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Abstract Motor systems must adapt to perturbations and
changing conditions both within and outside the body. We
refer to the ability of a system to maintain performance
despite perturbations as “robustness,” and the ability of a
system to deploy alternative strategies that improve fitness as
“flexibility.” Different classes of pattern-generating circuits
yield dynamics with differential sensitivities to perturba-
tions and parameter variation. Depending on the task and
the type of perturbation, high sensitivity can either facili-
tate or hinder robustness and flexibility. Here we explore the
role of multiple coexisting oscillatory modes and sensory
feedback in allowing multiphasic motor pattern generation
to be both robust and flexible. As a concrete example, we
focus on a nominal neuromechanical model of triphasic
motor patterns in the feeding apparatus of the marine mol-
lusk Aplysia californica. We find that the model can operate
within two distinct oscillatory modes and that the system
exhibits bistability between the two. In the “heteroclinic
mode,” higher sensitivity makes the system more robust to
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changingmechanical loads, but less robust to internal param-
eter variations. In the “limit cycle mode,” lower sensitivity
makes the system more robust to changes in internal param-
eter values, but less robust to changes in mechanical load.
Finally, we show that overall performance on a variable
feeding task is improved when the system can flexibly tran-
sition between oscillatory modes in response to the changing
demands of the task. Thus, our results suggest that the inter-
play of sensory feedback and multiple oscillatory modes can
allow motor systems to be both robust and flexible in a vari-
able environment.

Keywords Adaptive behavior · Aplysia · Central pattern
generator · Sensory feedback · Heteroclinic channel ·
Limit cycle · Multistability

1 Introduction

A remarkable feature of animal behavior is the extent to
which motor control is both robust and flexible. Intuitively,
both terms refer to the ability of motor systems to adapt to
change, either in the environment, in the task, or within the
body and nervous system. Adaptability in the face of change
is critical for survival, since animals must perform a variety
of motor tasks in complex, dynamic environments. More-
over, the internal neural, synaptic, and muscular parameters
involved in generatingmotor patterns typically vary over both
short and long timescales due to a diverse range of processes,
including growth and development, neuromodulation, learn-
ing, noise, injury, and disease. Adapting to change requires
that the dynamics of motor systems be selectively sensitive
to some perturbations but not others, and the types of pertur-
bations that need to be responded to or filtered out change
over time.
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How can one understand these mechanisms of adaptabil-
ity?To achieve this goal,wefirst propose definitions to clarify
key terms used in describing the adaptability of motor sys-
tems, specifically systems that generate multiphasic motor
rhythms, which are ubiquitous throughout biology. We then
discuss how sensory feedback and the coexistence of multi-
ple stable dynamical oscillatorymodes can facilitate adaptive
behavior. Furthermore, we argue that oscillatorymodes com-
prising a stable limit cycle passing close to one or several
saddle fixed points (a stable heteroclinic channel) can provide
a particularly effective way for a central pattern-generating
circuit to incorporate sensory feedback. Finally, we use a
minimal neuromechanical model of triphasic motor pattern
generation in theAplysia feeding system as a concrete setting
in which to demonstrate these ideas.

1.1 Robustness, flexibility, and sensitivity

The challenge of understanding the complex mechanisms
involved in the adaptability of motor systems is exacerbated
by the lack of a consistent vocabulary. The terms “robust-
ness,” “flexibility,” and “sensitivity” are found throughout
the biological and robotic motor control literature (Selver-
ston 2010; Marder and Goaillard 2006), but are often used
interchangeably, inconsistently or are left undefined. One
factor contributing to this confusion is the interdisciplinary
nature of motor control research, which draws upon knowl-
edge and tools from neuroscience, biology, engineering, and
applied mathematics. Researchers from different fields often
use discipline-specific and nonoverlapping definitions for
these terms (Lesne 2008;Kitano 2004; Zhou andDoyle 1998;
Meir et al. 2002).Another difficulty stems from the fact that in
common usage, “robust” and “flexible” are often used inter-
changeably. In order to disambiguate these terms,we propose
the following definitions. In “Appendix 1” we revisit them in
a dynamical systems framework.

We define the robustness of a motor system with respect
to a perturbation of its state variables or internal parame-
ters as the ability of the motor system to maintain its fitness
in performing a task in the presence of the perturbation.
Evaluating the robustness of a system requires a measure of
task-specific fitness.1 Given such a measure, we can quantify
the robustness of a motor system by introducing a perturba-
tion and comparing the performance of the perturbed system
to that of the unperturbed system. A more robust system
will exhibit a less dramatic degradation in performance in
response to the perturbation than a system that is less robust.
For example, if task performance is measured in terms of
walking speed during locomotion, animals that are robust

1 Here we use the term “fitness” to refer to the performance of a motor
system on a specific task, not the overall success of the organism in
terms of survival and reproduction.

with respect to the addition of a load will show only a mod-
est reduction in walking speed when the load is applied.
In a general setting this notion of robustness parallels the
notion of homeostasis (Nijhout et al. 2004; Nijhout and Reed
2014) which can be interpreted mathematically in terms of
invariances (or approximate invariances) of functionals of
vector fields to changes in parameters (Golubitsky and Stew-
art 2016).

We define flexibility as the ability of a motor system to
deploy alternative strategies in order to perform better on
different tasks or to respond to changes in the task require-
ments. A motor system that produces the same behavioral
output, even if better strategies are available, is less flexi-
ble than one that can select an appropriate strategy from a
larger repertoire of possible behaviors. Like robustness, flex-
ibility is evaluated with respect to a measure of behavioral
performance. However, flexibility allows motor systems to
improve fitness by adjusting behavioral output in response
to perturbations, whereas robustness buffers against reduc-
tions in fitness by filtering out perturbations. Note that the
ability to change strategies alone is an insufficient criteria
for flexibility—our definition also requires that the change
in strategy produces an improvement in performance over
the original strategy. Thus, for example, in traveling through
rough, sloping, and irregular terrain, theremay be timeswhen
crawling, or using one’s hands as well as one’s legs to find
footholds and handholdsmay be needed in addition to regular
walkingmovements, and these variations in locomotion strat-
egy enhance the overall fitness (i.e., the distance covered).
Since the human locomotory system is capable of improving
its performance by changing strategies in response to varying
conditions, we say that it is a flexible motor system.

Another important concept that may help us characterize
robustness and flexibility is sensitivity. Sensitivity describes
the extent to which the dynamics of a motor system change
in response to perturbations or parameter variations. Unlike
robustness and flexibility, which are measured in terms of
behavioral fitness, sensitivity refers only to the responsive-
ness of a system to perturbations. Sensitivity to perturbations
can be either beneficial, detrimental, or neutral with respect
to task performance, and sensitivity refers only to the mag-
nitude of the response to a perturbation, rather than its effect
on fitness. In some contexts, high sensitivity may impair
robustness by amplifying the effects of small, task-irrelevant
perturbations or by causing a system to fail if a parame-
ter falls outside a narrow tolerable range. However, in other
contexts, high sensitivity (particularly to sensory inputs) can
allow the dynamics of a motor system to adapt to changes
in the environment, thereby facilitating flexibility. For exam-
ple, in the rodent whisking system, high sensitivity may be
detrimental to robustness during free whisking, but once the
whiskers encounter an obstacle or environmental boundary,
higher sensitivity may be required for accurately extracting
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Fig. 1 Dynamical architectures for motor pattern generation differ in
their responsiveness to sensory input. Left At one extreme, the endoge-
nous oscillatory dynamics generatedwithin the nervous system (cycling
arrows) drive the musculature (brain → body) and produce behav-
ior (body → environment). Mechanical perturbations (environment →
body) may have only weak effects on the central neural dynamics since
they are insensitive to sensory inputs (body → brain). This architecture
facilitates robustness in behaviors for which the sensitivity to internal
and external perturbations should be low, but can fail during behav-
iors that require high sensitivity to sensory inputs. Right In contrast, in
a sensory-driven pattern generator, the neural dynamics depend upon
appropriately timed sensory inputs to progress through the cycle, rather
than being driven by an endogenous pattern generator. This architecture
can facilitate robustness in behaviors that require the timing of motor
outputs to change in response to environmental conditions, since the
sensitivity to sensory input is high, but can fail for behaviors where
high sensitivity to sensory inputs or their absence is detrimental

the contours of the environment (Mitchinson et al. 2007;
Hartmann 2001).

1.2 Dynamical architectures, sensory integration, and
multifunctionality

Different classes of dynamical systems have been proposed
to describe motor pattern generation. These classes differ
significantly in their sensitivity to proprioceptive inputs and
parameter variations (Fig. 1). Recently, several authors have
explored a class of dynamical systems called a “stable hete-
roclinic channel” (SHC) (Afraimovich et al. 2004a,b). In an
SHC, a limit cycle passes in close proximity to one or more
saddle points. The presence of these fixed points near the
cycle creates localized regions where the dynamics become
slow, thereby allowing sensory feedback to slow or even stop
the progress of the cycle in specific phases, by either moving
the trajectory closer to the fixed points or forcing a collision
with a boundary in phase space (Shaw et al. 2012, 2015).
Consequently, SHC-basedmodels can produce reliable oscil-
lations in the absence of sensory feedbackwhile still retaining
sensitivity to sensory feedback.

Many motor systems are multifunctional, and the various
tasks they perform may have different requirements for sen-
sitivity to sensory feedback. Such motor systems must be

flexible to meet these requirements. How can a multifunc-
tional motor pattern generator flexibly adjust its sensitivity in
response to changing task demands? One possibility is that
sensory feedback can facilitate multifunctionality by trig-
gering a switch between coexisting stable attractors, or by
pushing a system through a bifurcation to produce qualita-
tively different motor outputs.

Here we propose that an SHC-based dynamical archi-
tecture can facilitate flexibility in a multifunctional motor
system by allowing for sensory feedback-triggered switch-
ing between low-sensitivity and high-sensitivity dynamics in
response to varying task demands.

Many rhythmic behaviors require an alternation between
a loaded phase (e.g., during stance, when a leg generates
ground reaction forces) and an unloaded phase (e.g., during
the swing phase of locomotion). These alternations emerge
from the limits on lengths of limbs and are completely gen-
eral. Because of its experimental tractability, we focus on a
specific example of rhythmic behavior, a neuromechanical
model of feeding behaviors in the marine mollusk Aplysia
californica, which must also alternate between a loaded
phase (when food is being drawn into the feeding appara-
tus) and an unloaded phase (when the feeding apparatus is
repositioned to grasp food).

Using our model, we demonstrate that, for a range of
parameters, two oscillatory modes coexist. We then show
that one mode is more robust to parametric perturbations of
sensory pathways, whereas the other is more robust to per-
turbations of the mechanical load. We also show that the
application of an external seaweed load can induce transi-
tions between the two oscillatory modes. Finally, we study
the performance of this model using a feeding taskwith time-
varying requirements, andwe show that the best performance
occurs when the system can flexibly transition between oscil-
latory modes as needed to facilitate either foraging for food
(biting) or ingesting grasped food (swallowing). Thus, we
demonstrate one possible mechanism by which even very
simple pattern-generating circuits produce behavior that is
both robust and flexible.

2 Methods and model description

2.1 Mathematical framework

To understand how animals produce robust and flexible
behavior in a variable environment, we must consider how
the nervous system interacts with the body and how the
system as a whole interacts with the outside world (Chiel
and Beer 1997). Therefore, our model incorporates both
neural and biomechanical components, with bidirectional
coupling between the two, aswell as interactions between the
biomechanical variables and the outside world in the form
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of externally applied loads. The neural activity drives the
behavior of the musculature, and sensory feedback, includ-
ing proprioceptive feedback about the state of the muscles,
in turn modifies the neural activity.

Systems of this general form can be described mathemati-
cally using the following set of equations adapted from Shaw
et al. (2015):

da
dt

= f (a) + g(a, x), (1)

dx
dt

= h(a, x) + l(x). (2)

Here a is a vector of neural activation variables, and x is a vec-
tor of mechanical state variables representing both the body
and the outside world. The intrinsic dynamics of the central
pattern generator are described by f (a), and sensory feed-
back from the mechanical variables perturbs these dynamics
through the term g(a, x). The neurally driven dynamics of
the mechanical variables are given by h(a, x), which are also
subject to external mechanical loads as described by the term
l(x).

2.2 Model overview

Here we focus on one specific instance of a multiphasic
pattern-generating neuromechanical system, namely amodel
of feeding behaviors in the herbivorous marine mollusk
Aplysia californica. The mathematical framework described
here, however, is sufficiently general to be applied to a broad

range of multiphasic pattern generators. We focus on Aplysia
because it is an experimentally tractable model organism,
making experimental tests of our model’s predictions feasi-
ble.

Aplysia californica feeds on seaweed. The animal uses
an organ located in its head called the buccal mass, or
feeding apparatus, to pull seaweed into its mouth during
feeding. A grasper structure (the radula-odontophore) within
the buccal mass is capable of moving forward toward the
jaws (protraction), closing on food,moving backward toward
the esophagus (retraction), and opening to release the food.
These movements repeat cyclically during ingestive behav-
ior. The grasper will frequently close before protraction ends
(Cullins et al. 2015).

In the model, as a consequence of the dynamics that we
will describe below, ingestive behaviors can be divided into
three major phases: (1) forward movement of the grasper
while open (protraction-open), (2) forward movement of the
grasper while closed (protraction-closed), and (3) backward
movement of the grasper while closed (retraction-closed).
This sequence is illustrated schematically in Fig. 2a. Tripha-
sic motor patterns of this sort are found in a number of
vertebrate and invertebrate systems (Marder 2000; Rubin
et al. 2009).

In ourmodel, we simulate the neural pattern generator that
drives this behavior using a simplified firing rate description
of three mutually inhibitory neural pools. These pools acti-
vate in a fixed sequence and correspond to the three phases of
swallowing. Since the muscles respond slowly, the grasper

A B

Fig. 2 Phases of ingestive behavior and neural pool-muscle relation-
ships in the model. a Ingestive behaviors in the model can be divided
into three major phases, depending on the direction of movement and
state (open or closed) of the grasper: protraction while open (1), pro-
traction while closed (2), and retraction (3). The grasper (red) is moved
anteriorly (to the right) by the contraction of the sheet-like protractor
muscle (I2; blue). The grasper is moved posteriorly (to the left) by the
contraction of the ring-like retractor muscle (I3; yellow). A section of
the retractor muscles has been cut away so that the grasper is visible.
The green strand is seaweed, with the arrows indicating seaweedmove-
ment. bThe protractor muscle is activated by the a0 and a1 neural pools,

and the retractor muscle is activated by the a2 neural pool. The grasper
is closed if the sum a1 +a2 exceeds a specified threshold and open oth-
erwise. The protraction-open phase corresponds to a0 > max{a1, a2},
the protraction-closed phase corresponds to a1 > max{a0, a2}, and the
retraction-closed phase corresponds to a2 > max{a0, a1}. As each neu-
ral pool activates in turn, it inhibits the neural pool preceding it in the
sequence. This, in combination with weak endogenous excitation in
each neural pool, is sufficient to create periodic activation that drives
ingestive behavior. Figure adapted from Shaw et al. (2015) (color figure
online)
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position lags behind the neural signal activating the muscles.
Thus, the first and second neural pools (a0 and a1) activate
the protraction muscle (the I2 muscle), and their activity
induces the protraction-open and protraction-closed phases,
respectively. The third pool (a2) activates the retractormuscle
(the I3 muscle), and its activity induces the retraction-closed
phase. Biologically, these three pools represent the activity
of (potentially overlapping) collections ofmotor neurons and
interneurons. For example, the a0 neural pool includes the
B31, B32, B61, B62, and B63 neurons, the a1 neural pool
includes these sameneuronswith the additionof theB8motor
neurons (which receives slow excitation from B34), and the
a2 neural pool includes B64, B3, B6, B9, and the B8 motor
neurons (which are excited by B64). The grasper opens or
closes when the summed activity of the second and third
pools crosses a predetermined threshold (here set to 0.5).
The relationship between the neural pools and the different
phases of the swallowing cycle is illustrated in schematic
form in Fig. 2b.

Ourmodel also includes twomuscles that work antagonis-
tically to move the grasper: a protractor muscle representing
I2 and a retractor muscle representing I3, both of which have
unique nonlinear length-tension curves. Muscles operate at
slower timescales than neurons, and thus, muscle activation
depends on a low-pass-filtered version of the neural activity.
We make the assumption, based on experimental obser-
vations, that the biomechanical variables are overdamped,
which allows us to simplify the equations for the movement
of the grasper in response to muscular forces.

The governing equations and details of each aspect of
our model are described below. Tables of state variables
and model parameters are provided in “Appendix 2.” Sim-
ulation codes for this paper were written in C++ and
Mathematica and are available on GitHub (https://github.
com/CWRUChielLab/Lyttle_et_al_2017_code).

2.3 Neural model

The dynamics of the neural state variables a are a combina-
tion of the intrinsic dynamics of the circuit, f (a), and sensory
inputs, g(a, x). For simplicity, we assume that these effects
sum linearly (see Eq. 1).

2.3.1 Intrinsic circuit dynamics

Our model nervous system consists of a sequence of three
neural pools, connected such that each pool is inhibited by
the next one in the sequence (see Fig. 2b). A systemof Lotka–
Volterra equations describes their intrinsic dynamics:

f0(a) = 1

τa
(a0(1 − a0 − γ a1) + μ), (3)

f1(a) = 1

τa
(a1(1 − a1 − γ a2) + μ), (4)

f2(a) = 1

τa
(a2(1 − a2 − γ a0) + μ). (5)

This Lotka–Volterra-based model of the neural dynamics
is motivated by the observation that the motor patterns in
Aplysia are driven by groups of self-exciting cells inhibiting
other groups of self-exciting cells (Kabotyanski et al. 1993).
Equations of this type have previously been used to model
inhibitory neural networks in several contexts, including the
generation of motor behaviors in mollusks (Rabinovich et al.
2001; Varona et al. 2002; Levi et al. 2004).

Here τa is the time constant of the neural dynamics, γ con-
trols the strength of the inhibitory connections betweenpools,
and μ is a small positive parameter representing endogenous
excitation. Neural excitability in the Aplysia cerebral and
buccal ganglia (represented here by μ) can be influenced by
factors such as temperature, or the action of neuromodulators
representing arousal. For example, the release of serotonin
by the metacerebral cell modulates excitability in buccal
ganglion cells, increases the frequency of rhythmic motor
patterns, and has been linked to food-induced arousal states
in vivo (Kupfermann et al. 1979). When μ = 0, the intrinsic
neural dynamics contain a stable heteroclinic cycle with an
infinite period. For positive μ, the isolated neural dynamics
contain a stable limit cycle with a finite period that passes
near a sequence of three fixed points, referred to as a stable
heteroclinic channel (SHC) (Rabinovich et al. 2008). Increas-
ing μ increases the distance between the limit cycle and the
fixed points and speeds up the oscillation frequency of the
limit cycle.

2.3.2 Sensory feedback

We use a simple description of the sensory input to the ner-
vous system which is the sum of two components: the first
is proprioceptive feedback dependent on the position of the
grasper, and the second is tactile and chemical sensory infor-
mation signaling the presence or absence of seaweed in the
buccal cavity. The proprioceptive input takes the form of a
linear function of the grasper position, given by

ε(xr − Si )σi ,

where xr ∈ [0, 1] is the position of the grasper. Si deter-
mines the position where the proprioceptive input to the i th
neural pool is zero, ε is a constant parameter that controls the
overall strength of the input, and σi ∈ {−1, 1} is the direc-
tion of proprioceptive feedback for the i th neural pool. These
parameters are set such that the a0 protraction pool is excited
when the grasper is retracted (when it is time to protract) and
inhibited when it is protracted (when it is time to retract); the
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a1 protraction and closing pool and, more strongly, the a2
retraction and closing pool are excited when the grasper is
protracted (when it is time to close and retract) and inhibited
when the grasper is retracted (when it is time to open and
protract).

In later simulations, we challenge the neuromechanical
model with a more realistic feeding task. In these simula-
tions, we allow for seaweed to sometimes be absent from
the buccal cavity. We introduce a second type of sensory
feedback, K , that provides the neuromechanical system with
feedback about the presence or absence of seaweed (in real
Aplysia, this sense is facilitated by mechano- and chemosen-
sors). We assume this seaweed-triggered input is additive
with the proprioceptive input previously described. When
seaweed is present in the buccal cavity, K = −κμ/τa acts to
inhibit all three neural pools equally;when seaweed is absent,
K = 0. The parameter κ ∈ [0, 1] represents the strength of
the seaweed-triggered inhibition relative to the endogenous
excitation μ. We model this seaweed-triggered input as an
inhibitory input so that the model will operate in the hetero-
clinic mode and exhibit more swallow-like behavior.

Thus, the full expression for the sensory input to the i th
neural pool is given by

gi (xr) = ε(xr − Si )σi + K . (6)

Unlike the general form presented in Eq. 1, this does not
depend on the states of the neural pools themselves.

2.3.3 Boundary conditions

The neural activation variables ai model the normalized fir-
ing rates of the neural pools, where ai = 0 indicates that
the neurons are inactive, and ai = 1 indicates that the neu-
rons are firing at maximum frequency. We assume that when
excitatory or inhibitory sensory feedback is received by neu-
ral pools that are, respectively, already firing at maximum
frequency or are inactive, the neural activation variables are
unaffected.

To enforce these assumptions, we apply strict rectifying
boundary conditions to the neural state variables to prevent
them from dropping below zero or exceeding one. Specif-
ically, whenever ai = 0 and fi (a) + gi (a, x) < 0, we set
dai
dt = 0, and when ai = 1 and fi (a) + gi (a, x) > 0, we set
dai
dt = 0. The presence of such rectifying boundary condi-
tions creates the possibility of nonsmooth border collisions
under variation of parameters, which can lead to a rich array
of dynamical effects (Simpson 2016).

2.4 Biomechanical model

We model the movement of the grasper by calculating
the forces generated by two sets of muscles acting antag-
onistically to move the grasper forward toward the jaws

(protraction, mediated by contraction of the I2 muscle) or
backward toward the esophagus (retraction,mediated by con-
traction of the I3 muscle; see Fig. 2).

Muscle activation is slow relative to the timescale of the
neural dynamics (Yu et al. 1999) and thus is modeled as a
low-pass-filtered version of the neural inputs:

du0
dt

= 1

τm
((a0 + a1)umax − u0), (7)

du1
dt

= 1

τm
(a2umax − u1). (8)

Here u0 and u1 are the activation variables for the protraction
and retractionmuscles, respectively, τm is the timeconstant of
muscle activation (with τa � τm), and umax is the maximum
muscle activation.

Wemodel the length-tension curves for eachmuscle using
a cubic polynomial:

φ(x) = −3
√
3

2
x(x − 1)(x + 1). (9)

This form of the length-tension curve produces zero force
when the muscles have length zero or one (representing the
maximum length). The scaling factor 3

√
3/2 normalizes the

function to a peak value of 1.
The net force exerted by the muscles is given by the dif-

ference in protractor and retractor muscle forces:

Fmusc = φ

(
c0 − xr

w0

)
u0 − φ

(
c1 − xr

w1

)
u1. (10)

Here ci and wi describe the mechanical (length-tension)
properties of each muscle. Net positive force moves the
grasper toward the jaws (protraction), and net negative force
moves the grasper toward the esophagus (retraction). The
signs on the terms are determined by the direction of force
exerted by the muscles: the I2 muscle (first term) protracts
the grasper when it contracts, whereas the I3 muscle (second
term) retracts the grasper. The parameters c0, w0, c1, and w1

were chosen based on biomechanical studies (Yu et al. 1999;
Neustadter et al. 2002; Sutton et al. 2004a; Novakovic et al.
2006) so that the force exerted by the posteriorly positioned
sheet-like I2 muscle is maximal when the grasper is fully
retracted and zero when the grasper is fully protracted; the
force exerted by the anteriorly positioned ring-like I3 muscle
is maximal when the grasper is near the middle of its range
and decreases as it is further protracted or retracted.

Coupling to the outside world is simulated by applying
a mechanical load to the grasper when it is in contact with
the seaweed. Specifically, when the grasper is closed on sea-
weed, the seaweed applies a resisting force, Fsw, that counters
inward movement during retraction, and which may vary in
time.
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Based on experimental observations of Aplysia grasper
movements, we assume that the dynamics governing grasper
motion are overdamped and thus use the following simplified
equation for the movement of the grasper [see the appendix
in Shaw et al. (2015) for a derivation]:

dxr
dt

=
{

Fmusc+Fsw
br

if closed on seaweed,
Fmusc
br

otherwise.
(11)

where br is a damping constant and the condition a1 + a2 >

0.5 corresponds to the grasper being closed; the grasper can
only be closed on seaweed if seaweed is present in the buccal
cavity.

2.5 Seaweed movement

When the grasper is closed on seaweed, the grasper and sea-
weed move together (i.e., there is no slippage between the
grasper and seaweed). When the grasper is open, we assume
the seaweed does notmove, even if Fsw > 0. This assumption
is supported by recent work in Aplysia demonstrating that
the jaws are capable of holding seaweed while the grasper is
open, preventing it from moving outward while under ten-
sion (McManus et al. 2014). Thus, the movement of seaweed
is governed by the following equation:

dxsw
dt

=
{

Fmusc+Fsw
br

if closed on seaweed,

0 otherwise.
(12)

2.6 Simulated feeding tasks

2.6.1 Continuous-swallowing task

For several of our simulations, we assess the performance of
the model using a pure swallowing task, assuming an infinite
strip of seaweed. In some of these simulations, the seaweed
force Fsw is assumed to be constant over the duration of the
simulation, but in other simulations, we explore the effects
of allowing the strength of the force to vary over time. For
all simulations involving the continuous-swallowing task, we
do not include the seaweed-triggered inhibition component
of the sensory feedback, since seaweed is always present in
the buccal cavity (essentially setting κ = 0).

2.6.2 Forage-and-feed task

For the simulations used at the end of Results section
(Sect. 3.4), we assess the performance of the model using
a forage-and-feed task that requires both biting and swal-
lowing. In the biting (“forage”) phase of this task, seaweed
is absent from the buccal cavity, and K = 0. The system
can grasp food and switch to the swallowing (“feed”) phase
according to the following rule: on every closure, the grasper

either fails to contact food or succeeds in grasping a finite
length of seaweed with some probability, here taken to be
p = 0.1. If the grasper succeeds in making contact with
seaweed, the task switches to the swallowing phase, and
K = −κμ/τa . The systemmust successfully swallow a fixed
length of seaweed (here set to L = 0.5 seaweed units), after
which it returns to the biting phase and attempts to grasp
another piece.

2.7 Quantifying robustness of the neuromechanical
feeding system

Our dynamical systems framework for analysis of robustness
and flexibility in motor pattern generation leads naturally
to empirically testable hypotheses involving experimentally
measurable quantities (Appendix 1). In this subsection we
show how the general framework presented there applies to
this particular system. For the neuromechanicalAplysia feed-
ing model performing the continuous-swallowing task, with
an idealized fitness measured by the net seaweed consump-
tion rate, the “fitness” depends only on the net displacement
of the grasper position during the grasper-closed component
of the trajectory, and the period of the limit cycle. Let�x0 be
the net change in grasper position while the grasper is closed
during one cycle under a nominal constant load λ0. If we
change the load from λ0 to λ0 + ε, then we see empirically
a roughly linear shift in �x , i.e.,

�x(ε) ≈ �x0 + ε�x1, (13)

for small ε. We also see empirically that there is an approxi-
mately linear change in the timing, i.e., in the duration T of
a complete trajectory,

T (ε) ≈ T0 + εT1, (14)

for small ε.2 Taking the average seaweed intake rate to be
our measure of fitness,

S = �x

T
(15)

we can expand S for small ε. Define S0 = �x0/T0. Then

S(ε) = �x(ε)

T (ε)
= �x0 + ε�x1 + O(ε2)

T0 + εT1 + O(ε2)

= S0 + εS0

(
�x1
�x0

− T1
T0

)
+ O(ε2), as ε → 0.

(16)

2 Simulations indicate that both �x and T can be reasonably approx-
imated as linear functions of load for the heteroclinic mode, the tuned
limit cycle mode, and the untuned limit cycle mode over at least the
range of total loads [0, 0.025].
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Therefore, the relative shift in intake rate per change in load,
for small ε, can be written in terms of the relative changes in
timing and grasper displacement,

1

S0

∂S

∂λ

∣∣∣∣
λ0

≈ 1

ε

S(ε) − S0
S0

= �x1
�x0

− T1
T0

+ O(ε), as ε → 0. (17)

We note that Eq. 17 gives two terms that can in principle be
measured and compared empirically from experimental data,
regardless of the internal details of the system. When a load
is applied, what is the shift in the open duration, the closed
duration, and the open movement and closed movement of
the grasper (and seaweed)? Is it true that on a swallow-by-
swallow basis, the distance retracted while closed is strongly
correlated with the duration of the entire motion (or the dura-
tion of the protraction-closed phase)? Although these are
empirical questions, we show how to address them in the
model (see below, Fig. 8).

3 Results

3.1 Multiple modes and bistability

When subjected to a constant load, our model can produce
two qualitatively different triphasic oscillatory behaviors that
exhibit different levels of sensitivity to sensory feedback. In
this section we demonstrate that these two modes can coex-
ist, and thus the system exhibits bistability. Furthermore, we
show that the likelihood of the system utilizing one oscil-
latory mode or the other depends on the strength of the
endogenous excitation (μ) relative to that of the sensory feed-
back (g(x)).

In Shaw et al. (2015) we showed that the neuromechani-
cal model described in Sects. 2.3–2.53 can produce the two
oscillatorymodes for different values of the endogenous exci-
tation parameter μ, which we will now briefly summarize.

In the first oscillatorymode,which ismore prevalentwhen
the endogenous excitation parameter μ is small, the system
has high sensitivity to sensory inputs, and its dynamics are
primarily sensory-driven. The limit cycle of the coupled neu-
romechanical systemprojected onto the neural state variables
(a0, a1, a2) passes close to one or more of the fixed points of
the isolated (uncoupled) neural dynamics ȧ = f (a). These
orbits are sensitive to perturbations from sensory feedback,

3 The model in Shaw et al. (2015) lacks seaweed-triggered inhibition
(the second term in Eq. 6). However, in that paper we explored only
the continuous-swallowing task, and this term is only relevant to the
forage-and-feed task. Thus, the inclusion of this term does not affect
the behavior of the oscillatory modes or the existence of bistability for
the continuous-swallowing task.

which can push the trajectory into or out of regions of phase
space near those fixed points in which the velocity is very
small. This can result in sensory feedback extending or trun-
cating specific phases of the motor pattern. We refer to this
oscillatory mode as the “heteroclinic mode,” since the neural
dynamics are strongly influenced by the stable heteroclinic
channel structure.

In the second oscillatory mode, which is more prevalent
when the endogenous excitation parameter μ is large, the
system is insensitive to sensory inputs, and its dynamics
are primarily centrally driven. The limit cycle components
(a0, a1, a2) of the coupled system remain relatively far from
the fixed points of the isolated neural dynamics, and conse-
quently the dynamics of the coupled system are much less
sensitive tomechanical load.We refer to this oscillatorymode
as the “limit cyclemode,” since the neural dynamics aremore
similar to that of a classic stable limit cycle.

In Shaw et al. (2015) we showed that a sudden transition
between the two modes occurs as the parameter μ varies
with initial conditions fixed (a bifurcation). In this paper, we
report the coexistence of the two oscillatory modes for fixed
values of μ in a narrow, intermediate range with varying
initial conditions (bistability).

To illustrate the bistability of the model and qualitative
differences between modes, we first show example trajecto-
ries obtained by running the model with the same parameter
values and different initial conditions (Fig. 3). The limit cycle
mode (left) is incapable of ingesting food because the neural
pools cycle too rapidly for the muscles, which act like low-
pass filters, to keep pace. Consequently, the grasper does not
move much. In contrast, seaweed is ingested successfully
in the heteroclinic mode (right) because the neural dynamics
temporarily slow during certain phases of the cycle, allowing
the muscles to catch up.

The mechanism responsible for temporarily slowing the
neural variables in the heteroclinic mode is inhibitory sen-
sory feedback overcoming endogenous neural excitation and
forcing the neural trajectory to collide with a boundary,
ai = 0, completely silencing one neural pool. This pro-
cess is illustrated in Fig. 4, which shows that the total input,
gi (xr)+μ/τa, for two neural pools becomes sufficiently neg-
ative during phases of the pattern in the heteroclinic mode
to halt neural cycling, allowing the muscles to catch up; this
never happens in the limit cycle mode.4

Intrinsic excitability can vary within a neural circuit, and
this shifts the availability of the different dynamical modes.
Since the model only enters the heteroclinic mode when the

4 Note that the net input becoming negative for a brief period does not
guarantee a collision with the boundary. If the neural trajectory is not
sufficiently close to the boundary when the negative input occurs, it
will miss the boundary and continue progressing through the cycle, as
shown in the top plot in Fig. 4.
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Fig. 3 Model of the Aplysia feeding apparatus has two coexisting sta-
ble oscillatory modes that exhibit distinct behaviors: the limit cycle
mode (left) and heteroclinic mode (right). In both cases, the task is
continuous-swallowing, the endogenous excitation μ = 10−5, and the
mechanical load Fsw = 0 is constant. The different behaviors are pro-
duced by using different initial conditions for the neural state variables:
(a0(0), a1(0), a2(0)) is (1 − 10−9, 10−9, 10−9) for the heteroclinic
mode and (0.2, 0.4, 0.7) for the limit cycle mode. Top panels Tra-
jectories of the three neural state variables a0, a1, and a2 (blue, red,
and yellow, respectively), and the position of the grasper (black when
open, thick dark greenwhen closed). In the limit cycle mode, the neural
dynamics are relatively insensitive to sensory feedback, so the durations
of the three phases of the motor pattern are short and approximately
equal. Since the muscles are slow to respond to changes in the neu-

ral variables (τm � τa), rapid neural cycling does not allow adequate
time for the muscles to develop strong forces or to fully relax, causing
the antagonistic muscles to be tonically moderately activated, and thus
movement is limited. In contrast, in the heteroclinic mode, the neural
dynamics are sensitive to and asymmetrically slowed by proprioceptive
feedback. The protraction-open (a0, blue) and retraction-closed (a2, yel-
low) phases last longer, resulting in a longer cycle period overall and
greater range of motion. Bottom panels Movement of the seaweed. In
the limit cycle mode, since the durations of the protraction-closed (a1,
red) and retraction-closed (a2, yellow) phases are approximately equal,
the grasper pushes seaweed outmore than it pulls seaweed in each cycle,
resulting in a net loss of food. In contrast, in the heteroclinic mode, the
retraction-closed phase is extended, and seaweed is consumed (color
figure online)

sensory input is able to overcome the endogenous excitation,
the system is more likely to be in the heteroclinic mode (i.e.,
its basin of attraction is larger) when the endogenous exci-
tation parameter μ is small and the load Fsw, which affects
sensory feedback, is large (see Fig. 5). Conversely, the basin
of attraction for the heteroclinic mode shrinks as μ increases
or as Fsw decreases.

Thus, we see that the system exhibits bistability across a
range of endogenous excitation (μ) and seaweed force (Fsw)
values, and that the two modes differ in their sensitivities to
sensory input. Moreover, increasing the endogenous excita-
tion makes the system more likely to be in the limit cycle
mode, whereas increasing the force (which creates stronger
proprioceptive feedback) makes the system more likely to
be in the heteroclinic mode. This suggests a possible mecha-
nism for flexibility in the model, if the system can transition
into the heteroclinic mode as a way of dealing with increased
seaweed force during swallowing. We discuss the functional
implications of this bistability-inducedflexibility in Sect. 3.4.

3.2 Sensitivity and robustness of the two modes with
respect to sensory parameters

A key difference between the oscillatory modes stems from
the different roles played by sensory feedback. We predicted

that the limit cycle mode (centrally driven) would be more
robust to perturbations of sensory parameters than the hete-
roclinic mode (sensory-driven). To test this, we focused on
parameters involved in the proprioceptive feedback terms
of the model equations, gi (xr) (Eq. 6). Specifically, we
perturbed the parameters Si governing how proprioceptive
feedback is integrated into the neural pools and measured
how these changes affected performance of the system (the
rate of seaweed consumption).5 As we expected, we found
that the centrally driven limit cycle mode6 is more robust
to parametric perturbations of the proprioceptive feedback
pathways than the sensory-driven heteroclinic mode (see
Fig. 6).

5 Biologically, we interpret these perturbations as changing the baseline
strengths of the different sensory pathways across the range of grasper
positions, which could be accomplished experimentally through lesion-
ing or the targeted application of modulatory compounds.
6 To facilitate direct comparisons of the robustness of the twomodes,we
first increased the endogenous excitation μ for the limit cycle mode to
10−4 to prevent changes to the proprioceptive feedback from switching
the system into the heteroclinic mode. We then tuned the time constants
of the limit cycle mode so that the performance is on par with that of the
heteroclinic mode (see “Tuned limit cycle mode parameters” section in
“Appendix 2”).
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Fig. 4 Mechanism distinguishing the two oscillatory modes. The key
difference is whether the neural variables collide with the boundaries.
This can occur when the proprioceptive feedback gi (xr) overcomes the
endogenous excitation μ/τa, such that the net input is negative. Plots
show the total inputs, gi (xr) + μ/τa, to the protraction-open (a0, blue)
and protraction-closed (a1, red) neural pools over one complete cycle in
the limit cycle mode (top) and in the heteroclinic mode (bottom). Here
the beginning of the cycle is defined as the onset of the a0 neural pool,
and time t = 0 corresponds to the closing of the grasper. Parameters and
initial conditions as in Fig. 3. The dashed lines indicate zero net input.
Bottom In the heteroclinic mode, the net input can become negative
due to the proprioceptive inputs overcoming the endogenous excitation
(downward arrows). If this net negative input is sufficiently strong, and
the neural state variable receiving it is sufficiently close to zero, the
trajectory of the neural variables will collide with the boundary ai = 0.
Collision with the boundary stops the cycling of the neural variables,
whichdoes not resumeuntil the grasper reaches the appropriate position,
releasing the neural pool from inhibitory proprioceptive input (upward
arrows). Top Such boundary collisions do not occur in the limit cycle
mode. Consequently, in this mode the neural cycle progresses almost
independently of the state of the biomechanical variables. Note that we
did not plot the total input to the a2 pool because it never overcomes the
endogenous excitation in either oscillatory mode (color figure online)

3.3 Sensitivity and robustness of the two oscillatory
modes to changes in mechanical load

In addition to internal perturbations, motor systems must be
robust to changes in external conditions, such as load. To
compare the robustness of the oscillatory modes to changing
load, we first compare their responses to a fixed load increase
for the continuous-swallowing task. Next, we compare their
feeding performance when subjected to loads that varied ran-
domly in time.

We find that the heteroclinic mode is more sensitive to
changes in load than is the limit cycle mode. Figure 7 shows

Fig. 5 Heteroclinic mode is more common than the limit cycle mode
when endogenous excitation is weak and load is large. The percentage
of initial conditions sampled for the neural pool variables converging
to the heteroclinic mode is plotted on the vertical axis (standard errors
are approximately 0.5% and are not shown). Each line corresponds to a
different value of a fixed resisting force. For each combination ofμ and
Fsw, 10,000 independent simulations were performed, each with initial
conditions for the three neural state variables sampled independently
and uniformly from within the unit cube. Initial conditions for the other
state variables were always the same: xr(0) = 0.5, u0(0) = 0, and
u1(0) = 0. For sufficiently small μ, virtually all initial conditions con-
verge to the heteroclinic mode. As μ increases, this proportion drops,
and for sufficiently large μ, almost all initial conditions converge to the
limit cycle mode. In contrast, as Fsw increases, this proportion increases
as long as μ is not too great. This is explained by the mechanism of
competing endogenous excitation and inhibitory sensory feedback (see
Fig. 4): since larger force evokes greater sensory feedback, net input to
a neural pool is more likely to become negative if Fsw is large and μ is
small

that, in the heteroclinic mode, the neuromechanical system
adapts to a load increase by lengthening certain phases of the
motor pattern, which allows the muscles to build up more
force to compensate for the increased load. In contrast, in the
limit cycle mode, the motor output is largely unchanged.7

How the heteroclinic mode compensates for load and
maintains performance in the continuous-swallowing task is
illustrated in Figs. 8 and 9.

Figure 8 shows time plots of the grasper position and the
net force applied to the grasper by the muscles before and
after a 40% increase in load. Unexpectedly, with higher load,
the amount of seaweed ingested each cycle increases by 4%.
This is made possible by a 25% increase in the integrated net
force (inward) generated by the muscles during the grasper-
closed period. At the same time, the total duration of one
cycle lengthens by 5%, reducing the fitness measure (length
of seaweed consumed per second). The net effect on fitness
is a decrease of 1%, an order of magnitude smaller than the
40% percent load increase. Thus, in the heteroclinic mode,

7 In fact, the pattern is slightly shorter.
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Fig. 6 Limit cycle mode is more robust to changes in sensory input
parameters than the heteroclinic mode. Plots show the rate of seaweed
intake in the continuous-swallowing task with Fsw = 0 across a range
of values (between −10% and +10% of their default values) for the
sensory input parameters Si . The blue, red, and yellow lines represent
the effect of varying the input parameters to the a0, a1, and a2 neural
pools, respectively. Right The slopes of the red and blue lines are sig-
nificantly steeper in the heteroclinic mode case, indicating that in this

mode, the performance of the model is more strongly affected by small
changes in parameter values. Left In comparison, the performance of
the limit cycle mode changes much less in response to varying sensory
input parameters. The limit cycle mode is more robust in the sense that
it is less susceptible to potentially deleterious changes in the param-
eters. Here the limit cycle mode has been tuned to have comparable
performance to that of the heteroclinic mode when the parameters are
unperturbed (color figure online)

Fig. 7 Heteroclinic mode is more responsive to changes in mechan-
ical load than the tuned limit cycle mode. All panels show the time
courses of the neural activity variables and position of the grasper for
one cycle in the continuous-swallowing task (time axes have the same
scale in all panels; see Fig. 3 for color key). Right In the heteroclinic

mode, the motor pattern adapts to an increase in load (from Fsw = 0
to Fsw = 0.1) by lengthening the durations of the protraction-open and
retraction-closed phases. Left In contrast, in the limit cycle mode, the
motor pattern does not change significantly in response to the same load
increase (color figure online)

the system compensates for the load increase by adjusting the
retraction phase of the motion to pull longer and stronger on
the seaweed stipe.

With reference to Eq. 17, themost elementary observation
concerning the mechanism of robustness shown here is that
�x1 and T1 have the same sign (i.e., both the amount of

123



36 Biol Cybern (2017) 111:25–47

Fig. 8 In the heteroclinic mode the system compensates for a load
increase by pulling longer and stronger during the retraction phase
of the motion. Plots show the change in grasper position (top) and net
muscle force applied (bottom; Eq. 10) before and after a 40% increase in
load while in the heteroclinic mode (μ = 10−5). Solid green lines load
condition Fsw = 0.05. Dashed black lines load condition Fsw = 0.07.
Thick segments grasper closed on seaweed. Thin segments grasper open.
Under the higher load, grasper displacement during the closed phase
(and hence seaweed displacement) increases by 4%, i.e., the grasper
takes in more seaweed per cycle. This is achieved by a 25% increase
in the integrated net force (inward) applied to the seaweed during the
grasper-closed period. At the same time the cycle time lengthens by 5%,
reducing the fitness measure (length of seaweed consumed per second).
The net effect on fitness is a decrease of 1%, an order of magnitude
smaller than the 40% percent load increase (color figure online)

seaweed ingested and the total cycle duration increased). In
contrast, for the untuned limit cycle case, �x1 and T1 have
opposite signs (not shown), so performance goes from bad to
significantly worse; the system does not “adapt” to the load.

Visualizing the trajectories of the state variables in phase
space allows us to investigate the effects of load on the
trajectory paths, independent of time. In general, a six-
dimensional, nonlinear, piecewise-smooth dynamical model
can be difficult to analyze. Fortunately, our model admits a
convenient pair of two-dimensional projections8 that signif-
icantly aid in qualitative analysis, as we now illustrate.

For the same simulations presented in Fig. 8,we plot a pro-
jection of the neural variables in Fig. 9, left. The heteroclinic
mode might have compensated for load by, for example,
decreasing the maximum activation of some of the neural

8 We observe for both oscillatory modes that the following equalities
are approximately true while the system is following a stable orbit:
a0 + a1 + a2 = 1, u0 + u1 = umax. By projecting the neural variables
onto the plane a0+a1+a2 = 1 (Fig. 9, left), we visualize their trajectory
in two dimensions without significant loss of information. Similarly, by
plotting grasper position against the quantity u0/umax (Fig. 9, right), we
visualize the approximate trajectory of the mechanical variables, where
values close to 1 of the latter quantity correspond to activation of the
protractor muscle, and values close to 0 to activation of the retractor
muscle.

pools, or allowing more than one neural pool to be partially
active simultaneously. However, we see in the phase space
plot that the low-load and high-load trajectories are indistin-
guishable, suggesting that the pattern of neural activity never
changes.

In Fig. 9, right, we plot a projection of the mechanical
variables. In this representation, differences in the trajectories
of the low-load (solid green) and high-load (dashed black)
orbits are very clear. When load is increased, the grasper is
pulled to a more protracted position shortly after closing on
seaweed (start of thick lines at tail of arrow), the retractor
muscle is activated more strongly (displacement to the left),
and the grasper moves to a more retracted position before
opening (end of thick lines). The trajectories converge while
the grasper is open.

Since the path of the trajectory in the neural projection is
not altered by a small load increase (Fig. 9, left), but muscle
activation andgrasper retraction amplitude is changed (Fig. 9,
right), this suggests that the locus of control allowing the
heteroclinic mode to maintain fitness when challenged with
load is primarily in the timing of transitions from one neural
fixed point to the next.

Howdoes the robustness of the heteroclinicmode compare
to the limit cycle mode when the load varies? We measured
the net seaweed intake over the course of an extended run
for the continuous-swallowing task, during which both the
heteroclinic mode and the tuned limit cycle mode were sub-
jected to equivalent load switching paradigms. The seaweed
load varied according to the following rule: on each closure,
the load changed with some probability (here set to 0.4).
Each time the load changed, the value of the seaweed force
was randomly reset to a value chosen from a uniform dis-
tribution on the interval 0 ≤ Fsw ≤ 0.1. We computed the
mean seaweed intake rate over the course of a 300-second
simulation, repeated for 1000 independent runs, for both the
tuned limit cycle mode and the heteroclinic mode. We found
that the average seaweed intake rate was significantly higher
(two-tailed t test, p < 10−16) in the heteroclinic mode (mean
= 0.75, standard deviation = 0.0006 lengths of seaweed per
second) than in the limit cycle mode (mean = 0.47, stan-
dard deviation = 0.006 lengths of seaweed per second). This
shows that the heteroclinic mode adapts better to changing
load conditions.

3.4 Multifunctionality and flexibility in feeding
performance

The flexibility of feeding in Aplysia is due to its ability to
switch from attempts to grasp food (biting) to consuming
food that has been grasped (swallowing). These two behav-
iors are required for successful feeding and have different
requirements for robustness. Can the two oscillatory modes
of the model be combined flexibly to generate higher overall
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Fig. 9 Robustness to load perturbations in the heteroclinic mode is
achieved through adjustments in the timing of neural activation, but
not the trajectory paths of the neural variables through phase space.
Panels show planar projections of the neural variables (left) and the
body variables (right) for two trajectories operating in the heteroclinic
mode (μ = 10−5) under different loads (as in Fig. 8). Solid green
lines load condition Fsw = 0.05. Dashed black lines load condition
Fsw = 0.07. Thick line segments grasper closed on seaweed. Thin line
segments grasper open. See footnote 8 for description of projections.

Arrows indicate the direction of cycling. Left In a planar projection of
the neural variables, the paths of the two trajectories are indistinguish-
able, and only their timing may differ. Right A planar projection of the
body variables shows that the heteroclinic mode responds to load by
increasing retractor muscle activation (left on the x-axis) and retracting
farther (down on the y-axis). Since the neural variables follow the same
path, the difference in their activity driving the changes in the body
variables is in the timing of transitions between the neural fixed points
(color figure online)

fitness? As shown in Sects. 3.2–3.3, the model can produce
rhythmic motor patterns in two distinct dynamical modes,
bothwith their ownadvantages: one ismore robust to changes
in the internal parameters (the limit cycle mode; see Fig. 6)
and one is more robust to changes in the external load (the
heteroclinic mode; see Fig. 7). Furthermore, as shown in
Sect. 3.1, the system ismultistable, and, when a load is time-
invariant, the two modes coexist for a range of values of the
endogenous excitation parameter μ and the seaweed force
Fsw (see Figs. 3, 5). We investigated the possible functional
advantages of sensory-driven switching between these two
modes by testing the model against the forage-and-feed task
(see Sect. 2.6.2), which requires both bite-like and swallow-
like behaviors.

Without further modification of the model, can it switch
between the two modes? Figure 10 shows that, even without
seaweed-triggered inhibition (κ = 0), contact with force-
loaded seaweed can trigger a transition from the limit cycle
mode to the heteroclinic mode, and that when the seaweed
is removed or consumed, the system will transition back to
the limit cycle mode. Such a situation can occur in Aplysia
when a freely biting animal succeeds in grasping seaweed
and transitions frombiting to swallowing (Kupfermann1974;
Weiss et al. 1986).

The model performs best on the forage-and-feed task
when it flexibly transitions back and forth between oscillatory
modes, depending on the presence of seaweed. Figures 11a1
(a heatmap representation) and 11a2 (a 3D surface plot repre-
sentation) plot the seaweed intake rate (S) of themodel under

these conditions for various combinations of endogenous
excitation (μ) and seaweed force (Fsw). When seaweed is
absent in the forage-and-feed task, performance is enhanced
if the model operates in the limit cycle mode for biting, since
cycling is more rapid in this mode and seaweed is likely to be
captured sooner. Once seaweed is captured, performance is
enhanced if the model switches to the heteroclinic mode for
swallowing, since only in this mode can it robustly respond
to load. The ridge that runs along the length of the Fsw-axis in
Fig. 11a2,which corresponds to the green region in Fig. 11a1,
shows that, across nearly all force values, there is a range of
intermediate μ values where performance is maximized by
the ability of the system to switch flexibly between oscilla-
tory modes.

3.4.1 Mechanism of improved performance in the
intermediate-μ regime

In general, the ability to transition between oscillatorymodes
affords a neuromechanical system a functional advantage
on complex tasks involving abrupt changes in behavioral
requirements, because each mode may be best suited to one
set of requirements. In our model, the heteroclinic mode is
better for swallowing, since the system can cope with the
increased load by increasing the duration of retraction. In
contrast, the limit cycle mode is better suited for the biting
component of the task, since the higher oscillation frequency
provides the model with more frequent opportunities to suc-
cessfully grasp seaweed. Thus, the best performance occurs
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Fig. 10 Transitions between oscillatory modes can be induced solely
by load. In this example of the forage-and-feed task, μ = 1.6 × 10−5,
κ = 0, all parameters other than load are constant, and seaweed was
placed in the buccal cavity for a predetermined period of time. The
system starts in the limit cycle mode without seaweed, biting rapidly.
As soon as the grasper closes on the force-loaded seaweed (“Load on”;
Fsw = 0.09), it is pulled forward by the force. One cycle later, the
system transitions to the heteroclinic mode because the increased pro-
traction triggers increased inhibitory proprioceptive feedback to the
protraction-open neural pool (a0, blue) that overcomes endogenous
excitation (see Fig. 4), allowing the retraction-closed neural pool (a2,
yellow) to remain active longer during the following retraction phase.
This results in greater retractor muscle force and an enhanced retraction
of the grasper, allowing the system to successfully overcome the load
on the seaweed and pull it inward. The enhanced retraction triggers
increased inhibitory proprioceptive feedback to the protraction-closed
neural pool (a1, red) that again overcomes endogenous excitation, and
the following protraction-open phase of the grasper movement is fur-
ther enhanced. This cycling in the heteroclinic mode continues until the
seaweed is removed (or consumed), after which the system transitions
back to the limit cycle mode. With κ = 0, this transition is not guaran-
teed to occur for all seaweed forces and is less likely to occur for weak
forces. See Fig. 3 for full color key (color figure online)

for values of μ large enough for the biting frequency to be
high in the absence of seaweed (when the seaweed-triggered
inhibition is inactive), but small enough for the seaweed-
triggered inhibition to cause a transition into the heteroclinic
mode when contact with the seaweed is made. This region
corresponds to the ridge in the surface shown in Fig. 11a2
and the light green region in Fig. 11a1.

To better understand this middle ground, we derive an
expression to approximate the mean seaweed consumption
rate on the forage-and-feed task (see “Appendix 3”). This
expression is derived from quantities measurable from simu-
lations of the model performing the continuous-swallowing

task: the mean bite period as a function ofμ (measured when
Fsw = 0) and the mean seaweed consumption rate as a func-
tion of μ (where all μ values are rescaled to the effective net
excitation μ∗ = μ(1 − κ) used in the forage-and-feed task
during swallowing) and Fsw.

Key features of the plots derived from the forage-and-feed
task, including the presence and location of the maximum
fitness ridge, are retained by this approximation (Fig. 11b).
The differences between Fig. 11a, b can be at least partially
attributed to the fact that our very simple approximation
assumes that transitions from one oscillatory mode to the
other are instantaneous; this is clearly not the case (e.g., see
Fig. 10).

4 Discussion

We have proposed a conceptual framework for understand-
ing how motor systems can reconcile the dual requirements
of robustness and flexibility, by exploiting a dynamical archi-
tecture withmultiple stablemodes and incorporating sensory
inputs. To illustrate these concepts, we have developed and
analyzed a minimal model of the Aplysia feeding system.
We have shown that this model is bistable and can operate in
two distinct oscillatory modes. Furthermore, we have shown
that there are advantages and disadvantages to each mode
with respect to their performance on different types of tasks,
and the extent to which they are robust to different types of
perturbations. In the limit cycle mode, the system is robust
to perturbations to sensory input parameters, but not to per-
turbations in load. Furthermore, in this mode, the system is
well suited for biting but not swallowing. In contrast, in the
heteroclinic mode, the system is not robust to perturbations
of the sensory input parameters, but is robust to perturbations
in load. This mode is well suited for swallowing, but not for
biting. Finally, we have demonstrated how the system can
exploit the bistability between these two modes, as a way of
behaving flexibly in the face of changing task demands.

Although ourmodel is capable of oscillatorymode switch-
ing triggered solely by an applied load (Fig. 10), it is unlikely
that real biological systems rely solely on this mechanism.
Producing the switching behavior in the model without
seaweed-triggered inhibition (κ = 0) requires careful tuning
of the parameters, making the switching somewhat fragile.
Moreover, it is unlikely that realAplysia rely solely on propri-
oceptive feedback about the grasper position for detecting the
presence of seaweed, since the buccal mass and surrounding
tissues contain a number of mechanical and chemical sens-
ing mechanisms (Borovikov et al. 2000; Rosen et al. 2000;
Cropper et al. 2004). These reasonsmotivated the inclusionof
seaweed-triggered inhibition in the model, which stabilized
the switching behavior across a greater range of parameters
(Fig. 11).
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Fig. 11 Fitness is maximized for the forage-and-feed task when the
system flexibly switches between oscillatory modes. Left Performance
of the model (seaweed intake rate, S) on the forage-and-feed task as a
function of endogenous excitation (μ) and seaweed force (Fsw), pre-
sented as a heat map (a1) and a 3D surface plot (a2). Here performance
is measured in terms of mean seaweed intake over a 300-second trial,
averaged over 500 trials for each set of parameter values. The strength
of the seaweed-triggered inhibition is fixed at κ = 0.5. Across nearly
the entire range of forces explored, mean seaweed intake peaks at a
nonzero μ value, forming the ridge that runs down the Fsw-axis of the
plot. This ridge corresponds to parameter combinations that allow for
flexible switching between oscillatorymodes. In contrast, whenμ is too
small, the system never leaves the heteroclinic mode, and performance

is moderate because biting is slow. Similarly, when μ is too large, the
seaweed-triggered inhibition is too weak to induce a switch into the het-
eroclinic mode, and the system operates only in the limit cycle mode,
which fails to swallow seaweed. Right Predicted performance of the
model on the forage-and-feed task based on measurements from the
continuous-swallowing task, presented as a heat map (b1) and a 3D
surface plot (b2). Equation 20 (see “Appendix 3”; L = 0.5, κ = 0.5,
p = 0.1 to match simulations) approximates the mean seaweed intake
rate and captures the key qualitative features of the numerically com-
puted plots (left), particularly the region of enhanced performance at
intermediate values of μ. Note that the range of μ values over which
this improvement occurs matches well with the numerical plots

4.1 Experimental tests of the theory

One way to test the validity of our model is to study how
the neural and mechanical behaviors of Aplysia change in
response to changing mechanical loads during feeding. Our

model predicts that Aplysia will adjust the durations of spe-
cificmotor phases in a continuous fashion for small increases
in load, butmay showmore dramatic changes in their patterns
of neural and mechanical activity, such as switching between
distinct dynamical modes, when changes in load are more
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drastic or sudden. Prior in vivo behavioral work indicates that
intact Aplysia switch strategies when adapting to mechanical
loads of different magnitudes during feeding (Hurwitz and
Susswein 1992). For low to moderate loads, feeding Aplysia
increases their interswallow interval durations, but for high
loads, Aplysia responds by cutting or releasing food (Hur-
witz and Susswein 1992). Recently, we have shown through
in vivo behavioral experiments thatAplysia responds to static
perturbations to the load (holding the seaweed fixed) by
specifically increasing the duration of the retraction phase
of swallowing (Shaw et al. 2015).

Experimental tests of the model will require the appropri-
ate biological interpretation of the control parameter μ. This
parameter controls the level of excitation in the three neural
pools, which plays a critical role in determining the oscilla-
tory mode of the system and the resulting behavior. Many
factors can affect excitability in the neurons responsible for
feeding behaviors in Aplysia, including internal noise within
the network, and the presence or absence of neuromodulators
that reflect the animal’s state of arousal. Therefore, one strat-
egy for experimentally testing the predictions of the model
would be to manipulate these variables and determine their
effects on behavior and patterns of neural activity (e.g., by
changing temperature in the case of intrinsic noise, or apply-
ing neuromodulators to the ganglia).

Additional tests of the model may involve recording
the activity of key buccal nerves and muscles in response
to systematically increasing mechanical loads during feed-
ing. Recent advances in experimental techniques present an
opportunity for testing the effects of mechanical loading on
the neural dynamics, through the simultaneous recording of
key nerves during behavior, either in vivo or in a semi-intact
preparation (McManus et al. 2012; Cullins and Chiel 2010).

4.2 Robustness through flexibility

Thedistinctionbetween robustness andflexibility depends on
the spatial and temporal scale of the behavior, as well as on
how fitness is measured. Flexibility at a fine level of descrip-
tion (very specific fitness measures) can facilitate robustness
at a more coarse-grained level of description (more general
fitness measures). For example, in our model, lengthening
retraction duration can be interpreted as a flexible response
at the level of individual motor pools, which in turn sup-
ports robustness of swallowing overall. Similarly, switching
between swallowing and biting is an example of flexibility at
the level of specific tasks (biting vs. swallowing), which sup-
ports robustness of feeding more generally. Thus, the system
achieves robustness through flexibility.

This view of robustness and flexibility as complementary
rather than contradictory properties of biological systems
parallels a position put forth by Lesne (2008). Lesne points
out that the adaptability of biological processes at one level

of description (e.g., cells and tissues) can contribute to the
robustness of processes at a higher level of description (e.g.,
individual organisms) and that this robustness can in turn
contribute to adaptability at an even higher of description
(e.g., populations) (Lesne 2008). This “nested” concept of
robustness and adaptability in biological systems provides a
particularly useful conceptual framework for understanding
Aplysia, since it is experimentally feasible to investigate pro-
cesses at multiple spatial and temporal scales, from the level
of cells and synapses up to the interaction of the entire animal
with its environment (Kandel 2009; Nargeot et al. 2007; Lu
et al. 2015).

4.3 Applications to other systems

Biological systems, from the level of intracellular protein net-
works to evolving populations,must strike a balance between
two seemingly contradictory demands: they must maintain
stable patterns of activity despite noise and perturbations
(robustness), but must also be able to adjust to changing
environmental conditions by pursuing alternate strategies
(flexibility). Mechanisms for achieving this balance have
been studied in a number of contexts other than neuroscience,
including genetic and metabolic networks, developmental
biology, circadian rhythms, cancer biology, ecology, andpop-
ulation genetics (Lesne 2008; Kitano 2004; Meir et al. 2002;
Akman et al. 2010; Kitano 2007; Hodgson et al. 2015; Ger-
hart et al. 1997; Hartwell et al. 1999).

Mathematical analysis within a dynamical systems frame-
work (cf. “Appendix 1”) allows lessons learned to apply
across domains. Nijhout et al. (2004) showed that allosteric
inhibition by folate substrates results in robustness of reac-
tion velocities (a measure of “fitness” of the folate cycle)
as total folate is reduced (representing a “challenge” to the
folate cycle, in the sense used in “Appendix 1”). The math-
ematical analysis of robust homeostasis in the folate cycle
involves identifying dynamical architectures for which the
sensitivity of the output of the system is small within a
relevant range of parameters (Nijhout and Reed 2014; Gol-
ubitsky and Stewart 2016). Related mechanisms have been
mathematically analyzed in systems responsible for regula-
tion of dopamine synthesis (Best et al. 2009), glutathione
regulation (Reed et al. 2008), and other metabolic systems
(Reed et al. 2010). At the same time, robust homeostasis
can reduce phenotypic variability, potentially slowing evo-
lution (Nijhout et al. 2014). The extensive range of contexts
in which these problems arise underscores the importance of
developing theoretical frameworks for understanding robust-
ness and flexibility.

Multiphasic motor patterns, and triphasic patterns in par-
ticular, are common among a wide range of motor systems.
The triphasic rhythm generated by stomatogastric ganglion
system is one well-studied example (Marder and Bucher
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2007). Triphasic patterns are also found in vertebrate respi-
ration (Marder 2000; Rubin et al. 2009), the cough response
of mammals (Wang et al. 2009), and elsewhere (Smith et al.
1991).

Different systems can exploit either robustness or flexibil-
ity differently in response to similar types of perturbations.
For example, a centipede will respond differently to the loss
of a limb than a cockroach. Because of the redundancy built
into the centipede’s biomechanics, it can continue to use the
same gait pattern during locomotion, with only small losses
in efficiency and speed (Hoffman andWood 2013). Thus, we
say that the centipede is robust to the loss of a limb. Cock-
roaches can also continue to walk after the removal of a limb,
but to do so, they must adopt a new gait pattern (Delcomyn
1971). Therefore, we say that a cockroach responds flexibly
to injury, because it can deploy an alternative strategy (a new
gait) that allows it to increase its performance relative to how
it would have performed had it continued to attempt to walk
with the original gait. “Appendix 1” revisits the distinctions
between robustness, flexibility, and sensitivity, in a dynami-
cal systems context.

Although a general analysis of trade-offs between flex-
ibility and robustness in biological systems may not be
possible, control theory provides a promising framework
(Zhou and Doyle 1998; Sontag 2013; Cowan et al. 2014).
Applications of control theory to biological systems have
multiplied in recent years (Lenhart and Workman 2007;
Todorov and Jordan 2002; Mitchinson et al. 2007), par-
ticularly in connection with systems biology and synthetic
biology (Sontag 2004; Iglesias and Ingalls 2010; Cury and
Baldissera 2013; Del Vecchio andMurray 2014). But control
theoretical analysis is complicated by the presence of non-
linearities, nonsmooth bifurcations, nonstationarities, and
stochastic effects ubiquitous in biological control systems
(Davis 1984; Isidori 1995; Åström 2012).

Here we focus on a minimal model of the Aplysia feed-
ing system as an illustration of these concepts in the specific
context of motor control, but it is likely that they will be
applicable across a range of both biological and engineered
motor systems. For example, biologically inspired robots that
incorporate an SHC-based control strategy have been devel-
oped, and would be a natural setting in which to apply the
concepts and analyses put forth here (Boxerbaum et al. 2012;
Daltorio et al. 2013; Horchler et al. 2015).

It is important to note that studying the dynamics of the
isolated nervous system alone, either theoretically or empiri-
cally, will not be sufficient for understanding themechanisms
of robustness and flexibility in motor behaviors. The biome-
chanics of the body, sensory feedback from the external
environment, and the bidirectional interactions between the
nervous system and the periphery must also be incorpo-
rated into both models and experiments to develop a more
complete understanding of robustness and flexibility (Chiel

and Beer 1997; Beer 1995; Chiel et al. 2009; Ting et al.
2015). Our model of the Aplysia feeding system is one con-
crete demonstration of the importance of studying coupled
brain-body-environment systems rather than isolated ner-
vous systems. We wish to emphasize that this modeling
approach, as well as our theoretical framework for studying
robustness and flexibility, can be applied to a wide variety of
motor systems.

4.4 Relationship to previous work

It has been previously proposed that multifunctionality in
motor systems may arise from the coexistence of multiple
stable attractors in the dynamics of pattern-generating cir-
cuits (Golubitsky et al. 1999; Briggman and Kristan 2008;
Jing andWeiss 2001; Schwabedal et al. 2014). Other authors
have pointed out that multistability in the mechanics of the
body can also play a crucial role inmultifunctionalmotor sys-
tems. For example, in the context ofAplysia feedingbehavior,
multistability in the kinematics of the feeding apparatus (the
buccal mass) plays an important role in multifunctionality
(Sutton et al. 2004b; Neustadter et al. 2007; Ye et al. 2006).

Our study, along with recent work by others, highlights
the importance of sensory feedback in multifunctional motor
systems. Toth et al. have investigated sensory feedback-
triggered transitions between stepping patterns in a neurome-
chanicalmodel of stick insectwalking driven by amultistable
CPG (Toth et al. 2012). Sensory-driven transitions between
behaviors in coupled neuromechanical systems have also
been studied in models of cockroach locomotion (Szczecin-
ski et al. 2014), and in the control of locomotion in a
biologically inspired robot (Haynes et al. 2012). More
recently, Snyder and Rubin analyzed input-driven transitions
between patterns in a multistable model of the turtle scratch-
ing CPG (Snyder and Rubin 2015).

We model the central circuit as a set of three neural
pools of mutually exciting neurons with inhibitory connec-
tions between the pools. On the one hand, this structure
is consistent with networks of identified neurons involved
in the generation of feeding patterns in the Aplysia buc-
cal ganglion Kabotyanski et al. (1993). On the other hand,
our implementation takes the form of a modified version of
the Lotka–Volterra equations (Lotka 1920; Volterra 1926)
with three competing species. The possibility of heteroclinic
cycling in such systems was described in May and Leonard
(1975), who note that a general result by Smale had demon-
strated that these systems could in fact produce arbitrarily
complicated dynamics (Smale 1976).

The capacity of Lotka–Volterra type systems to show arbi-
trarily complex behavior has made them attractive for mod-
eling complex neural firing patterns. Such Lotka–Volterra
type systems with heteroclinic cycling have been used exten-
sively as models for neural systems with sustained irregular
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transient activity patterns, for instance as observed dur-
ing olfaction-driven oscillations (Rabinovich et al. 2001).
In this paper the authors point out that a coupled system
of N Lotka–Volterra units can in principle support up to
CN = ∑N

k=3

(N
k

)
(k − 1)! distinct heteroclinic orbits.

In Levi et al. (2004), the diversity of dynamical behav-
iors possible in heteroclinic systems is exploited to model
the chaotic movements produced by a molluskan statocyst
network. As in our model, the system can exhibit different
patterns of motor activity as the level of excitation varies. In
our model, the endogenous excitation parameter μ controls
the switch between sensitive (small μ, orbits are near-
heteroclinic and encounter the zero-activation boundary) and
insensitive (larger μ, orbits are far from the heteroclinic path
and avoid the zero-activation boundary) conditions. In the
statocyst model, excitation from a “hunting neuron” triggers
the onset of complex, chaotic, undirected heteroclinic cycling
that could help the animal hunt more effectively for unseen
prey. The roles of the heteroclinic orbits are fundamen-
tally different. In our model, heteroclinic cycling facilitates
heightened sensitivity to sensory feedback, guiding the tim-
ing of behavior more effectively than in the nonheteroclinic
state; in the study of Clione hunting, the heteroclinic tra-
jectories permit the creature to exploit chaotic dynamics to
produce complicated motor outputs. These complex move-
ments facilitate hunting for unseen prey, but are not regulated
by sensory feedback, in contrast to our model for control of
feeding in Aplysia.

Another important difference between these two models
concerns the limited number of heteroclinic orbits that are
possible in our system. In our model of the Aplysia feeding
circuit, we have N = 3 pools, rather than an arbitrary (larger)
number of interacting units. For N = 3, there areC3 = 2 dis-
tinct heteroclinic cycles. These two sequences correspond to
two specific biologically occurring motor patterns: ingestion
(the control of which we study in this paper) and egestion
(which lies beyond the scope of this paper). Egestion is the
attempt to expel food or othermaterial from the buccal cavity,
for instancewhen it is recognized as being noxious or too stiff
to swallow; during egestion the animal reverses the sequence
of muscle activation used during ingestion (Novakovic et al.
2006). The selection of antiphasic motor patterns—ingestion
versus egestion—and the transitions between the two, which
presumably involve interesting bifurcation phenomena, may
be an excellent topic for a future combined modeling and
experimental study.
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Appendix 1: Formal definitions of robustness and
flexibility

In Sect. 1 we informally defined “robustness of a motor sys-
tem with respect to a perturbation of its state variables or
internal parameters” as the ability of the motor system “to
maintain its fitness in performing a task in the presence of the
perturbation”; in contrast we defined “flexibility” as the abil-
ity of amotor system “to deploy alternative strategies in order
to perform better on different tasks or to respond to changes
in the task requirements.” In this appendixwe formalize these
notions within a deterministic dynamical systems framework
and indicate how the formally defined robustness and flexi-
bility correspond to features of the model investigated in the
main text.

By “motor system” we will mean a system of differential
equations [or differential inclusions (Filippov 1988)] of the
form d

dt (a, x) = F(a, x,Θ), where a and x are the “neural”
and “body” state variables, and Θ is a vector of parame-
ters including, for example, the endogenous excitation μ,
the applied load Fsw, and the strength of sensory feedback,
ε. The vector fieldFmay include discontinuities at a finite set
of surfaces (e.g., the surfaceΣr = {a1+a2 = 0.5}, where the
grasper opens and closes, and the surfaces Σi = {ai = 0}
and Σ

′
i = {ai = 1} forming the neural activation domain

boundaries). Given the parameters Θ and an initial condi-
tion (a0, x0), we have a resulting trajectory {a(t), x(t)}Tt=0
up to time T . We assume that for any initial condition and
fixed parameters there is a bounded attractor Γ (which could
be a fixed point, a limit cycle, or another set with an invari-
ant measure; for repetitive motor patterns we will assume Γ

is a periodic orbit). If the motor system exhibits multista-
bility, there may be a finite collection of distinct attractors,
Γi (Θ), for each set of parameters. Each attractor represents
a “motor strategy” available to the system for parameter set
Θ . For example, Fig. 3 shows the coexistence of the “hetero-
clinic mode” limit cycle attractor and the “limit cycle mode”
limit cycle attractor for the neuromechanical Aplysia feeding
model. The coexistence of multiple attractors corresponds to
the coexistence of multiple “motor strategies.” We assume
the boundaries between different attractors are smooth [i.e.,
we do not consider riddled basins of attraction (Alexander
et al. 1992)].

Given a measure of fitness S[{a(t), x(t)}Tt=0] for a finite
trajectory, we define the fitness of the i th strategy as Si [Θ] =
limT→∞S[{a(t), x(t)}Tt=0] for any trajectory converging to
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Γi (Θ). We restrict fitness measures to those remaining
bounded in this limit (e.g., the average rate of seaweed intake
rather than the total amount of seaweed ingested). The set
of strategies may gain or lose elements as Θ varies, as the
system crosses bifurcation boundaries separating, e.g., mul-
tistable from monostable regions. For example, it is evident
from Fig. 5 that our neuromechanical Aplysia feeding model
has regions of both bistability andmonostability, in that some
parameter combinations lead to all initial conditions falling
into the basin of attraction of the heteroclinic mode; other
parameter combinations lead to all initial conditions falling
into the limit cycle mode, and other parameter sets lead to
coexistence of two stable modes.

Given this dynamical framework, wemay nowdefine flex-
ibility and robustness.

Robustness Consider a motor system performing a repet-
itive task under a reference parameter set Θ0 using the best
available strategy,Γ0(Θ0), resulting in fitness S0[Θ0]. A shift
in parameters Θ0 → Θ0 + �Θ for which S0[Θ0 + �Θ] >

S0[Θ0] (e.g., increasing the muscle strength parameter) is
an assist; a shift in parameters for which S0[Θ0 + �Θ] ≤
S0[Θ0] (e.g., increasing the applied load) is a challenge.
Generically, the attractors Γi (Θ0) will shift smoothly (as
a point set) under sufficiently small changes in parame-
ters, Γi (Θ0) → Γi (Θ0 + �Θ), leading to a small change
in fitness, S0[Θ0 + �Θ] ≈ S0[Θ0] + DS0[Θ0] · �Θ (as
�Θ → 0). The robustness of a strategy Γi with respect
to a challenge �Θ is thus the component of the directional
derivative DS0[Θ0] in the direction of the challenge, i.e.,
�Θ · (∂S0/∂Θ). If two motor systems were challenged with
the same small load, the one exhibiting a smaller local reduc-
tion in fitness would be the more robust. For example, Figs. 8
and 9 show the response of the neuromechanical Aplysia
feedingmodel in the heteroclinicmode to shifts in the applied
load (an increase in load being a “challenge”; a decrease in
applied load is an “assist”). In the heteroclinic mode, a 40%
increase in load led to only a 1% decrease in rate of seaweed
intake, i.e., (S0[Θ0 + �Θ] − S0[Θ0])/S0[Θ0] ≈ −0.01. In
contrast, under the same change in load, the fitness for the
tuned limit cycle decreased by 30% (not shown), indicating
that the heteroclinic mode is more robust than the limit cycle
mode, at least for these particular parameters. From a math-
ematical point of view, our interpretation of “robustness” is
similar to the approximate invariance framework introduced
to characterize homeostasis (Golubitsky and Stewart 2016;
Nijhout and Reed 2014).

Flexibility Flexibility refers to the coexistence of multi-
ple attractors Γi for a given parameter set Θ . As a challenge
is increased, the fitness of the initial strategy, Γ0 may be
progressively degraded. For a sufficiently large challenge,
the attractor may disappear. For example, in the neurome-
chanical Aplysia model two stable attractors (limit cycles)
coexist for endogenous excitation parameter μ = 10−5 and

applied load Fsw = 0 (Fig. 5); one makes contact with a
hard boundary (at both a0 = 0 and a1 = 0) and the other
does not. As the force is increased, the second trajectory is
driven closer to the boundary until the two trajectories meet
in a contact bifurcation, and the smooth limit cycle solution
disappears. Coexistence of multiple attractors is a necessary
but not sufficient condition for a motor system to show flex-
ibility. To exhibit flexibility, the maximal achievable fitness,
S(Θ) = maxi Si (Θ), should exceed each individual strat-
egy’s fitness Si (Θ) for some parameter values Θ . That is, no
one strategy should have the highest fitness for all param-
eter values. When the neuromechanical Aplysia model is
performing the continuous-swallowing task (Fig. 3), the hete-
roclinic mode outperforms the untuned limit cycle mode for
all applied seaweed loads examined; for this task, the sys-
tem is not flexible, since one strategy always has the highest
fitness. In contrast, in the forage-and-feed task (Fig. 11), fit-
ness is maximized when the motor system switches to the
limit cycle mode when seaweed is absent from the mouth
(because biting rate is maximized this way) and to the hete-
roclinic mode when seaweed is present (because swallowing
is efficient across force levels in this mode). Thus, the model
system exhibits increased performance through flexibility in
the forage-and-feed task, since themotor systemhas access to
multiple strategies, corresponding to different stable attrac-
tors, and is able to increase its fitness by switching between
strategies during the task.

Multivariate sensitivity analysis Above, we defined the
robustness of a motor system for a particular fitness function
S, with respect to a particular challenge �Θ , in terms of
the component of ∂S/∂Θ in the direction of the challenge.
In order to disentangle the multiple factors influencing this
local robustness, one can consider a perturbative analysis.
Formally, for small changes in load, a version of the chain
rule serves as a heuristic: to find ∂S/∂Θ one must take into
account the effects of changing Θ on the entire limit cycle
trajectory Γ :

∂S

∂Θ
=

∫
γ∈Γ

∂S

∂Γ

∂Γ

∂Θ
dγ. (18)

Here ∂S/∂Γ represents the change in the fitness measure
with respect to an infinitesimal perturbation, of both the tim-
ing and the path, of the limit cycle; ∂Γ/∂Θ represents the
variation in the path and timing of the limit cycle upon an
infinitesimal perturbation of the parameter(s) Θ; and γ rep-
resents an index, such as phase or arc length, with respect to
which one integrates the effects of the load around the limit
cycle.

Application of the heuristic (18) is complicated by the fact
that the vector field F is not differentiable at all points along
the limit cycle Γ , for instance at the sections of disconti-
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nuity Σr ,Σi (above).9 A complete analysis lies beyond the
scope of the present paper. As a first step, we may consider
the accumulated effect for each segment of the trajectory
between successive surfaces of continuity. That is, we may
break up the integral (18) into a sum of contributions from
each segment of the limit cycle lying within a domain within
which F is smooth.

The dynamical systems framework presented here allows
us to make precise interpretations of the heuristic defini-
tions of robustness, flexibility, and sensitivity introduced in
Sect. 1.1. In Sect. 2.7 of the main text, we apply these general
notions to the specific neuromechanical model.

Appendix 2: Parameters and state variables

Table 1 lists interpretations and default values of all param-
eters for both the heteroclinic mode and the untuned limit
cycle mode simulations. The tuned limit cycle mode sim-

9 Similar considerations complicate the analysis of infinitesimal phase
response curves for limit cycles in Filipov systems, see Park (2013).

Table 1 Model parameters

Parameter Value Description

γ 2.4 Inhibition strength from next pool

ε 0.002 Sensory feedback strength

κ 0.5 Strength of the load-sensing
inhibition

μ 10−5 Neural pool intrinsic excitation

τa 0.05 Neural pool time constant

τm 2.45 Muscle activation time constant

br 0.4 Grasper damping constant

c0 1.0 Position of shortest length for I2

c1 1.1 Position of center of I3

Fsw 0.01 Force on the seaweed resisting
ingestion

σ0 −1 Sign of proproceptive input to a0
neural pool

σ1 1 Sign of proproceptive input to a1
neural pool

σ2 1 Sign of proproceptive input to a2
neural pool

S0 0.5 Proprioceptive neutral position for
protraction-open neural pool

S1 0.5 Proprioceptive neutral position for
protraction-closed neural pool

S2 0.25 Proprioceptive neutral position for
retraction-closed neural pool

umax 1.0 Maximum muscle activation

w0 2 Maximal effective length of I2

w1 1.1 Maximal effective length of I3

Table 2 State variables

State variable Initial value Description

a0 1 − 10−9 Activity of protraction-open neural
pool (non-negative)

a1 10−9 Activity of protraction-closing
neural pool (non-negative)

a2 10−9 Activity of retraction-closed neural
pool (non-negative)

u0 0 Activity of I2 muscle

u1 0 Activity of I3 muscle

xr 0.5 Grasper position (0 is retracted,
1 is protracted)

xsw 0 Seaweed position (positive is away
from the animal)

Table 3 Parameters used for the limit cycle simulations

Parameter Value Description

μ 10−4 Neural pool intrinsic excitation

β 0.143 Neural pool global time constant

α0 0.61 Neural pool local time scaling near
protraction-open

α1 −0.92 Neural pool local time scaling near
protraction-closed

α2 0.277 Neural pool local time scaling near
retraction-closed

ulations use these parameters as well, with the exception
of those parameters described in “Tuned limit cycle mode
parameters” section.

Table 2 lists the initial conditions used for the hetero-
clinic mode and tuned limit cycle mode simulations. For the
untuned limit cycle mode simulations, these are modified so
that the neural variables have initial values (0.2, 0.4, 0.7).

Tuned limit cycle mode parameters

For comparing the robustness of the two oscillatory modes in
the continuous-swallowing task, we tuned the parameters of
the limit cycle mode so that each phase of the neural activa-
tion sequence of the two modes had comparable durations,
and so that the two modes consumed seaweed at approxi-
mately the same rate. Specifically, we chose a value of μ

sufficiently large that perturbing the other parameters would
not cause the system to switch into the heteroclinicmode.We
also asymmetrically adjusted the rate of cycling of the neu-
ral variables by replacing the uniform neural time constant τa
with the following phase-dependent time scaling function:

τa(a) = (1 + α · a)β. (19)
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Here β is a scalar parameter that uniformly adjusts the
timescale of the neural activity, and α is a vector parame-
ter representing an activity-dependent scaling of the speed.
This change affects the timing of the cycle, but does not
significantly change the geometry of the trajectories in the
three-dimensional space of the neural variables. The values
of μ, β, and α for the tuned limit cycle mode simulations are
given in Table 3.

Appendix 3: Derivation of expression approximat-
ing fitness in the forage-and-feed task

To better understand the shape of the plots in Fig. 11a1, a2,
which plot thefitness of themodelwhen it is permitted toflex-
ibly switch between oscillatory modes (the forage-and-feed
task), here we provide an expression approximating those
fitness surfaces derived from quantities measured when the
model is operating in only one mode.

The form of the expression depends on whether the mean
intake rate for the constant load continuous-swallowing task
is positive or negative. When the rate is negative (as may
be the case when the model is in the limit cycle mode, e.g.,
Fig. 3b), we assume that the mean intake for the forage-
and-feed task is zero, since the model will (on average) fail
to consume any seaweed that is grasped. For values of μ∗
and Fsw such that the mean intake rate for the constant load
continuous-swallowing task is positive, we derive an expres-
sion via the following argument.

The mean period of a bite in the forage-and-feed task,
〈TB〉μ, measured in seconds, depends on the endogenous
excitation μ, and we will estimate its value from empiri-
cal measurements on the continuous-swallowing task with
Fsw = 0.

Since the transition to swallowing from biting in the
forage-and-feed task can occur only at the moment the
grasper closes, we assume that an integer number of bites
occurs between each swallowing phase of the forage-and-
feed task. This number follows a geometric distribution with
mean 1/p, where p is the probability of grasping the sea-
weed each bite. Thus, the mean interval between swallowing
phases, measured in seconds, is

〈TB〉μ
p

.

The mean rate of seaweed intake during the swallowing
phases of the forage-and-feed task, 〈SS〉μ∗,Fsw , measured in
seaweed units per second, depends on both the endogenous
excitation μ∗ and the load Fsw. We will estimate its value
as well from empirical measurements on the continuous-
swallowing task.

Since each seaweed strip in the forage-and-feed task has a
fixed length L , the mean duration of each swallowing phase,
measured in seconds, is

L

〈SS〉μ∗,Fsw
.

The mean rate of seaweed intake throughout the entire
forage-and-feed task, 〈S〉μ,μ∗,Fsw , measured in seaweed units
per second, is our measure of the performance of the model
on the forage-and-feed task. This is equal to the length of one
seaweed strip divided by the amount of time spent grasping
for (“foraging for”) and swallowing (“feeding on”) the strip:

〈S〉μ,μ∗,Fsw =
⎧⎨
⎩

L
〈TB〉μ

p + L
〈SS〉μ∗,Fsw

〈SS〉μ∗,Fsw > 0,

0 〈SS〉μ∗,Fsw ≤ 0.
(20)

Figure 11b1, b2 plots Eq. 20 using parameters matching
the simulations that generated Fig. 11a1, a2. Qualitatively,
there is excellent correspondence between the major features
of the numerical and theoretical fitness surfaces. Quantitative
discrepancies may be attributed to simplifying assumptions
made during this derivation, such as the assumption of
an instantaneous transition from one oscillatory mode to
another.
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