between the full system and its subsystems. For instance,
our method promotes simplicity. By keeping the hypotheti-
cal, high-level model as simple as possible, i.e., by keeping
the number of variables and parameters to a minimum and
by trying models with a simple interpretation first, our
method aims to summarize data with theory. If successful,
the achieved reduction not only provides us with insight,
it will also, most likely, facilitate further analysis. In the-
oretical neuroscience, this is particularly useful since the
analysis of networks ofmodeled neurons can quickly become
prohibitively complex. In addition, another reason for favor-
ing simple models is to avoid overfitting. Indeed, due to
the fact that the complementary model is derived from a
simple, high-level hypothesis, it will, in general, be heav-
ily constrained, which is exactly what we want. In fact, the
complementary model is not only constrained by its own
data, but also by the hypothetical model, the given model and
its data. Finally, unlike the more obvious component-wise
approach (Sect. 1.3), our approach is not prone to misin-
terpretation. The models of the subsystems are no longer
obtained independently. In fact, they form a matching pair.
Small modeling errors or slightly suboptimal parameters
are no longer amplified by nonlinearities, but instead, the
complementary model compensates for small discrepancies
in the given model by utilizing the inverse of the given
model.
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A Appendix

In this appendix, we first extend the case where a model
of the first subsystem is given (Fig. 2) to the more general,
multi-input multi-output case. This allows us to study neu-
ron models with both excitatory and inhibitory inputs, and
hence, as an example, we consider a given model consist-
ing of a pair of neurons with two distinct input conductances
each. For this given model, we derive a class of high-level
models for which a complementary synaptic system can be
derived explicitly and from which hypotheses can thus be
drawn for verification. Next we similarly apply the general
result obtained in Sect. 4.2 to voltage-to-voltage networks
where the given model of the second subsystem consists of
several neurons with ion-specific input conductances.

A.1 The first subsystem is given (general case)

Consider a physical system that can be thought to consist
of two subsystems connected in series. Again, our aim is
to establish a simple, high-level model ΣH , describing the
behavior of the full system from a functional, input–output
point of view.We assume that a satisfactory modelΣG of the
first subsystem is already given, describing how part of the
system is realized (Fig. 2). What is still required is a comple-
mentary model ΣC of the second subsystem.

The form of the given model and its inverse As before, we
will use the inverse of the given model in our derivation.
Hence, we make a few assumptions. We assume that the
given model ΣG is such that (possibly after an appropriate
state transformation) it is in the normal form (Isidori 1995):

ΣG :

⎧⎪⎨
⎪⎩

ξ̇ = β(ξ, η) + α(ξ, η)u =: Ξξ,η(u)

η̇ = q(ξ, η) + p(ξ, η)u

υ = ξ,

(41a)

(41b)

(41c)

where the input u(t), the output υ(t), and the external state
variable ξ(t) are all d-dimensional variables, the internal
state variable η(t) is an n-dimensional variable, and the
square matrix α is nonsingular, at the points of interest.
The system is initialized in a suitable state (ξ(0), η(0)). An
inverse system is then given by:
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Σ−1
G :

⎧⎪⎪⎨
⎪⎪⎩

ξ̇ = υ̇

η̇ = q(ξ, η) + p(ξ, η)Ξ−1
ξ,η(υ̇)

u = Ξ−1
ξ,η(υ̇),

(42a)

(42b)

(42c)

where

Ξ−1
ξ,η(υ̇) = [α(ξ, η)]−1 [υ̇ − β(ξ, η)] , (42d)

and where now u(t) is the output and υ(t) is the input, cf.
Isidori (1995) (It is possible to eliminate the need for (42a)
by replacing every occurrence of ξ with υ. However, when
considering realizability later on, the present form is more
convenient). We assume again that the forced system (42b),
driven by reasonable ξ(t) = υ(t) and υ̇(t), is sufficiently
stable, so that solutions with different initial conditions all
converge to the same solution, cf. Eqs. (10a), (11), and (38).
Note the input derivatives υ̇ in the inverse system above.
We claim that this inverse system does not have a classical
state-space realization.

The form of the high-level model We will demonstrate that
the realizability conditions for the complementary model
ΣC are known, provided that we choose our hypothetical,
high-level model ΣH , meant to describe the full system’s
functional behavior, from a particular class of systems. In
fact, in the single-input single-output case, the resulting com-
plementary model ΣC is guaranteed to have a realization.
The class consists of systems of the form:

ΣH :
{

ζ̇ = f (ζ ) + g(ζ )u

y = h(ζ ),

(43a)

(43b)

where ζ(t) is the suitably initialized, m-dimensional state,
u(t) is the d-dimensional input, and the output y(t) has arbi-
trary dimension. The map f and the columns gi of g are
appropriate, m-dimensional vector fields, and h is the read-
out map. Recall that, although the form (43) is very general,
the aim is to keep the hypothesis as simple as possible.

The complementary model Combining Eqs. (42) and (43),
we find that the complementary model ΣC = ΣH ◦ Σ−1

G is
given by:

ΣC :

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ζ̇ = f (ζ ) + g(ζ )Ξ−1
ξ,η(υ̇)

η̇ = q(ξ, η) + p(ξ, η)Ξ−1
ξ,η(υ̇)

ξ̇ = υ̇

y = h(ζ ),

(44a)

(44b)

(44c)

(44d)

with suitable initial conditions (ζ(0), η(0), ξ(0)).

Unfortunately, this system is not of the form (1); it still
contains input derivatives υ̇. Hence, it is not immediately
obvious whether or not this system has a state-space realiza-
tion and satisfies our ‘physical’ constraint.

Realizability of the complementary model Results on the
realizability of systems of the form (44) have already been
reported in the literature.WithΞ−1

ξ,η(υ̇) as in (42d), themodel
is of the form:

ΣC : ẋ = a(x) + b(x)υ̇ , y = h(x1, . . . , xm) (45)

where x , a(x), and b(x) read as follows:

x =
⎡
⎣ ζ

η

ξ

⎤
⎦ ∈ R

m × R
n × R

d , (46)

a(x) =

⎡
⎢⎢⎢⎢⎣

f (ζ ) − g(ζ )[α(ξ, η)]−1β(ξ, η)

q(ξ, η) − p(ξ, η)[α(ξ, η)]−1β(ξ, η)

0
...

0

⎤
⎥⎥⎥⎥⎦ , (47)

and

b(x) =

⎡
⎢⎢⎢⎢⎣

g(ζ )[α(ξ, η)]−1

p(ξ, η)[α(ξ, η)]−1

1 · · · 0
...

. . .
...

0 · · · 1

⎤
⎥⎥⎥⎥⎦ . (48)

The realizability conditions for (45) are given in Freedman
and Willems (1978), and in the single-input single-output
case (d = 1) when b consists of a single column, the comple-
mentary model is guaranteed to have a classical state-space
realization of the form (1) and hence satisfies our ‘physi-
cal’ constraint. When b(x) consists of two columns b1(x)
and b2(x), for instance, then these are required to satisfy the
following realizability condition:

∂b2
∂x

b1 = ∂b1
∂x

b2 . (49)

Explicit realizations through state transformations Even if
a classical state-space realization (1) is guaranteed to exist, it
is generally hard to actually find such a realization given (44)
or (45). Fortunately, for verifications of hypotheses, explicit
realizations are not required, numerical verifications suffice.
One may, however, attempt to find a realization by seeking a
smooth coordinate transformation:

[
z(x)
ξ

]
=
[

Ψξ (ζ, η)

ξ

]
, (50)
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so that in the new evolution equations for z ∈ R
m+n , given

by:

ż = ∂z

∂x
[a(x) + b(x)υ̇] , (51)

the υ̇-terms (or ξ̇ -terms) cancel. That is, one attempts to find
a solution z(x) to the system of PDE’s:

∂z

∂x
b(x) = 0k×d , (52)

where k = m + n and where z(x) = Ψξ (ζ, η) is such that
the mapping (50) is invertible:

x =
⎡
⎣ ζ

η

ξ

⎤
⎦ =

[
Ψ −1

ξ (z)
ξ

]
. (53)

One is left with a state-space realization:

ΣC :
⎧⎨
⎩

ż = ∂z

∂x
a(x), with x = (Ψ −1

υ (z), υ) ,

y = h(x1, . . . , xm) ,

(54a)

(54b)

of the form (1), where the replacement ξ = υ has been made
and the equation ξ̇ = υ̇ in (44) has now become redun-
dant. The coordinate transformation (50) is an example of
an extended state coordinate transformation, cf. Kotta and
Mullari (2005) for the single-input single-output case and
Kotta and Mullari (2006) for the multi-input multi-output
case.

Numerical verification As already mentioned, for verifica-
tions of hypotheses, we may have to resort to numerical
verification. Although, in this paper we derive realizations
explicitly, in the case where a model of the first subsystem
is given, such realizations are, as already mentioned, gener-
ally hard to find, due to the fact that they involve solving a
system of PDE’s. Fortunately, once the existence of a real-
ization has been established, numerical verifications suffice.
For instance, the discrete time analog of (45):

xt+τ − xt
τ

= a(xt ) + b(xt )
υt+τ − υt

τ
, (55)

where τ is the time step, and xt = (ζt , ηt , ξt ), is consistent
with the use of the forward Euler method for the given model
ΣG :

ξt+τ = ξt + τ {β(ξt , ηt ) + α(ξt , ηt )ut } (56a)

ηt+τ = ηt + τ {q(ξt , ηt ) + p(ξt , ηt )ut } . (56b)

Note that (55) depends on future values υt+τ of the input. If
so desired, it can be given a causal numerical realization:

xt+τ = F̃(xt , υt ) = xt + τa(xt ) + b(xt )(υt − ξt ) (57a)

yt = H̃(xt , vt ) = h(ζt+τ ). (57b)

Note that the state update (57a) is now delayed by one time
step (ξt = υt−τ ) compared to (55) and that the output equa-
tion (57b) compensates for this delay with:

ζt+τ = (
F̃1(xt , υt ), . . . , F̃m(xt , υt )

)
. (58)

This numerical method was used for both Figs. 6 and 8.

A.2 Conductance-to-conductance networks

As an example of the above general case, we now con-
sider conductance-to-conductance networks where the given
model of the first subsystem consists of several neurons with
ion-specific input conductances.

A given model consisting of several neurons In order to
extend our result for neuron models of the form (9), so that
it includes neuron models that allow for distinct, ion-specific
input conductances, we need to increase the number of out-
puts. For left invertibility, the given model needs to have at
least as many outputs as inputs. This results in a given model
of the form:

ΣG :
⎧⎨
⎩
C υ̇i = −Ii (υi , ηi ) +

∑
j

wi j (pi j − υi )︸ ︷︷ ︸
Wi j (υ)

u j

η̇i = qi (υi , ηi ),

(59a)

(59b)

where the index i runs over the number of neurons d and the
index j runs over the number N ≤ d of distinct, synaptic
reversal potentials per neuron. Each synaptic conductance
u j ≥ 0 with dimensionless efficacy or strength wi j ≥ 0 rep-
resents the total, summed conductance, with specific driving
force pi j − υi , received from other neurons or receptors, cf.
(9). Here, we take the number of inputs u j and the number
of outputs υi to be the same for convenience, i.e., N = d. In
vector form, the model reads:

ΣG :
⎧⎨
⎩

υ̇ = 1

C
{W (υ)u(t) − I (υ, η)} =: Ξυ,η(u)

η̇ = q(υ, η) ,

(60a)

(60b)

where the output υ(t) and the input u(t) are both d-
dimensional, and η(t) is (n · d)-dimensional, with n the
collective number of activation and inactivation variables per
neuron. Its inverse is given by:
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Fig. 11 Left a schematic representation of a minimal canonical circuit
with input conductances u(t) and output conductances y(t). Each neu-
ron ‘receives’ two distinct input conductances u1 and u2 from other
neurons or receptors, and their distinct output conductances y1 and y2
contribute to the total specific input conductances of other cells. Right
the circuit represented as a cascade of subsystems together with its
high-level representation. Such high-level models can be used as build-
ing blocks in the construction of networks with feedback connections

Σ−1
G :

{
η̇ = q(υ, η)

u = [W (υ)]−1{C υ̇ + I (υ, η)} =: Ξ−1
υ,η(υ̇),

(61a)

(61b)

where nowυ(t) is the input and u(t) is the output, provided of
course thatW (υ) is nonsingular. We assume the η-dynamics
to be sufficiently stable, cf. Eq. (11). The problemwewant to
address is as follows. What class of hypothetical high-level
models ΣH , from input conductances u to output conduc-
tances y, would result in a realizable complementary model
ΣC?

The high-level model The above problem may be too ambi-
tious to solve in general. However, the least we can do is
establish a class of hypothetical high-level models that could
be realized, in principle, by a pair of neuronswith two distinct
input conductances each (Fig. 11). Such high-level models of
canonical or local circuits can be used as building blocks for
larger networks, in a way similar to Fig. 9. Hence, we restrict
ourselves to the case where W is given by:

W (υ) =
[

w1(p1 − υ1) w2(p2 − υ1)

w1(p3 − υ2) w2(p4 − υ2)

]
, (62)

wherew1, w2 > 0, and p1, p2, p3 and p4 are such thatW (υ)

is nonsingular for the normal range of membrane potentials.
Note that this allows for both excitatory and inhibitory inputs.
Also note that, in this case, the complementary model repre-
sents a synaptic system that consists of at least two synapses,
and, depending on the number of receiving neurons and
synaptic sites, it may consist of many more. We first con-
sider a subclass of high-level models consisting of models of
the form:

ΣH :

⎧⎪⎪⎨
⎪⎪⎩

ζ̇ = f (ζ ) + w1u1 + w2u2︸ ︷︷ ︸
guy1 = h1(ζ )

y2 = h2(ζ ),

(63a)

(63b)

(63c)

where ζ(t) is a one-dimensional state, the maps h1 and
h2 are such that the output conductances y1 and y2 are

nonnegative, i.e., such that yi ≥ 0, and the specific input
conductances u1 and u2 each represent a total input conduc-
tance resulting from other neurons or receptors. This time,
parameters from the given model, namely the dimensionless
strengths or efficaciesw1 andw2, appear explicitly as param-
eters in the hypothesis (63), i.e., in terms of (43), we have
g(ζ ) ≡ [w1 w2].

The complementary model of the synaptic system Combin-
ingEqs. (61) and (63),wefind that the complementarymodel
ΣC = ΣH ◦ Σ−1

G is given by:

żk︷ ︸︸ ︷
ζ̇ − Cg [W (υ)]−1 υ̇ = f (ζ ) + g [W (υ)]−1 I (υ, η) (64a)

η̇ = q(υ, η) (64b)

y = h(ζ ) , (64c)

with:

g[W (υ)]−1 = w1w2

det(W (υ))

[
p4− p3 p1− p2

]
, (65)

for W as in (62), and with υ(t) the input potentials, and y(t)
the output conductances (Fig. 11). As indicated by the żk-
label above, this model can be given a state-space realization
by changing coordinates.

An explicit realization In order to find a state-space real-
ization for the above complementary model, consider the
transformation z = Ψυ(ζ, η) = (η, ψυ(ζ )) where the last
coordinate, the kth coordinate, is given by:

zk = ψυ(ζ ) = ζ + C ln | det(W (υ))| (66)

and the other n times d coordinates are given by z j = η j ,
hence, k = n · d + 1. The inverse transformation (ζ, η) =
Ψ −1

υ (z) is specified by:

ζ = ψ−1
υ (zk) = zk − C ln | det(W (υ))| . (67)

This transformation (remark 7) results in an explicit realiza-
tion given by:

ΣC :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

η̇ = q(υ, η)

żk = f
(
ψ−1

υ (zk)
)

+ g [W (υ)]−1 I (υ, η)

y = h
(
ψ−1

υ (zk)
)

(68a)

(68b)

(68c)

or

ż =
[

q(υ, z1, . . . , znd)
f
(
ψ−1

υ (zk)
)+ g [W (υ)]−1I (υ, z1, . . . , znd)

]
(69a)

y = h
(
ψ−1

υ (zk)
)

, (69b)
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which is clearly of the form (1). Note that, in general, the
two distinct postsynaptic conductances y1 and y2 result from
the presynaptic potentials υ1 and υ2 of both neurons. In sum,
the nonlinear cascade ΣC ◦ ΣG reduces to ΣH , and one is
still free to postulate any hypothetical, high-level model of
the form (63) by specifying f , h1, and h2.

It is straight forward to generalize the above results for the
subclass of models of the form (63) to a more general class
of high-level models of the form:

ΣH :

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ζ̇1 = f1(ζ )
...

ζ̇m−1 = fm−1(ζ )

ζ̇m = fm(ζ ) + w1u1 + w2u2

y = h(ζ ),

(70a)

(70b)

(70c)

(70d)

where ζ(t) is now anm-dimensional state and the output y(t)
consists of an arbitrary number of distinct, specific output
conductances. Recall however that the key is to keep the
hypothetical, high-level model as simple as possible.

Notes on verification One of the main strengths of our
method is that it can be used even when information is only
partially available. Hence, instead of adding to the large body
of data in the literature, we can use it to summarize such
data with theory. Eventually however, we want to verify the
unmeasured responses predicted by the hypothesis against
data. If it is at all possible to find a circuit in neurobiology
that corresponds well to our pair of neurons (Fig. 11) and that
is suitable for experimentation, then, in order to verify the
complementary model against synaptic data, there is still the
problem of distinguishing between synaptic conductances
with distinct reversal potentials. One approach could be to
keep the presynaptic potential of one of the neurons at rest,
and use pharmacological blockers to distinguish between dis-
tinct conductances in response to presynaptic depolarizations
or hyperpolarizations of the other neuron.

Remark 7 Note that Ψυ is a transformation in only a single
coordinate (up to a reordering for convenient indexing) and
that zk is a particular solution of the system of PDE’s (52),
where b, corresponding to the expression (48) in (45), reads:

b(x) =

⎡
⎢⎢⎢⎢⎢⎢⎣

Cg[W (υ)]−1

0 0
...

...

0 0
1 0
0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

, with x = (ζ, η, υ) . (71)

Since ∂b/∂η ≡ 0 (the derivative of the i th column of b with
respect to η satisfies ∂bi/∂η ≡ 0), this system of PDE’s is

trivially satisfied by the other coordinates z j = η j , and the
system reduces to:

[
∂zk
∂ζ

∂zk
∂η1

· · · ∂zk
∂ηnd

∂zk
∂υ1

∂zk
∂υ2

]
b(x) = [

0 0
]

. (72)

Of course, one can check that the columns b1(x) and b2(x)
of b(x) indeed satisfy the realizability condition (49).

A.3 Networks from potential to potential

As an application of the general result in Sect. 4.2, we now
consider voltage-to-voltage networks where the given model
of the second subsystem consists of several neurons with
ion-specific input conductances.

A given model consisting of several neurons For right invert-
ibility, the given model needs to have at least as many inputs
as outputs. Hence, we extend the model (9) to accommodate
for this. This results in a given model of the form:

ΣG :
⎧⎨
⎩
C υ̇i = −Ii (υi , ηi ) +

∑
j

wi j (pi j − υi )︸ ︷︷ ︸
Wi j (υ)

γ j (t)

η̇i = qi (υi , ηi ),

(73a)

(73b)

where the index i runs over the number of neurons d and the
index j runs over the number N of distinct, synaptic reversal
potentials per neuron. Each synaptic conductance γ j ≥ 0
with dimensionless efficacy or strength wi j ≥ 0 represents
the total, summed conductance, with specific driving force
pi j − υi , resulting from other neurons, cf. (9). Finally, for
right invertibility we require N ≥ d. (The latter may seem
restrictive, but it is only required to hold for the high-level
building block itself. By construction, our high-level models
allow for feedback connections; hence, they can be wired-up
into networks consisting of a large number of neurons). Here,
we take the number of input conductances γ j and the number
of output potentials υi to be the same for convenience, i.e.,
N = d. In vector form, the model reads:

ΣG :
⎧⎨
⎩

υ̇ = 1

C
{W (υ)γ (t) − I (υ, η)} =: Ξυ,η(γ )

η̇ = q(υ, η),

(74a)

(74b)

where the output υ(t) and the input γ (t) are both d-
dimensional, and η(t) is (n · d)-dimensional, with n the
collective number of activation and inactivation variables per
neuron. Its inverse is given by:
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Fig. 12 Left a schematic representation of a minimal canonical cir-
cuit with input potentials u(t) and output potentials υ(t). Each neuron
‘receives’ two distinct input conductances γ1 and γ2 from an arbitrary
number of neurons.Right the circuit represented as a cascade of subsys-
tems together with its high-level representation. Such high-level models
can be used as building blocks in the construction of networkswith feed-
back connections

Σ−1
G :

{
η̇ = q(υ, η)

γ = [W (υ)]−1{C υ̇ + I (υ, η)} =: Ξ−1
υ,η(υ̇),

(75a)

(75b)

where now υ(t) is the input and γ (t) is the output, provided
of course that W (υ) is nonsingular for the normal range of
membrane potentials. The η-dynamics are assumed to be suf-
ficiently stable, cf. Eq. (11). The problem we want to address
is as follows. What class of hypothetical high-level mod-
els ΣH , from input potentials u(t) to output potentials υ(t),
would result in a realizable complementary model ΣC?

The general form of the high-level model For a given model
consisting of d neurons with d distinct input conductances
each, we now establish a class of hypothetical, high-level
models for which a state-space realization of the com-
plementary model can be derived explicitly. A schematic
representation is depicted in Fig. 12 for d = 2, and for an
arbitrary number of input potentials ui . Note that this allows
for neurons with both excitatory and inhibitory inputs. Also
note that, in this case, the complementary model represents
a synaptic system that consists of at least d synapses, and,
depending on the number of input potentials ui , itmay consist
of many more. Such high-level models of canonical or local
circuits can be used as building blocks for larger networks.
For instance, note that in Fig. 12 one can easily connect υ1
to u1 so that u1 = υ1. Furthermore, for d > 2 the num-
ber of possible canonical or local circuits quickly increases.
The proposed class of realizable high-level models is quite
general and consists of models of the form:

ΣH :
{

ζ̇ = Z(ζ, u)

υ = h(ζ ),

(76a)

(76b)

where ζ(t) is a suitably initialized state of arbitrary dimen-
sion, u(t) is an input of arbitrary dimension, and υ(t) is a
d-dimensional output, cf. (39). The latter two both consist of
membrane potentials. Recall that, even though ΣH is very

general, the aim is to keep the hypothesis ΣH as simple as
possible.

The complementary model We can now explicitly derive a
realization of the complementary model. Using (76), we can
replace each υ in (75) with h(ζ ) and each υ̇ with ∂h

∂ζ
Z(ζ, u)

to obtain a realization of the complementary model ΣC =
Σ−1

G ◦ ΣH , which is explicitly given by:

ζ̇ = Z(ζ, u) (77a)

η̇ = q (h(ζ ), η) (77b)

γ = [W (h(ζ ))]−1
{
C

∂h

∂ζ
Z(ζ, u) + I (h(ζ ), η)

}
, (77c)

with u(t) the input potentials, γ (t) the output conductances,
and (ζ(t), η(t)) the state. In sum, the nonlinear cascadeΣG ◦
ΣC reduces to ΣH , and one is still free to postulate any
hypothetical high-level model of the form (76).

Notes on verification One of the main strengths of our
method is that it can be used even when information is only
partially available. Hence, instead of adding to the large body
of data in the literature, we can use it to summarize such data
with theory. However, we do not only want to fit the available
data; eventually,we alsowant to verify againstmeasurements
those responses of the complementary model that are pre-
dicted by the high-level hypothetical model. Although the
explicit realization (77) allows for a wide range of hypothe-
ses of the form (76), when it comes to verification, there is
still the problem of distinguishing between synaptic conduc-
tanceswith distinct reversal potentials (if it is at all possible to
find a circuit in neurobiology suitable for experimentation).
Such distinctions are not always easily made experimentally.
It is probably a good idea to start with a single graded, non-
impulsive neuron (cf. remark 4) that is thought to be the target
of two distinct neurotransmitters, and for which a satisfac-
tory model with two distinct synaptic conductances is given.
In other words, d = 1, N = 2 and W (υ) is of the form:

W (υ) = [w1(υ) w2(υ)]. (78)

Hence, its inverse in (75b) represents a (non-unique) right
inverse such as:

[W (υ)]−1
R = 1

‖W (υ)‖2
[

w1(υ)

w2(υ)

]
, (79)

so thatW (υ) [W (υ)]−1
R = 1, for ‖W (υ)‖2 �= 0. In this case,

one approach could be to keep the postsynaptic potential υ

of the neuron at rest, and use pharmacological blockers to
distinguish between distinct conductances γ1(t) and γ2(t)
in response to presynaptic depolarizations or hyperpolariza-
tions u(t).
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