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Abstract Recurrent neural networks (RNNs) are widely
used in computational neuroscience and machine learning
applications. In an RNN, each neuron computes its output as
a nonlinear function of its integrated input. While the impor-
tance of RNNs, especially as models of brain processing, is
undisputed, it is also widely acknowledged that the computa-
tions in standard RNN models may be an over-simplification
of what real neuronal networks compute. Here, we suggest
that the RNN approach may be made computationally more
powerful by its fusion with Bayesian inference techniques for
nonlinear dynamical systems. In this scheme, we use an RNN
as a generative model of dynamic input caused by the envi-
ronment, e.g. of speech or kinematics. Given this generative
RNN model, we derive Bayesian update equations that can
decode its output. Critically, these updates define a ‘recogniz-
ing RNN’ (rRNN), in which neurons compute and exchange
prediction and prediction error messages. The rRNN has sev-
eral desirable features that a conventional RNN does not
have, e.g. fast decoding of dynamic stimuli and robustness
to initial conditions and noise. Furthermore, it implements
a predictive coding scheme for dynamic inputs. We suggest
that the Bayesian inversion of RNNs may be useful both as a
model of brain function and as a machine learning tool. We
illustrate the use of the rRNN by an application to the online
decoding (i.e. recognition) of human kinematics.

Keywords Recurrent neural networks ·
Bayesian inference · Nonlinear dynamics · Human motion

S. Bitzer (B) · S. J. Kiebel
MPI for Human Cognitive and Brain Sciences, Stephanstr. 1a,
04107 Leipzig, Germany
e-mail: bitzer@cbs.mpg.de

S. J. Kiebel
e-mail: kiebel@cbs.mpg.de

1 Introduction

Recurrent neural networks (RNNs) have been used for many
years now to augment nonlinear mappings with a dynamic
representation (Pearlmutter 1989; Williams and Zipser 1989;
Narendra and Parthasarathy 1990; Jaeger 2001; Maass et al.
2002), e.g. for the classification of sensory input in machine
learning. In computational neuroscience, RNNs are exten-
sively used to investigate the dynamic properties of corti-
cal networks (e.g. Buonomano and Maass 2009; Legenstein
and Maass 2007), to model the measured activity of net-
works of neurons (e.g. Friston et al. 2003; Kiebel et al. 2006,
2009a; Sotero et al. 2007; Rodrigues et al. 2010) and more
generally to model brain processes like perception, mem-
ory and attention (Elman 1990; Miller and Cohen 2001;
Hamker 2005). The recurrent connections of these networks
capture two of the most prominent features of neuronal net-
works observed in the brain: first, connections between two
neurons are rarely uni-directional but more often bi-direc-
tional, potentially via more than one synapse. Second, neu-
rons perform highly nonlinear operations, i.e. they transform
their input to spiking output. RNNs capture both these fea-
tures where often the input (post-synaptic potentials) and
output (action potentials) are replaced by summary mea-
sures, i.e. the post-membrane potential function and firing
rate. In such a continuous-time RNN, each neuron (often
called unit) performs a simple operation: in each moment in
time, it applies a nonlinear function to the sum of its input
and passes this on to other neurons. This simple mechanism
can provide for extremely rich patterns of activity in each
neuron, even with a network of small size. Literally, thou-
sands of contributions in computational neuroscience and
machine learning are based on networks of these firing rate-
coding units (Rabinovich et al. 2006; Cessac and Samuelides
2007).
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As powerful as RNNs are as a model class, they are still
a rather simple abstraction from what is known about real
neuronal networks. For example, it has been suggested that
even single neurons may compute more complex functions
of their input than single units in an RNN (Poirazi et al.
2003; Spruston 2008; Mel 2008; Debanne et al. 2011). Here,
we suggest that a simple re-interpretation of the functional
role of RNN dynamics leads to a novel and potentially more
plausible account of what recurrently connected units may
compute: we suggest that neuronal networks serve as Bayes-
ian decoders of dynamics caused by the environment. For
example, in action observation, humans decode the kinemat-
ics of other people from visual input dynamics. Bayesian
recognition is based on a so-called generative model which
is an internal representation of the hidden dynamics of the
environment which cause sensory input to the brain. We sug-
gest that RNNs are an ideal generative model for these hid-
den dynamics in our environment. The task of the recog-
nition system is to decode the sensory input generated by
the hidden RNN dynamics. To do this, we derive Bayesian
update equations from the generative RNN model and call
these ‘recognizing RNN’ (rRNN). As a consequence, there
is a major difference between the rRNN and the standard
RNNs used for discriminating dynamic input: while standard
RNNs represent features specialized for the task of discrimi-
nation, the rRNN maintains a full representation of the input
through the generative RNN. In particular, the rRNN can pre-
dict the future evolution of the input and may, therefore, also
be useful in tasks other than the pure recognition task con-
sidered here. Technically, the difference to a standard RNN
is that each unit in the rRNN computes more sophisticated
updates involving predictions and prediction error messages
from other units in the network. Here, we show that a rRNN
can decode real-world dynamics (human kinematics) and can
display several features which can also be observed with real
neuronal systems, e.g. the online decoding of hidden dynam-
ics in the environment, computation of predictions and pre-
diction error, robustness to noisy input and fast adaptation
to sudden changes in the environment. These features are
not only general hallmarks of brain function but, in princi-
ple, also may be useful for machine learning applications for
decoding dynamics in an online fashion.

In computational neuroscience, models of recurrently
connected networks of neurons, which optimally estimate
dynamically changing states from noisy observations, have
recently been proposed (Rao 2004; Denève et al. 2007;
Natarajan et al. 2008; Wilson and Finkel 2009; Boerlin
and Denève 2011). While these models provide important
insights, results were reported for relatively restrictive con-
ditions such as linear dynamics (Denève et al. 2007; Wilson
and Finkel 2009; Boerlin and Denève 2011), discrete states
(Rao 2004; Denève et al. 2007; Boerlin and Denève 2011),
or a one-dimensional state (Natarajan et al. 2008; Wilson and

Finkel 2009; Boerlin and Denève 2011). Although, Natara-
jan et al. (2008) allow for nonlinear dynamics they assume
knowledge of an ideal observer which provides an instanta-
neous error signal for learning of network connections. Sim-
ilarly, reservoir computing approaches (Jaeger 2001; Maass
et al. 2002; Verstraeten et al. 2007) rely on a teaching sig-
nal which provides a desired output at every point in time
during learning. In contrast, we propose an approach com-
bining multi-dimensional, continuous-time hidden nonlinear
dynamics where learning proceeds without an externally pro-
vided error signal. Our main contribution is to demonstrate
that a rRNN is well suited to recognize dynamic stimuli and
may be used as a functional model for neuronal ensemble
dynamics. In particular, we will illustrate this by showing
that the prediction errors computed by a rRNN provide suf-
ficient information to discriminate dynamic stimuli, in an
online fashion.

The present approach may also lead to a better under-
standing of the role of recurrently connected networks of
neurons in the brain: predictive coding has been suggested as
a theory for hierarchical processing in the brain in which dif-
ferent levels exchange prediction and prediction error mes-
sages (Mumford 1996; Rao and Ballard 1997, 1999; Friston
and Kiebel 2009). Rao and Ballard (1997) already described
RNN-like dynamic models to implement predictive coding
for static stimuli. The present approach can be seen as an
extension to Rao and Ballard’s original work to provide
inference for dynamic stimuli by resorting to approximate
inference methods for nonlinear, continuous dynamic mod-
els (Friston et al. 2008).

The remainder of the paper is organized as follows. In
Sect. 2, we (i) present RNNs as generative models, (ii)
describe the Bayesian inference framework and (iii) show
that dynamic updates of the posterior state critically depend
on prediction error. We illustrate the rRNN approach using
human motion capture data. In Sect. 3, we demonstrate that
the rRNN can successfully recognize human kinematics and
discriminate between different walking styles based on the
prediction error of rRNN units.

2 Materials and methods

In the following, we will describe the two key elements of
the present approach: a RNN as a generative model of the
sensory dynamics and the Bayesian inference framework to
derive the update equations for a rRNN. Subsequently, we
will apply the rRNN technique to the recognition of human
kinematics, for which we describe the kinematic data and the
rRNN settings.

To motivate the present approach, we will start with a
brief summary of the conventional RNN technique as used in
machine learning for classification of stimuli. Note, however,
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that it is not our aim to compare discrimination performance
of conventional and rRNNs. Rather, description of the con-
ventional RNN is given as a reference for understanding the
conceptual differences between the two approaches.

2.1 Conventional RNN

The RNN technique has been used in many machine learning
applications such as classification of static or dynamic stim-
uli, or time-series prediction. This approach has a long history
which took off with the development of a supervised learn-
ing routine (Pearlmutter 1989; Williams and Zipser 1989).
Recently, this learning approach has been complemented by
the so-called reservoir computing technique (Jaeger 2001;
Maass et al. 2002).

In general, in a conventional RNN, sensory units provide
input, which drives the dynamics of the hidden units (see
Fig. 1a). Output units readout the result of the dynamic com-
putations based on a mixing of the sensory and hidden states.

Typically, RNNs come in two different types: either as
networks of spiking neurons, typically modelled as leaky-
integrate-and-fire neurons, or as networks of more abstract
neuronal units which model summary measures of neuro-
nal spiking such as the firing rate. Here, we consider the
latter type of RNNs with leaky-integrator units which, for
the application considered here, have the advantage over
spiking neuron models that the states of these units change
continuously over time and are not subject to discontinuous
jumps introduced by the spiking mechanism. An example of
such a network is discussed in Jaeger et al. (2007) where the
continuous-time dynamics based on leaky-integrator units is
given by

ẋi = f (x)i

= ki
(−axi + tanh([Winy + Wx + Wfbo]i )

)
,

(1)

where xi is the state of hidden unit i ∈ {1, . . . , H}, y ∈ R
I×1

are the states of the input (sensory) units, o ∈ R
D×1 are the

states of the readout units, W ∈ R
H×H is a weight matrix

defining the interaction between the H hidden units, sim-
ilarly Win and Wfb define the connections from the input
to the hidden units and the (optional) feedback connections
from the readout units, respectively. ki is a rate constant for
unit i and a is the amount of leakage. The output states are
determined by

o = V[xT , yT ]T (2)

where V ∈ R
D×(H+I ) is a weight matrix.

In a conventional RNN, the overall flow of information is
from sensory to output units, because the RNN serves as a
model for neuronal dynamics (hidden states) which are used
to compute, e.g. a classification of the sensory input. We now
use the same dynamics where we reverse the flow of informa-

tion to model the generation of sensory dynamics by hidden
states of the environment (e.g. body movements cause visual
output dynamics).

2.2 Generative RNN

Our overall aim is to construct a recognition system which
can recognize its sensory observations based on its internal
dynamics. For a Bayesian recognition system we require a
dynamic generative model, for which we choose a RNN. This
’generative recurrent neural network’ (gRNN) runs indepen-
dently of any input and generates sensory data, i.e. observa-
tions. Note that, in comparison to a conventional RNN (Eq.
1), here the sensory units become the output of the network
while no input units are defined (hence the missing units
which acted as output in the conventional RNN). Conse-
quently, the flow of information is reversed in the gRNN and
its autonomously running hidden dynamics drive its sensory
units (see Fig. 1b). In particular, we define a gRNN as

ẋi = f (x)i = ki (−axi + tanh([Wx]i )) , (3)

y = Vx, (4)

where now V ∈ R
D×H linearly translates hidden states x

into sensory states y. This gRNN computes sensory output
y as caused by a hidden, dynamic process defined by the
RNN dynamics f (x). In the following section, we describe
how a rRNN is constructed from the gRNN using Bayes-
ian inversion. This rRNN receives sensory observations (as
in a conventional RNN, Eq. 1) and infers about the hidden
states that caused these observations. Effectively, conven-
tional RNN computations are aimed at doing the same (c.f.
Fig. 1a, c); however, the update equations of an rRNN are
explicitly derived for this recognition task.

2.3 Recognizing RNN

Generative models like a gRNN (Eqs. 3, 4) can be used as
the basis for inferring the state of the hidden dynamics given
observations which are caused by the generative model. In
realistic settings, where observations and state transitions
are noisy, or uncertain, inversion of the nonlinear genera-
tive model is an ill-defined problem and further assumptions
about the hidden states have to be made to disambiguate their
possible values. We transform the gRNN, as presented above,
into a probabilistic model by adding assumptions about the
distributions of hidden states and observations (cf. Eqs. 7, 8).
Given the probabilistic generative model (and prior assump-
tions about the initial hidden states) Bayesian inference is
the optimal method to invert the generative model and leads
to updates of the hidden states which make them an optimal
representation of the observations. For example, the well-
known Kalman–Bucy filter (Jazwinski 1970) implements
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A B C

Fig. 1 Comparison of different RNN architectures. a conventional
RNN, b generative RNN (gRNN) and c rRNN. Each RNN has dynamic
hidden units, but the overall direction of information flow differs (indi-
cated by the grey triangles). The conventional RNN is designed to com-

pute an output given sensory input. In contrast, the gRNN computes sen-
sory states. Finally, the rRNN computes predictions (black arrows) and
prediction error messages (red arrows) to recognize the hidden causes
that generated the sensory input. (Color figure online)

such a Bayesian inversion scheme for linear dynamic pro-
cesses. The gRNN uses highly nonlinear dynamics (Eq. 3)
and, therefore, we require approximate or sampling-based
inversion schemes (Jazwinski 1970; Wan and van der Merwe
2001; Doucet et al. 2001; Friston et al. 2008; Daunizeau
et al. 2009; Friston et al. 2010). Here, we derived the update
equations using the D-step of Friston’s dynamic expectation
maximization (DEM) framework (Friston et al. 2008). This
choice was based on our previous experience with inversion
of continuous-time dynamic models using DEM (Kiebel et al.
2009a). In principle, other inversion schemes could be used
as well. The advantage of using DEM, or similar schemes like
Bayesian inference using discretized dynamics (Daunizeau
et al. 2009), is that prediction errors on the dynamics are com-
puted. DEM uses generalized coordinates, local lineariza-
tion and point-estimates at strategically important positions.
See the ‘Appendix’ for a high-level derivation of the algo-
rithm and an explanation of generalized coordinates which
are a dynamically extended representation of state variables,
the use of which we indicate by a tilde in the subsequent
formulas.

In the following, we will briefly describe the key computa-
tions performed by DEM. This description is aimed at giving
an intuitive description of the update equations governing the
rRNN and will allow interpretation of these updates in terms
of prediction and prediction error messages.

The most important equation resulting from inversion with
DEM describes the evolution of the posterior mode of the
hidden states in generalized coordinates and is given by

˙̃x = κ
∂V (x̃)

∂ x̃
+ Dx̃. (5)

The motion defined in this equation consists of two parts:
(1) Dx̃ which, in absence of other contributions, implements
that the motion of the posterior mode follows its local trajec-
tory represented in generalized coordinates using a derivative

operator D and (2) the derivative of the variational energy
V (x̃) with respect to hidden states which acts as a corrective
force to make the motion consistent with the gRNN and the
observations. With fixed parameters, the variational energy
is the log-joint probability of observations (sensory states) ỹ
and hidden states x̃ which defines the probabilistic gRNN. In
particular, the variational energy is given by

V (x̃) = log p(ỹ, x̃|θ)

= log p(ỹ|x̃, θ) + log p(Dx̃|f̃, θ)

= log p(x̃|ỹ, θ) + c, (6)

where c is a constant, θ is a vector consisting of all parame-
ters of the model and f̃ are the dynamic predictions defined
by Eq. 3 in generalized coordinates. The last term illustrates
that the updates are a dynamic form of maximum a poste-
riori estimation of hidden states. Gaussian distributions are
assumed for the state transition and observation densities:

p(Dx̃|f̃, θ) ∼ N
(

f̃, �̃x

)
, (7)

p(ỹ|x̃, θ) ∼ N
(
(I ⊗ V)x̃, �̃y

)
, (8)

where (I ⊗ V)x̃ is the predicted sensory state given the hid-
den states as defined by Eq. 4 in generalized coordinates,1

and �̃x and �̃y are the prior covariances of sensory and hid-
den states in generalized coordinates, respectively. This leads
to a simple interpretation of the posterior mode updates in
terms of prediction errors. In particular, the gradients of these
densities with respect to hidden states become

∂ log p(Dx̃|f̃,θ)

∂ x̃ = − 1
2

∂
∂ x̃ ε̃T

x �̃−1
x ε̃x

= −
[

∂ε̃x
∂ x̃

]T
�̃−1

x ε̃x ,
(9)

1 I is the identity matrix with size equal to the number of used gener-
alized coordinates and ⊗ is the Kronecker product.
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∂ log p(ỹ|x̃,θ)

∂ x̃ = − 1
2

∂
∂ x̃ ε̃T

y �̃−1
y ε̃y

= −
[

∂ε̃y
∂ x̃

]T
�̃−1

y ε̃y,
(10)

where the prediction errors are defined as

ε̃x = Dx̃ − f̃

ε̃y = ỹ − (I ⊗ V)x̃.
(11)

This means that the updates of the posterior hidden states
follow the gradient of the prediction error with step sizes
determined by the prediction error itself weighted by the prior
precisions. The contribution from the prediction error on the
sensory states, ε̃y , ensures that the sensory states are well
explained by the hidden states while the contribution from
the prediction error on the hidden states, ε̃x , ensures that
the posterior dynamics of hidden states as encoded by the
generalized coordinates is consistent with the learnt model
dynamics. In particular, for the first generalized coordinate,
the prediction error

εx = ẋ − f (x) (12)

ensures that the posterior velocity corresponds to the learnt,
noise-free hidden unit dynamics as defined in Eq. 3. Con-
versely, we will argue below that a consistently large predic-
tion error εx provides evidence for an inconsistency between
observed and learnt dynamics and can be used to discriminate
among different dynamic stimuli.

The question remains how the system got to know a suit-
able gRNN which generates specific sensory dynamics. In
our experiments, we let the system learn its generative model
by adapting connectivity parameters W, V and rate constants
k using an approach which was developed for the identifica-
tion of dynamical (neural-mass) systems (Friston et al. 2003;
Kiebel et al. 2009a) and is based on maximum a posteri-
ori estimation of the parameters (Friston 2002; Friston et al.
2002). See the ‘Appendix’ for details. Note that this initial
learning step is not our main point in this paper; not only
any learning approach that successfully learns hidden gRNN
dynamics to represent a given dynamic stimulus could be
used here (e.g. Wan and Nelson 2001; Roweis and Ghahra-
mani 2001; Valpola and Karhunen 2002; Doucet and Tadić
2003; Archambeau et al. 2008; Friston et al. 2008; Daunizeau
et al. 2009; Kantas et al. 2009; Lazar et al. 2009; Schön et al.
2011) but also standard RNN learning may be used, if the
hidden state dynamics is assumed to be deterministic during
learning.

2.3.1 Message passing in the rRNN

The updates defined by Eqs. 5, 9, 10 and 11 can be interpreted
as network dynamics based on messages sent by sensory and
hidden units. Algebraically, this can be seen by exemplarily

inspecting the observation density update equation, Eq. 10,
for the first generalized coordinate of a single hidden unit i

∂ log p(ỹ|x̃,θ)
∂xi

= − ∂ε̃T
y

∂xi
�̃−1

y ε̃y

= −∑
j

∂[ε̃y ] j
∂xi

[
�̃−1

y ε̃y

]

j
,

(13)

where the sum over j runs over sensory units y j in gen-
eralized coordinates. Note that the partial derivative of the
prediction error of sensory unit j with respect to the state
of hidden unit i describes how a change in the state of unit
i affects the prediction error of unit j . Therefore, the state
update for hidden unit i is a weighted sum of these prediction
error gradients where each element of this sum corresponds
to a ’prediction error message’ from a single sensory unit
j . To compute the prediction error message a sensory unit
first has to compute a prediction. This is done using the for-
ward equation (4) of the gRNN which is a weighted sum
of the hidden states x̃ where the weights are determined by
the connectivity of the gRNN. In the following, we call the
elements of this sum ‘prediction messages’ which are sent
from a hidden unit xi to a sensory unit y j . In summary, the
update equations define a rRNN where a hidden unit sends
prediction messages to connected sensory and hidden units
such that these can compute prediction error messages which
are returned to the hidden unit to update its state (see also
Fig. 1c). The updates resulting from the dynamics density,
Eq. 9, follow the same logic, where the hidden unit x j takes
the place of sensory unit y j . Each hidden unit, therefore,
sends and receives two kinds of messages: prediction and
prediction error messages.

2.3.2 Induced connectivity of the rRNN

The connectivity matrices W and V of the gRNN (Eq. 3, 4)
are not necessarily the same as in the rRNN. In general, the
rRNN will have all connections of the gRNN plus the corre-
sponding reciprocal connections, plus some additional ones.
To see this, note that the prediction error messages in the
rRNN in Eq. 13 are 0, when hidden unit i is not connected to
sensory unit j , i.e. when hidden unit i has no direct influence
on the computation of predictions in sensory unit j (then
∂[ε̃y ] j
∂xi

= 0). Only sensory units which receive a connection
from a hidden unit i in the gRNN will contribute messages
containing the derivative of the prediction error. However,
in the rRNN, sensory units j , which are not connected in
the gRNN to a hidden unit i , may also contribute messages,
containing only their prediction error, through the weights
computation w j = [�̃−1

y ε̃y] j . In particular, if the j th row

of the sensory precision matrix, �̃−1
y , has nonzero entries in

positions other than j , e.g. k, the weight of sensory unit j in
the update equation (Eq. 13) depends on the prediction error
of unit k. In this case, sensory unit k contributes to the update
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childish depressed shy

Fig. 2 Example frames from the three different walking styles: ‘child-
ish’, ‘depressed’ and ‘shy’ (left to right). In our experiments we used
the first five principal component coordinates of the motion capture 3D
joint coordinates (indicated as filled circles) as observation variables.
Lines are plotted only for visualization purposes

of hidden unit i , even though hidden unit i is not connected
to sensory unit k in the gRNN. This means, that there is an
additional connection from sensory unit k to hidden unit i in
the rRNN.

In conclusion, only if the covariance matrix �̃y is diag-
onal, the connectivity matrix of sensory to hidden units in
the rRNN will only contain those connections which are
reciprocal to the hidden to sensory unit connections in the
gRNN. Conversely, if there are off-diagonal entries in �̃y ,
there will be corresponding additional connections from sen-
sory to hidden units in the rRNN, relative to the gRNN. The
same considerations apply to the connectivity between hid-
den units. In summary, the connectivity of the rRNN directly
follows from the gRNN, only if the units’ states in the gRNN
are a priori independent. For simplicity, this case is shown
in Fig. 1c and used in the following simulations. Note that a
diagonal covariance matrix �̃y is a natural assumption for the
present data because we assume that the measurement noise
is white and any correlation among observations is caused
by the underlying dynamics which are modelled by the RNN
dynamics.

2.4 Human movement data

We use human movements to demonstrate the proper-
ties of the rRNN in the experiments below. The kinematics
of humans is highly dynamic and nonlinear through com-
plicated interactions between individual joints. Kinematics,
therefore, provides a good example of the kind of complex,
dynamically changing, real-world stimuli which can be mod-
elled using rRNNs. Here, we used three walks of the same
subject, each of which expresses a different walking style
(categorized as ‘childish’, ‘depressed’ and ‘shy’; freely avail-
able from the CMU motion capture database, http://mocap.
cs.cmu.edu, subject 142, motions 1, 5 and 19). We chose this
particular subject because a large range of different move-

ments were available among which we chose the selected
walks because of their similar time-scales. The advantage of
using motion capture data as compared to video is that we
can focus on modelling the kinematics of the subject in terms
of changing joint angles without the need to model detailed
processing of visual information.

For each walk, we removed the global translation of the
body. This operation is motivated by the fact that the global
translation of the body is merely an effect of the movement
executed by the actor, i.e. the actor controls his joints which
leads to a feet–ground interaction and moves him forward.
Therefore, the relative motion of the joints are the critical
features describing a particular movement, as opposed to the
body interaction with the static ground. It is these dynamical
and complex features which we focus on in the following.

Subsequently, we computed the 3D positions of the joints
and extremities for all time points. This removed potential
‘jumps’ introduced by the circularity of the joint angles. As a
result, we obtained a set of 30 points moving in 3D space (see
Fig. 2, for an example). Subsequently, we selected four repre-
sentative seconds of data starting when the left foot touched
the ground for each walk and subsampled the data using 30
frames per second resulting in N = 120 data points per walk.
These data covered roughly two footsteps for each move-
ment. We then found a common, low-dimensional represen-
tation for the three walks using principal component anal-
ysis (of all the three walks combined) which reduced the
dimensionality from 90 dimensions to D = 5 (maintaining
95.5 % of the original variance). Additionally, we scaled the
coordinates of each walk such that the maximum absolute
value in each dimension was 1 over all walks. In summary,
we obtained for each of the three walks a sequential data
set containing five trajectories each consisting of 120 time
points, see Fig. 3.

2.4.1 Learning of generative RNNs

For each of the three walks, we constructed one gRNN by
learning suitable parameters W, V and k (Eqs. 3, 4) so that
the dynamics of each generative RNN replicated the move-
ment data. Each RNN had five sensory units, each of which
generated one of the scaled principal component coordinates.
In initial tests, we found that a network with H = 12 hid-
den units was the smallest network which gave consistently
acceptable learning results and we consequently used this
network size in our experiments. These tests also showed
that good learning results were obtained, if the hidden units
were sparsely connected. In particular, we fixed 2/3 of all
connections in W and 1/3 of all connections in V to 0. Other
entries in W, the rate constants k and the initial vector of
hidden unit states x(0)l were chosen randomly before learn-
ing, while V was initially chosen to correctly predict the first
data point of a walk given x(0)l . For details of this initiali-
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zation and the learning procedure see the ‘Appendix’. Note
that any learning procedure could have been used here. The
main point made by this initial learning step is that a dynamic
representation for each walk can be found using RNNs with
few units.

The sensory state trajectories of the learnt gRNNs are
shown in Fig. 3. Each of the three different walks was learnt
well: the amount of variance explained for each walk was
99, 97 and 97 % for the childish, depressed and shy walks,
respectively.

3 Results

Here, we demonstrate the utility of Bayesian inference for
RNNs for online recognition of dynamic stimuli. As a proof
of principle, we apply the approach to the multi-dimensional,
nonlinear kinematics of a walking human. We will first show
that rRNNs quickly and successfully recognize the hidden
dynamics, i.e. decode the type of movement. Then, we will
demonstrate that the prediction errors of the hidden units can
be used to discriminate the three different walks. Finally, we
will show that the rRNNs are robust against noisy observa-
tions and initial conditions. Note that all the following exper-
iments with the rRNN use the original motion capture data
as observations.

3.1 Fast recognition of dynamics

In this section, we show that the rRNN can quickly start rec-
ognizing a movement online. In particular, we show that this
‘quick response’ is robust against the initial hidden states at
the beginning of the recognition process. This robustness is
obtained despite the fact that gRNNs have a large dependence
on their internal initial conditions. This is because RNNs
are in general rich dynamic models which are capable of
simultaneously representing many different dynamic stim-
uli depending on their initial conditions (hidden states). We
demonstrate this for the gRNN for the childish walk. This
gRNN was initialized during learning with the state x(0)l .
When this specific gRNN is started, after learning, in this
state, the learnt shy walk is generated as shown in Fig. 3, left.
However, when we initialize the same gRNN with a state
x(0)r = x(0)l + ε, which was perturbed by noise of the
same size as the natural variability of the hidden states, it
generated very different trajectories of sensory states y as
well as hidden states x as shown in Fig. 4. In other words, for
deviating starting conditions, the gRNN generates dynam-
ics that look different from the learnt kinematics and, when
plotted in motion capture space, can deviate severely from a
natural walk.

It may be possible to extend the gRNN such that it gen-
erates the learnt trajectory independent of initial conditions.

However, our point here is that this is unnecessary, because
the rRNN has already this built-in property of robustness
against perturbations in the initial states. In particular, the
rRNN based on this gRNN for the shy walk was robust against
such differences in initial conditions. Even though we per-
turbed the rRNN initial states severely, the rRNN always
switched rapidly to the appropriate dynamics which best
described the sensory input of a shy walk. In other words,
the prediction error updates of the hidden units forced the
dynamics on a trajectory which predicted the observed walk.
We depict a characteristic example of this quick response
behaviour for the rRNN (childish walk) in Fig. 5a, b. After
only one time step the rRNN accurately predicted all subse-
quent observations, while hidden unit trajectories followed
those typical for the learnt gRNN to a large extent (note that
these results partially depend on an appropriate choice of the
prior covariances, see ‘Appendix C’). Although, the pertur-
bation of the hidden states occurs at the beginning of the
stream of observations, the same behaviour would be seen,
if observations themselves are temporarily perturbed dur-
ing recognition. This means that the rRNN can represent the
dynamic repertoire of the gRNN but, in addition, can rapidly
switch to the specific dynamic regime that best explains the
sensory input, also after a perturbation.

3.2 Discrimination of dynamic stimuli

After learning, we have three different rRNNs, each of which
has learnt to predict one of the three walking styles child-
ish, depressed and shy. Here, we will show that the predic-
tion error, on observations εy = y − Vx or hidden states
εx = ẋ − f (x) (Eq. 12), of all the three rRNNs can be used
to discriminate between the three different walks. In partic-
ular, we will show that the dynamic prediction errors εx are
smallest for the rRNN that has learnt a specific walking style.
This means that a potential readout mechanism can use the
relative amplitudes of prediction error of the three rRNNs to
decide which of the three walks is currently observed.

Figure 5d–i shows the response of the rRNN which learnt
the childish walk, but now given the depressed and shy
walks as observations. Although, this rRNN did not learn
these walks it represented them well by exploiting alterna-
tive dynamics embedded in the 12 unit network. However,
the rRNN frequently had to use prediction error on its hid-
den states to explain away the remaining mismatch between
internal predictions and actual input. See Fig. 5c, f, i for this
relative increase in prediction error in response to the non-
learnt depressed and shy walks. This increase in prediction
error when recognizing the two nonlearnt walks is consistent
over the three different rRNNs and may be used to discrimi-
nate dynamic stimuli as shown in Fig. 6d–f. For each of the
three walks the prediction error was smallest for the rRNN
which actually had learnt this specific walk, see also Table 1.
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Fig. 3 Dynamics of three different human walks and model fits in prin-
ciple component space (five components). Dotted lines original dynam-
ics, solid lines trajectories generated by a gRNN after learning. While

the fit between data and its gRNN replications was not perfect, it was
sufficiently close such that the gRNN was an appropriate generative
model for recognition (see Fig. 5)
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Fig. 4 Influence of initial hidden states on dynamics of generative
RNN. Shown are trajectories of sensory (a) and hidden (b) states
of the generative RNN for two different initial hidden states. Dot-
ted trajectories resulted from initial hidden states used during learn-

ing (x(0)l ), while solid trajectories resulted from random initial hidden
states (x(0)r ). In this example, we used the RNN parameters learnt for
walk 1 (childish), but results are qualitatively similar for other RNN
parameters

The prediction errors on observations showed this effect as
well, although not as clearly (Fig. 6a–c).

We also investigated the effect of learning on the accumu-
lated prediction errors by comparing the prediction errors of
the learnt rRNNs with those of random rRNNs. We generated
30 random rRNNs by drawing random parameters W, V and
k while using the same connectivity constraints as for the
gRNNs which were used for learning the walks. The accu-
mulated prediction errors for the random rRNNs, thus, give
an estimate for the total amount of prediction error expected
in a random rRNN, i.e. without learning. As expected, the
prediction errors of random rRNNs were always higher than
those of the rRNNs with learnt parameters (see Table 1).
Furthermore, for nonlearnt stimuli, the learnt rRNNs often
produced larger prediction errors than random rRNNs. This
indicates that learning a specific walk restricts the dynamic
repertoire of an rRNN. We conclude that the learning

procedure resulted in rRNNs which were suited to discrimi-
nate the walks.

In an additional experiment, we concatenated data from
all the three walks into a single sequence to simulate online
recognition of the three walks, see Fig. 7. The resulting sac-
cade-like, abrupt transitions between walking styles led to
a transient increase in prediction errors correctly signalling
a discrepancy between predictions and actually observed
kinematics. Furthermore, we implemented a simple read-
out mechanism for dynamic prediction errors using a filter
which sums the absolute prediction errors over the last 30
time points and weights recent time points more strongly.
This operation smoothes prediction errors temporally and
stresses differences that stretch over a similar period as the
filter size, see Fig. 7. After each transition, the rRNNs reduced
their smoothed prediction errors quickly until the rRNN with
parameters learnt for the currently observed walk was the one
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Fig. 5 Result of the three different walks recognized by one of the
rRNNs(childish walk). a, d, g The presented data (dotted lines) and the
predicted sensory states (solid lines). b, e, h The posterior hidden states
(solid lines) and, for comparison, the hidden states of the correspond-
ing gRNN when run autonomously from the initial states used during
learning (dotted lines, cf. dotted lines in Fig. 4b). c, f, i The dynamic

prediction errors of the hidden states (Eq. 12, note that these prediction
errors do not correspond to the difference between solid and dotted lines
in the middle panels). The different rows of panels correspond to the
different walks which were recognized (from top to bottom: childish,
depressed and shy). Prediction errors were markedly lower, when the
rRNN recognized the walk it was adapted for (c vs f, i)

for which the magnitude of prediction errors was the lowest.
This shows that the present approach can be successfully used
to recognize a specific walk by choosing the model with the
lowest prediction error, after some initial transient has died
away.

3.3 Robustness against noise and initial conditions

Here, we demonstrate that the recognition scheme is robust
to both noise and variations in initial conditions. We repeated

the experiments above for increasing amounts of white obser-
vation noise and 12 different, randomly chosen sets of initial
conditions, see Fig. 8. We found that the overall magnitude
of dynamic prediction errors is proportional to the amount
of observation noise. This indicates that observation noise
is explained away by prediction errors of both sensory and
hidden units. Importantly, the discrimination ability of the
three rRNNs is maintained up to moderate amounts of noise,
i.e. prediction errors still contained sufficient information to
discriminate the three walks. As expected, for large amounts
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Table 1 Absolute prediction errors summed over time points and sensory, or hidden states, respectively

Childish Depressed Shy

Sensory state prediction errors

rRNN (childish) 1.44 5.58 6.81

rRNN (depressed) 1.69 0.43 1.53

rRNN (shy) 2.89 2.66 0.56

rRNN (random) 4.37 (2.37) 4.30 (2.20) 4.21 (2.57)

Hidden state prediction errors

rRNN (childish) 0.85 5.15 7.38

rRNN (depressed) 5.95 1.06 4.05

rRNN (shy) 7.39 6.44 1.48

rRNN (random) 4.96 (3.04) 4.86 (3.13) 4.65 (3.03)

Top: sensory state prediction errors. Bottom: dynamic hidden state prediction errors. Each column presents results for each of the three different
rRNNs on one of the three data sets childish, depressed and shy. rRNN (random): average accumulated prediction error obtained from 30 random
rRNNs (values in parentheses show the minima). rRNN with lowest prediction error on each data set is indicated by bold font. Note that we excluded
the first four out of 120 time points from these sums, because the initial transient period otherwise may distort the results
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Fig. 6 Comparison of absolute prediction errors. Each panel shows
summed (over state dimensions) absolute prediction errors of sensory
(a–c) and hidden (d–f, Eq. 12) states of the three different rRNNs when
data from one of the three different walks were observed. Each rRNN

corresponds to one colour (black childish, red depressed, yellow shy).
Prediction errors of the rRNN, which has been learnt for the observed
type of walk, are indicated by thick lines.

of noise, the contribution from observation noise eventually
masked the prediction error contributed by the difference in
walks. Also, note that the dynamic prediction errors of the
learnt rRNNs on their learnt walks (bottom trajectories in the
panels of Fig. 8) had very low variability across initial con-
ditions. This means that the rRNN, which was learnt for a
specific walk and observes this walk as input, was much less

dependent on its initial conditions than the rRNNs learnt on
different walks. Yet, the variability of prediction error due
to initial conditions within each rRNN was not large enough
to influence the result of discrimination of the walks up to
moderate amounts of noise. In other words, in our experi-
ments accumulated prediction errors of the rRNN learnt for
the current walk were always smaller than those of the other
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Fig. 7 Filtered dynamic prediction errors. We concatenated sensory input from all walks into a single sequence and inferred the hidden states for
all three rRNNs. Shown are temporally smoothed, summed absolute prediction errors for the rRNNs learnt on the childish (black), depressed (red)
and shy (yellow) walks.

rRNNs (up to moderate amounts of noise), even when ben-
eficial initial conditions for them led to better than average
accumulated prediction errors.

4 Discussion

In this paper, we have described the ‘recognizing recurrent
neural network’, which is a RNN where each unit com-
putes both predictions and prediction errors to recognize
sensory input in a Bayes-optimal fashion. We derived the
update equations of both sensory and hidden units using
an approximate Bayesian inference framework for nonlinear
dynamical systems, i.e. DEM (Friston et al. 2008). The rRNN
approach unifies many important aspects of brain processing
such as statistically optimal inference in highly variable and
noisy environments, recurrent connections, online recogni-
tion of dynamics and quick adaptation to sudden changes
in the environment. Therefore, we believe that, compared to
conventional RNNs, rRNNs are more appropriate functional
models of the computations in recurrently connected units
in the brain and may be a useful device to bridge the gap
between behaviour-driven models of cognition and neuro-
biologically motivated models of neuronal ensembles. In
particular, rRNNs extend conventional RNNs by (1) provid-
ing a Bayesian inference interpretation of the computations
done between recurrently connected units and 2) connecting
RNNs with the idea of predictive coding which has recently
been reappraised in cognitive neuroscience (van Wassenhove
et al. 2005; Summerfield et al. 2006; Bar 2009; Friston and
Kiebel 2009). This latter point is based on the interpreta-
tion of computations in the rRNN as an exchange of predic-
tion and prediction error messages. Consequently, the rRNN
approach is a mathematical description of how a predictive
coding scheme could be implemented for complex, multi-
dimensional dynamic sensory input.

Recent findings and theoretical considerations show that
single neurons (and consequently neuronal ensembles) com-
pute much more complex functions than previously thought

(Sidiropoulou et al. 2006; Spruston 2008; Mel 2008; Pis-
sadaki et al. 2010; Debanne et al. 2011). The general idea is
that a single neuron may in principle compute complex, non-
linear and dynamic functions using its spatiotemporal voltage
depolarizations and other dynamics like calcium fluctuations
(Mel 2008). Although, it is yet unclear how the computation
of predictions and prediction errors in the rRNN may map
to cellular dynamics, intracellular dynamics and, hence, the
dynamics of a neuronal ensemble may have in principle the
computational complexity to perform Bayesian decoding of
their synaptic input (Denève 2008).

To illustrate that rRNNs may be an interesting model
for understanding the brain function of recognition and pre-
diction for naturalistic stimuli, we showed that rRNNs can
robustly recognize kinematics as observed with motion cap-
ture data. We found that the prediction error computed by
an rRNN can be used to recognize and discriminate between
different human walking movements in an online fashion.
Furthermore, this recognition mechanism is robust against
both noise on the observations and variations in the initial
state of the rRNN. In other words, rRNNs may be used as
functional models for human action observation studies, e.g.
Blake and Shiffrar (2007). Here, we have not considered
multistable dynamics which is an important phenomenon,
particularly for describing coordinated movements (Schöner
1990; Kelso 1995; Mottet and Bootsma 1999; Jirsa and Kelso
2005). Multistability may be harnessed in the present frame-
work by choosing appropriately structured gRNNs, instead of
the randomly connected gRNNs used here. For example, the
architecture suggested in Perdikis et al. (2011a,b) could be
used to build multistable gRNNs. The rRNNs resulting from
inversion of such gRNNs would also exhibit the desired mul-
tistable dynamics and, importantly, would also exhibit rapid
switching between different regimes, if the sensory input
shows evidence of such a switch.

The idea to use autonomous RNNs as generative mod-
els is not entirely new. In previous work, we have used this
approach in system identification where we explained neu-
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Fig. 8 Dependence of dynamic prediction errors on noise and initial
conditions. Each panel shows average sums of absolute prediction errors
for the three different rRNNs on one of the walks. The averages are over
12 randomly chosen initial states x(0)r and shading indicates the region
around the mean of twice the standard deviation. The x-axis indicates

the standard deviation of independent Gaussian noise added to the prin-
cipal components of the walks on a log-scale. Note that the exponential
increase of prediction errors with noise in the log-plot means that pre-
diction errors depend approximately linear on the observation noise
magnitude

roimaging data as generated by a network of cortical nodes,
called ‘Dynamic Causal Modelling’ (DCM) (Friston et al.
2003; Kiebel et al. 2006, 2009a). Critically, the equations
governing the dynamics of each node took the form of a rate
model as in Eq. 3. The difference to the present approach
is that DCM uses specific, highly constrained connectivity
schemes based on neural mass models and does not allow
for errors in the hidden states. Similarly, we used the present
approach (Friston et al. 2008) to model recognition of multi-
scale dynamics (Kiebel et al. 2008, 2009b) where the rRNN
generalizes these previous contributions using a more generic
generative model (RNNs) and learning of natural stimuli.

To our knowledge, the explicit use of (generic) RNNs as
generative models for recognizing dynamic sensory input
using online Bayesian inference has not been described
before. Both the techniques, Bayesian inference for dynamic
stimuli and artificial RNNs have existed in parallel for many
years now (Jazwinski 1970; Pearlmutter 1989; Williams and
Zipser 1989; Narendra and Parthasarathy 1990). We propose
the combination of these two approaches in which RNNs
act as dynamic models in a nonlinear, Bayesian filtering
framework. Indeed, this idea has already been used implic-
itly in the field of machine learning and control. For example,
Connor et al. (1994) used a related approach in the context of
autoregressive models to remove outliers from sequences of
discrete states which were represented by the hidden states
of a RNN. Also, in dual-extended Kalman filter methods for
RNNs (Wan and Nelson 2001), an extended Kalman filter is
used to estimate RNN hidden states. However, these contri-
butions focus on the usefulness of Bayesian filtering of RNN
states to make conventional RNN learning more robust. Here,
we describe the idea that the combination of RNN equations
and filter updates can themselves be interpreted as network
equations which are better suited for recognizing dynamic
stimuli. Therefore, the present approach also goes beyond

previous suggestions of using RNNs as functions approxi-
mating the update equations of a nonlinear filter (Parlos et al.
2001), or its output (Ting-Ho Lo 1994). We, thus, provide
a novel perspective on the role of RNNs also in possible
machine learning applications.

We motivated the present approach by considering the
potential functional role of recurrently connected neuronal
ensembles in cortical processing. This allowed us to address
recognition of arbitrary nonlinear dynamics embedded in
multidimensional, continuous stimuli—something that has
not been reported with spiking neuron models of neuro-
nal coding in recurrent networks (Rao 2004; Denève et al.
2007; Wilson and Finkel 2009; Boerlin and Denève 2011). In
contrast, the ‘reservoir computing’ approach (Jaeger 2001;
Maass et al. 2002; Verstraeten et al. 2007) can recognize
the class of stimuli we considered here. The reservoir com-
puting approach has reinvigorated RNN research by estab-
lishing that very large networks (hundreds to thousands of
units) combined with a simple readout function can be used
to learn and recognize both dynamic and static stimuli. How-
ever, reservoir computing approaches typically do not adapt
the dynamics within the network and rely on the chance prob-
ability that, among the many units, there exist some dynam-
ical regimes which are appropriate generative models of the
data. Here, we describe an alternative approach and speculate
that small networks of ‘smart’ rRNN units may be sufficient
to recognize dynamic stimuli.

Our use of RNNs as generative models of dynamic stimuli
requires learning of their parameters (W, V and k in Eqs. 3,
4). In particular, our results depend on learning the connec-
tions between hidden units in the recurrent network (W).
This type of learning has been proven to be difficult in the
past (Hammer and Steil 2002). While the learning proce-
dure used here was capable of learning a sufficiently good
dynamic representation of the present walks alternative learn-
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ing approaches may have to be used to achieve similar perfor-
mance on other data sets. For example, the different principal
component coordinates of our walks had similar time scales
(Fig. 3). More complex and longer movements may demand
the use of hierarchical models and corresponding learning
algorithms (Hinton and Salakhutdinov 2006).

Whilelearningisanimportant issuewithRNNs,wefocused
on providing a proof-of-principle that the rRNN approach
can solve high-level problems such as discriminating visual
dynamics in an online fashion. Here, we used a small toy
example to show that this is, in principle, possible. Impor-
tantly, our results appear to be robust against sub-optimally
learnt generative RNNs. This can be seen in Fig. 3, which
shows a residual difference between learnt trajectories and the
input. In other words, we found that prediction error messages
were sufficiently informative even though the sensory input
observed by the rRNN deviated slightly from the internally
predicted dynamics. We also found robustness of the discrim-
inationagainstwhiteobservationnoise, seeFig. 8. It isanopen
question whether the rRNN approach is also robust against
structured variations in human movements, e.g. as induced
by a variation of a specific movement. We speculate that such
variations require a different generative model, either where
multiple movements are embedded in a single gRNN or where
one uses a hierarchical gRNN similar to the approach used
in Taylor and Hinton (2009). Furthermore, we are currently
working on applying the rRNN approach to more complex
stimuli than the toy example presented here.
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Appendix A: Bayesian inversion of dynamical models

In this appendix, we give a high-level description of the D-
step in Friston’s dynamic expectation framework (Friston
et al. 2008) which leads to Eq. 5 in the main paper.

Appendix B: Generalized coordinates

A major component of Friston’s approach to stochastic pro-
cesses is the redefinition of the time-dependent variables in
generalized coordinates of motion. For example, one replaces
x(t) with

x̃(t) =
[

x(t)T ,
∂x(t)T

∂t
,
∂2x(t)T

∂t2 , . . .

]T

. (14)

and obtains for the probabilistic form of Eq. 3 (dropping the
dependence on t for simplicity of writing)

ẋ = x′ = f (x) + εx

∂2x
∂t2 = x′′ = ∂ f

∂x x′ + ε
′x

∂3x
∂t3 = x′′′ = ∂ f

∂x x′′ + ε
′′x

...

(15)

Note that it is assumed that f is locally linear around x(t)
and that differently from the usual stochastic process mod-
els dependencies between noise variables across time are
allowed, i.e. it is assumed that the noise at two close points
in time correlates and that the noise process εx (t) is differ-
entiable sufficiently many times. Generalized coordinates of
motion time-dependent variables encode not only a state at
the current time but also additionally the future path of states.
This is seen when we consider how the continuous represen-
tation here can be mapped onto a discrete sequence of N
future observations y = [y1, . . . , yN ]T (for simplicity we
here show only a single observed variable, i.e. D = 1)

yi =
n∑

j=1

ỹ j (t)

( j − 1)! (i − t) j−1, (16)

where n is the highest order of motion considered. We assume
that i = 1, . . . , N are the times starting from t at which
the data have been sampled. This formula represents a Tay-
lor series approximation making use of the derivatives in ỹ.
Friston et al. (2008) have shown that the variance of the noise
process quickly becomes very large for high-order motions
such that only a small number n of generalized coordinates
and data points need to be taken into account at any time
point. One also needs to translate discrete data samples into
generalized coordinates of motion. This can be done using
the inverse operation of Eq. 16. Rewriting Eq. 16 in matrix
form gives

y = Eỹ ei j = (i−t) j−1

( j−1)!
i ∈ {1, . . . , N }, j ∈ {1, . . . , n}. (17)

If N = n, E is invertible and one obtains ỹ(t) = E−1y. The
resulting ỹ(t) is then used to compute the likelihood of the
data at t and make inference over the hidden RNN states x̃(t)
as described below.

Dynamic approximation of the posterior mode

In generalized coordinates Eqs. 3 and 4 become

ỹ = g̃ + ε̃y Dx̃ = f̃ + ε̃x , (18)

where D is a matrix differentiation operator which shifts
coordinates upwards by one element, f̃ = [fT , f

′T , f
′′T , . . . ]T

and g̃ = [gT , g
′T , g

′′T , . . . ]T are the predicted general-
ized states and observations, respectively, with f ′ = ∂ f

∂x x′
and g′ = Vx′ (analogously for higher order terms f ′′, . . .).
Because g̃ is linear here, one can write g̃ = (I ⊗ V)x̃, where
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Table 2 Online algorithm for
finding the approximate
posterior of RNN states

initialize μ̃(0)

FOR t = 1:N
1) compute predictions g̃(μ̃) and f̃(μ̃) from previous μ̃(t − �t)
2) find ỹ based on n data points closest to t using Eq. 17
3) compute gradients of V (μ̃) using predictions, Dμ̃(t − �t) and ỹ
4) numerically integrate Eq. 23 to get new μ̃(t)
END

⊗ denotes the Kronecker product and I ∈ R
n×n . Based on

these equations, the log-likelihood of the observations ỹ(t)
is defined as

L(t) = log p(ỹ|θ)

= log
∫

p(ỹ, x̃|θ) dx̃

= log
∫

p(ỹ|x̃, θ)p(x̃|f̃, θ) dx̃, (19)

where θ is a placeholder for all parameters in the model.
Notice that p(f̃(x̃)|Y), where Y represents previously seen
data, has been approximated as δ(f̃(μ̃))—a Dirac delta func-
tion at f̃ evaluated at the previous posterior mode μ̃ (see
below). This means that only the mode is propagated through
the dynamics, but not its uncertainty. Friston et al. (2008) then
introduce a variational density q(x̃) (ignoring the density over
parameters as learning is not our objective) and make use of
Jensen’s inequality to obtain

L(t) ≥
∫

q(x̃) log
p(ỹ, x̃|θ)

q(x̃)
dx̃ = F(q, t), (20)

where F(q, t) is the free energy which is a lower bound on the
log-likelihood. The aim is to find q such that L(t) = F(q, t).
In other words, one maximizes F(q, t) with respect to q. This
is equivalent to minimizing K L[q(x̃)||p(x̃|ỹ, θ)], the KL-
divergence between variational density and true posterior,
i.e. after optimization q is an approximation of the poster-
ior density over RNN states. In particular, it can be shown
(Ghahramani and Beal 2001; Friston et al. 2008) that the q
maximizing F(q, t) is equal to

q(x̃) = 1

Z
exp(V (x̃))

= 1

Z
exp(log p(ỹ, x̃|θ))

= p(x̃|ỹ, θ), (21)

where V (x̃) is called the variational energy. While this equa-
tion appears to be a trivial statement, the formulation of q in
this way lets us recognize (Friston et al. 2008) that q also is
the density defined by a set of stochastically moving particles
at their stationary solution where the movement of a single
particle is given by

˙̃z = ∂V (z̃)
∂ z̃

+ Γ (t) = ∂ log p(ỹ, z̃|θ)

∂ z̃
+ Γ (t) (22)

and Γ (t) is a random fluctuation. Using this relationship one
can find q using Monte Carlo simulation as we can compute
the partial derivative of log p(ỹ, z̃|θ). However, Friston et al.
(2008) simplified this further. In particular, a single particle
in generalized coordinates with motion

˙̃z = κ
∂V (z̃)

∂ z̃
+ Dz̃ (23)

will converge to the mode μ̃ of V , which is also the mode of
the posterior, at a rate proportional to the constant κ (Friston
et al. 2008). Given the mode μ̃, Friston et al. (2008) use a
Laplace approximation for the posterior where q ∼ N (μ̃, �̃)

is defined to be Gaussian and the covariance �̃ is found as

�̃−1 = �̃ = −∂2 log p(ỹ, x̃|θ)

∂ x̃∂ x̃

∣∣∣∣
x̃=μ̃

. (24)

This is the inverse of the negative curvature of the poster-
ior evaluated at the mode μ̃. This completes the derivation
of the approximate posterior over RNN states.

Under the approximations made and given the linearity of
g one can identify the posterior p(x̃|ỹ, θ) as being Gaussian
exploiting that p(ỹ|x̃, θ) and p(x̃|f̃, θ) are Gaussian. In this
case, the Laplace approximation is exact. Nevertheless, we
retained Friston’s more general form which is also valid for
nonlinear g. More importantly, this motivates the dynamic
form of estimating the posterior mode in Eq. 23 which allows
us to extend the static result above to the dynamic case. In
particular, note that all results above were obtained for only
a single time point t . However, it can be shown (Friston et al.
2008) that the path integral of the free energy is maximized,
if Eq. 21 holds for all t . Naively, this means that one has to
integrate the motion of the particle in Eq. 23 until it con-
verges to μ̃(t) for each t . However, if the particle converges
faster onto μ̃(t) than μ̃ moves itself, a condition which can
be ensured by choosing an appropriate rate constant κ , we
will be able to track the motion of μ̃ with a single particle and
the dynamics given by Eq. 23. Intuitively, the representation
in generalized coordinates of motion here helps to converge
to a mode which better represents the data as it also takes the
local motion (velocity, acceleration, etc.) of the mode into
account.
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For the purpose of this paper, we ignored the approximated
covariance and only concentrated on the posterior mode and
the corresponding prediction errors. A summary of the result-
ing algorithm is shown in Table 2. We were able to ignore the
covariance, because we assumed network parameters to be
fixed during inversion. However, in the full DEM-framework
these covariances are needed for the computation of param-
eter updates.

Appendix B: Learning of RNN parameters

We want to adapt the RNN parameters W, V, k such that the
observations generated by the RNN defined in Eqs. 3 and 4
fit the data. We mainly follow the approach underlying DCM
(Friston et al. 2003; Kiebel et al. 2009a) which is detailed
in Friston (2002) and Friston et al. (2002). This entails an
iterative approximation of the parameter posterior based on
a first-order Taylor expansion of an observation function
vec(Y) = h(θ) which represents the underlying dynami-
cal system. Here, Y ∈ R

N×D contains the observations at
all N time points and θ = [vec(W)T , vec(V)T , kT ]T . The
RNN states are enclosed in h(θ), because the dynamics is
assumed to be noise free, i.e. deterministic. Both parameter
likelihood and prior are assumed to be Gaussian so that the
following gradients of the log-posterior L = log p(θ |Y) ∝
log p(Y|θ)p(θ) are obtained (cf., Friston 2002, Eq. 17)

∂L
∂θ

= JT C−1
y r + C−1

θ (μθ − θ̂ (i))

∂2L
∂θ2 ≈ JT C−1

y J + C−1
θ . (25)

We use these in a numerical integration scheme for nonlin-
ear dynamical systems to obtain an update of the parameters
dθ based on the model dθ/dt = ∂L/∂θ and θ̂ (i+1) = θ̂ (i) +
dθ . Here, θ̂ (i) is the maximum a posteriori estimate of the
parameters in iteration i , [J] jk = ∂[h(θ̂ (i))] j/∂θk is the Jaco-
bian of h evaluated at θ̂ (i), Cy is the covariance of the obser-
vations and μθ and Cθ are the prior mean and covariance of
the parameters, respectively. Finally, r = vec(Y) − h(θ̂ (i))

are the residuals of the data not explained by the predictions
h(θ̂ (i)) which are equivalent to the observation prediction
errors εy described in the main text. In each iteration, one
obtains the predictions h(θ̂ (i)) by numerical integration of
the RNN dynamics and the Jacobian J using numerical dif-
ferentiation of h(θ̂ (i)).

In our experiments, we divided learning into two phases—
an initial phase in which we adapted parameters only on
local chunks of the data and a final phase in which we used
the complete data. We found that the first phase helped to
find a better initialization of θ̂ for the optimization on the
whole data set in the second phase of learning. In the first
phase, we split the data into seven overlapping, equal size

chunks and ran two passes through all chunks where we ran
only two iterations of the update procedure described above
per chunk and pass. In the second phase, we ran 25 itera-
tions with a fast, approximate numerical integration scheme
for h and subsequently another 4 iterations with a slower,
but more accurate scheme. While our choices for the num-
ber of chunks, passes and iterations led to good results,
we expect that many other values may be chosen equiva-
lently.

Embedded in each iteration there is also an expectation
maximization (EM)-like update of hyperparameter λ which
determines the amount of noise on the observations Cy = eλI
during learning. We refer the reader (Friston 2002; Friston
et al. 2002) for details. λ was initialized as -32. The hyper-
prior for λ was Gaussian λ ∼ N (− log(s̄2), 1/8) where s̄2 is
the average variance of the observation variables in the data.

We initialized the parameters contained in θ(0) as fol-
lows. The elements of k(0) were chosen uniformly in the
interval [1/8, 3/8]. Randomly chosen 2/3 of all elements in
W(0) were fixed at 0, the remaining were drawn randomly
from a standard normal distribution. Furthermore, follow-
ing Jaeger et al. (2007), we scaled the resulting matrix by
W = 1/(0.95δ)W(0) to bring the initial RNN dynamics to a
useful dynamical regime. δ here is the largest absolute eigen-
value of the matrix [k̄W(0)−(1−k̄a)I] where a is the leakage
(cf. Eq. 1) and k̄ = 1/4 is the expected value of ki for any i .
The initial states x j (0)l were chosen uniformly in [−2, 2] for
all j . We then found V(0) as the solution to the underdeter-
mined system of equations y(0) = V(0)x(0)l using Matlab’s
backslash operator, i.e. we found the least squares solution
for V(0) with most elements of V(0) equal to zero. A ran-
domly chosen subset of these zero elements were also fixed
during learning. The number of fixed elements was 1/3 of the
total number of elements.

In the initial learning phase, we set the mean of the param-
eter prior to the described initialization of the parameters
μθ = θ(0). In the subsequent learning phase, we set μθ to
the result of the first phase. The covariances of the prior
parameter distribution were chosen to be diagonal, but also
differed in the two phases of learning. In the initial phase,
we set the variances associated with the elements of W to
1.6 · 105 while we set the variances for V and k to 0.018 and
0.135, respectively. This enforced particularly the adaptation
of the dynamical parameters. For learning on the full data set,
we chose these variances to be 7.389, 1 and 1 for W, V and
k, respectively.

Appendix C: Prior covariances

For the rRNN the prior covariances, �̃y and �̃x , modulate
the size of updates of the posterior (cf. Eqs. 10, 9) and influ-
ence the result of the Bayesian inversion. Intuitively, for large
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prior (co-)variances, i.e. a large amount of a priori expected
noise, smaller updates are made and larger prediction errors
are tolerated. The amount of noise here has to be seen in
comparison to the variance of the unperturbed states of the
units in the gRNN. For the sensory states, this corresponds
to the variance of the movement data. The standard devia-
tion of the sensory states across all walks averaged over the
five input dimensions was 0.38 while the standard deviation
of the corresponding changes in hidden states averaged over
the 12 hidden units was 0.04. In our simulations, we assumed
isotropic prior noise and correspondingly chose covariances
of the form �y = σ 2

y I,2 where I is the identity matrix and
σy is our choice of standard deviation. We chose σy = 0.3
and σx = 0.1 for sensory and hidden states, respectively.
This means that we tolerated only relatively small prediction
errors on sensory states while allowing for relatively larger
prediction errors on changes of hidden states. This choice
implements the natural prior belief that the variability of walk
observations is mainly determined by the variability of the
underlying dynamics.
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