Skip to main content
Log in

Engineering entrainment and adaptation in limit cycle systems

From biological inspiration to applications in robotics

  • Original Paper
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

Periodic behavior is key to life and is observed in multiple instances and at multiple time scales in our metabolism, our natural environment, and our engineered environment. A natural way of modeling or generating periodic behavior is done by using oscillators, i.e., dynamical systems that exhibit limit cycle behavior. While there is extensive literature on methods to analyze such dynamical systems, much less work has been done on methods to synthesize an oscillator to exhibit some specific desired characteristics. The goal of this article is twofold: (1) to provide a framework for characterizing and designing oscillators and (2) to review how classes of well-known oscillators can be understood and related to this framework. The basis of the framework is to characterize oscillators in terms of their fundamental temporal and spatial behavior and in terms of properties that these two behaviors can be designed to exhibit. This focus on fundamental properties is important because it allows us to systematically compare a large variety of oscillators that might at first sight appear very different from each other. We identify several specifications that are useful for design, such as frequency-locking behavior, phase-locking behavior, and specific output signal shape. We also identify two classes of design methods by which these specifications can be met, namely offline methods and online methods. By relating these specifications to our framework and by presenting several examples of how oscillators have been designed in the literature, this article provides a useful methodology and toolbox for designing oscillators for a wide range of purposes. In particular, the focus on synthesis of limit cycle dynamical systems should be useful both for engineering and for computational modeling of physical or biological phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Buchli J, Iida F, Ijspeert A (2006) Finding resonance: adaptive frequency oscillators for dynamic legged locomotion. In: Proceedings of the 2006 IEEE/RSJ international conference on intelligent robots and systems (IROS 2006), IEEE, pp 3903-909

  • Buchli J, Ijspeert A (2004) Distributed central pattern generator model for robotics application based on phase sensitivity analysis (conference). In: Ijspeert A, Murata M, Wakamiya N (eds) Biologically inspired approaches to advanced information technology: first international workshop, BioADIT 2004, vol 3141. Springer, Berlin Heidelberg New York, pp 333-49

  • Buchli J, Ijspeert A (2004) A simple, adaptive locomotion toy-system. In: Schaal S, Ijspeert A, Billard A, Vijayakumar S Hallam J, Meyer J (eds) From animals to animats 8. Proceedings of the 8th international conference on the Simulation of Adaptive Behavior (SAB-4). MIT Press, Cambridge, MA, pp 153-62

  • Buchli J, Righetti L, Ijspeert A (2005) A dynamical systems approach to learning: a frequency-adaptive hopper robot (conference). In: Proceedings of the 8th European conference on artificial life ECAL 2005. Springer, Berlin Heidelberg New York, pp 210-20

  • Buchli J, Santini C (2005) Complexity engineering: Harnessing emergent phenomena as opportunities for engineering. In: Reports of the santa fe institute’s complex systems summer school 2005. Santa Fe Institute, Santa Fe, NM

  • Collins J, Richmond S (1994) Hard-wired central pattern generators for quadrupedal locomotion. Biol Cybern 71(5):375–385

    Article  Google Scholar 

  • Crawford J (1991) Introduction to bifurcation theory. Rev Mod Phys 63(4):991-1037

    Article  Google Scholar 

  • Delcomyn F (1980) Neural basis for rhythmic behaviour in animals. Science 210:492-498

    Article  CAS  PubMed  Google Scholar 

  • Endo G, Nakanishi J, Morimoto J, Cheng G (2005)Experimental studies of a neural oscillator for biped locomotion with q rio. In: Proceedings of the 2005 IEEE international conference on robotics and automation, Barcelona, Spain, pp 598-04

  • Ermentrout B (1991) An adaptive model for synchrony in the firefly pteroptyx malaccae. J Math Biol 29:571–585

    Article  Google Scholar 

  • Ermentrout G, Kleinfeld D (2001) Traveling electrical waves in cortex: insights from phase dynamics and speculation on a computational role. Neuron 29:3–44

    Article  Google Scholar 

  • Ermentrout G, Kopell N (1994) Inhibition-produced patterning in chains of coupled nonlinear oscillators. SIAM J Appl Math 54(2):478–507

    Article  Google Scholar 

  • FitzHugh R (1961) Impulses and physiological states in theoretical models of nerve membrane. Biophys J 1(6):445–466

    Article  CAS  PubMed  Google Scholar 

  • Fukuoka Y, Kimura H, Cohen A (2003) Adaptive dynamic walking of a quadruped robot on irregular terrain based on biological concepts. Int J Robot Res 3–4:187–202

    Article  Google Scholar 

  • Galicki M, Leistritz L, Witte H (1999) Learning continous trajectories in recurrent neural networsk with time-dependent weights. IEEE Trans Neural Netw 10(4):741–756

    Article  CAS  PubMed  Google Scholar 

  • Glass L, Mackey M (1988) From clocks to chaos, the rythms of life. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Golubitsky M, Stewart I (2006) Nonlinear dynamics of networks: the groupoid formalism. Bull Am Math Soc 43(2006):305–364

    Article  Google Scholar 

  • Grillner S (1985) Neurobiological bases of rhythmic motor acts in vertebrates. Science 228(4696):143–149

    Article  CAS  PubMed  Google Scholar 

  • Haken H (1983) Synergetics: An Introduction, 3rd edn. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Hodgkin A, Huxley A (1952) Propagation of electrical signals along giant nerve fibres. Proc R Soc Lon Ser B Biol Sci 140(899):177–183

    Article  CAS  Google Scholar 

  • Hopf E (1942) Abzweigung einer periodischen Lösung von einer stationären Lösung eines Differentialsystems. Ber Math-Phys Sächs Akad d Wissenschaften, Leipzig, pp 1-2

  • Ijspeert A (2001) A connectionist central pattern generator for the aquatic and terrestrial gaits of a simulated salamander. Biol Cybern 84(5):331-348

    Article  CAS  PubMed  Google Scholar 

  • Ijspeert A, Crespi A, Cabelguen J (2005) Simulation and robotics studies of salamander locomotion. Applying neurobiological principles to the control of locomotion in robots (article). Neuroinformatics 3(3):171–196

    Article  PubMed  Google Scholar 

  • Ijspeert A, Nakanishi J, Schaal S (2002) Learning attractor landscapes for learning motor primitives. In: Advances in Neural Information Processing Systems 15

  • Izhikevich E (2001) Resonate-and-fire neurons. Neural Netw 14:883–894

    Article  CAS  PubMed  Google Scholar 

  • Kay B, Kelso J, Saltzman E, Schöner G (1987) Space-time behavior of single and bimanual rhythmical movements: data and limit cycle model. J Exp Psychol Human Percept Perform 13(2):178–192

    Article  CAS  Google Scholar 

  • Kimura H, Akiyama S, Sakurama K (1999) Realization of dynamic walking and running of the quadruped using neural oscillator. Auton Robot 7:247-258

    Article  Google Scholar 

  • Kopell N (1988) Neural Control of Rhythmic Movements in Vertebrates. Wiley, New York

    Google Scholar 

  • Kopell N, Ermentrout G (1988) Coupled oscillators and the design of central pattern generators. Math Biosci 90(1–2):87–109

    Article  Google Scholar 

  • Kramer M, Herschel R, Calo J (1984) Sensitivity analysis of oscillatory systems. Appl Math Modell 8(5):328–340

    Article  Google Scholar 

  • Kuramoto Y (1984) Chemical Oscillations, Waves, and Turbulence. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Large E (1994) Resonance and the perception of musical meter. Connect Sci 6(2–3):177–208

    Article  Google Scholar 

  • Large E (1996) Modeling beat perception with a nonlinear oscillator. In: Proceedings of the 18th annual conference of the Cognitive Science Society

  • Leistritz L, Galicki M, Witte H, Kochs E (2002) Training trajectories by continuous recurrent multilayer networks. IEEE Trans Neural Netw 13(2):283–291

    Article  CAS  PubMed  Google Scholar 

  • Marbach D, Ijspeert A (2005) Online optimization of modular robot locomotion (conference). In: Proceedings of the IEEE international conference on mechatronics and automation (ICMA 2005), pp 248-53

  • Matsuoka K (1985) Sustained oscillations generated by mutually inhibiting neurons with adaptation. Biol Cybern 52:367–376

    Article  CAS  PubMed  Google Scholar 

  • Matsuoka K (1987) Mechanisms of frequency and pattern control in the neural rhytm generators. Biol Cybern 56:345–353

    Article  CAS  PubMed  Google Scholar 

  • Morimoto J, Endo G, Nakanishi J, Hyon S, Cheng G, Bentivegna D, Atkeson C (2006) Modulation of simple sinusoidal patterns by a coupled oscillator model for biped walking. In: Proceedings of the 2006 IEEE international conference on robotics and automation, pp 1579-584

  • Nishii J (1998) A learning model for oscillatory networks. Neural Netw 11(2):249–257

    Article  PubMed  Google Scholar 

  • Nishii J (1999) Learning model for coupled neural oscillators. J NISHII Neural Netw 10:213–226

    Article  CAS  Google Scholar 

  • Okada M, Nakamura D, Nakamura Y (2003) Hierachical design of dynamics based information processing system for humanoid motion generation. In: Proceedings AMAM 2003

  • Okada M, Tatani K, Nakamura Y (2002) Polynomial design of the nonlinear dynamics for the brain-like information processing of whole body motion. In: Proceedings of ICRA 2002, 2:1410-415

  • Pikovsky A, Rosenblum M, Kurths J (2001) Synchronization, a universal concept in nonlinear sciences, vol 12. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Righetti L, Buchli J, Ijspeert A (2006) Dynamic hebbian learning in adaptive frequency oscillators (article). Physica D 216(2):269–281

    Article  CAS  Google Scholar 

  • Righetti L, Ijspeert A (2006) Design methodologies for central pattern generators: application to crawling humanoids. In: Proceedings RSS 06

  • Righetti L, Ijspeert A (2006) Programmable central pattern generators: an application to biped locomotion control (conference). In: Proceedings of the 2006 IEEE international conference on robotics and automation

  • Ruiz A, Owens D, Townley S (1998) Existence, learning, and replication of periodic motions in recurrent neural networks. IEEE Trans Neural Netw 9(4):651–661

    Article  CAS  PubMed  Google Scholar 

  • Santos C (2003) Attractor dynamics based generation of timed robotic trajectories. Unpublished doctoral disseration, Universidade do Minho Escola de Engenharia, Dept. de Electronica Industrial, Guimaraes, Portugal

  • Santos C (2004) Generating timed trajectories for an autonomous vehicle: A nonlinear dynamical systems approach. In: 2004 IEEE international conference on robotics and automation

  • Schöner G, Jiang W, Kelso J (1990) A synergetic theory of quadrupedal gaits and gait transitions. J Theoret Biol 142:359–391

    Article  Google Scholar 

  • Schöner G, Kelso J (1988) A synergetic theory of environmentally-specified and learned patterns of movement coordination. II Component oscillator dynamics. Biol Cybern 58:81–89

    Article  PubMed  Google Scholar 

  • Schöner G, Santos C (2001) Control of movement time and sequential action through attractor dynamics: a simulation study demonstrating object interception and coordination. In: SIRS 2001

  • Somers D, Kopell N (1993) Rapid synchronization through fast threshold modulation. Biol Cybern 68:393-407

    Article  CAS  PubMed  Google Scholar 

  • Strogatz S (1994) Nonlinear dynamics and chaos. with applications to physics, biology, chemistry, and engineering. Addison-Wesley, New York

    Google Scholar 

  • Strogatz S (2000) From kuramoto to crawford: exploring the onset of synchronization in populations of coupled oscillators. Phys D Nonlin Phenom 143(1–2):1–20

    Article  Google Scholar 

  • Taga G (1994) Emergence of bipedal locomotion through entrainment among the neuro-musculo-skeletal system and the environment. Phys D Nonlin Phenom 75(1–2): 190–208

    Article  Google Scholar 

  • Taga G (1995) A model of the neuro-musculo-skeletal system for human locomotion. II. Real-time adaptability under various constraints. Biol Cybern 73(2):113–121

    Article  CAS  PubMed  Google Scholar 

  • Taga G (1995) A model of the neuro-musculo-skeletal system for human locomotion. I. Emergence of basic gait. Biol Cybern 73(2):97–111

    Article  CAS  PubMed  Google Scholar 

  • Taga G (1998) A model of the neuro-musculo-skeletal system for anticipatory adjustment of human locomotion during obstacle avoidance. Biol Cybern 78(1):9–17

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Slotine J (2005) On partial contraction analysis for coupled nonlinear oscillators. Biol Cybern 92(1):38–53

    Article  PubMed  Google Scholar 

  • Wilbur C, Vorus W, Cao Y, Currie S (2002) Neurotechnology for biomimetic robots. Bradford/MIT Press, Cambridge, London

    Google Scholar 

  • Williamson M (1998) Exploiting natural dynamics in robot control. In: Proceedings of the 4th European meeting on cybernetics and systems research, EMCSR -8

  • Winfree A (2001) The geometry of biological time, 2nd edn. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Zegers P, Sundareshan M (2003) Trajectory generation and modulation using dynamic neural networks. IEEE Trans Neural Netw 14(3):520–533

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonas Buchli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buchli, J., Righetti, L. & Ijspeert, A.J. Engineering entrainment and adaptation in limit cycle systems. Biol Cybern 95, 645–664 (2006). https://doi.org/10.1007/s00422-006-0128-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-006-0128-y

Keywords

Navigation