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Abstract
Purpose Moderate-intensity aerobic exercise is safe and beneficial in atrial fibrillation (AF) and coronary heart disease 
(CHD). Irregular or rapid heart rates (HR) in AF and other heart conditions create a challenge to using HR to monitor exercise 
intensity. The purpose of this study was to assess the potential of breathing frequency (BF) to monitor exercise intensity in 
people with AF and CHD without AF.
Methods This observational study included 30 AF participants (19 Male, 70.7 ± 8.7 yrs) and 67 non-AF CHD participants 
(38 Male, 56.9 ± 11.4 yrs). All performed an incremental maximal exercise test with pulmonary gas exchange.
Results Peak aerobic power in AF ( V̇O2peak; 17.8 ± 5.0 ml.kg−1.min−1) was lower than in CHD (26.7 ml.kg−1.min−1) 
(p < .001). BF responses in AF and CHD were similar (BF peak: AF 34.6 ± 5.4 and CHD 36.5 ± 5.0 breaths.min−1; p = .106); at 
the 1st ventilatory threshold (BF@VT-1: AF 23.2 ± 4.6; CHD 22.4 ± 4.6 breaths.min−1; p = .240). % V̇O2peak at VT-1 were 
similar in AF and CHD (AF: 59%; CHD: 57%; p = .656).
Conclusion With the use of wearable technologies on the rise, that now include BF, this first study provides an encouraging 
potential for BF to be used in AF and CHD. As the supporting data are based on incremental ramp protocol results, further 
research is required to assess BF validity to manage exercise intensity during longer bouts of exercise.
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Abbreviations
AF  Atrial fibrillation
BMI  Body mass index
BF  Breathing frequency
bpm  Beats per minute of heart rate
br.min−1  Breaths per minute

CHD  Coronary heart disease
CPET  Cardiopulmonary exercise test
ECG  Electrocardiogram
HR  Heart hate
%HRmax  Percentage of maximal heart rate
%HRpeak  Percentage of peak heart rate
HRR  Heart rate reserve
%HRR  Percentage of heart rate reserve
p  Level of statistical significance (alpha)
r  Correlation coefficient
SD  Standard deviation
V̇ E  Minute ventilation
V̇ E/ V̇CO2  Ventilatory equivalent for rate of carbon 

dioxide production
V̇ E/ V̇O2  Ventilatory equivalent for rate of oxygen 

uptake
V̇  CO2  Rate of carbon dioxide production
V̇  O2  Rate of oxygen uptake
V̇  O2 max  Rate of maximal oxygen uptake or maximal 

aerobic power
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V̇  O2 peak  Rate of peak oxygen uptake or peak aerobic 
power

VT-1  1St ventilatory threshold

Introduction

The prevalence of atrial fibrillation (AF) is linked to a vari-
ety of factors, including: an ageing population, smoking, 
obesity, hypertension, or as a secondary condition to other 
cardiac diseases/dysfunction (Morseth et al. 2021; Morillo 
et al. 2017). As a secondary condition, AF can occur in up 
to 30% of people with either angina, heart failure, cardiac 
myopathies, myocardial infarction, after arterial or valvular 
heart surgery, or those who have engaged in high volumes 
of sport and exercise training for many years (Morin et al. 
2016; Newman et al. 2021; Andersen et al. 2013). Appropri-
ately guided exercise for those with AF has shown similar 
physiological and psychosocial health benefits to those with 
coronary heart disease (CHD) or heart failure (Reed et al. 
2013, 2018; Smart et al. 2018).

With the known effects of AF on heart rate (HR) and 
breathing (Lip et al. 2016), the use of traditional cardiac 
rehabilitation guidance on setting and monitoring exercise 
intensity either using heart rate or ventilatory responses 
(Etiwy et al. 2019) is seemingly challenged. Normally, fol-
lowing an exercise test, target exercise training intensities 
are set to a relative percentage (%) of peak or maximum 
heart rate (%HRmax or % heart rate reserve), % maximal 
oxygen uptake (%V̇O2max), or % maximal aerobic work rate 
(Iannetta et al. 2020; Anselmi et al. 2021; Gati et al. 2020). 
More precise techniques recommend setting target HRs or 
work-rates which correspond to the first and second ventila-
tory thresholds (VT-1, VT-2, respectively), depending on 
whether continuous or interval training approaches are used 
(Pattyn et al. 2018). When the reliable and valid use of HR is 
challenged (e.g. in people with dysrhythmias like AF), could 
breathing frequency be a suitable alternative to represent a 
given %HRmax/reserve, % V̇O2max or VT-1or VT-2?

Currently, in the absence of using HR to monitor inten-
sity, pragmatic recommendations for self-monitored exercise 
intensity are typically left to the use of ratings of perceived 
exertion/breathing effort/breathlessness (Borg 1998; Spruit 
et al. 2013; Buckley and Thow 2006; Buckley et al. 2009). 
With perceived breathing effort or breathlessness being a 
staple tool of cardiopulmonary rehabilitation (Chen et al. 
2002), it seems intuitively perplexing that for the past four 
decades there has been no parallel technology pursuit to HR 
to similarly monitor breathing effort objectively. Only in the 
past 5 years has there been some development of commer-
cial devices to measure exercise breathing effort (including 
frequency) (Nicolo et al. 2017, 2020). However, in those 

devices that report breathing frequency (BF), the measures 
are usually derived from algorithms using HR/ECG vari-
ability (Massaroni et al. 2019 a, b). A case for ECG-derived 
measures of BF in AF has been put forward but only during 
simulated rest signals (not using actual patients) and with 
limited applications to sleep apnoea (Kontaxis et al. 2020). 
A case against the use of ECG or HR variability-derived BF 
in AF has been reported by Platisa et al. (2016), who demon-
strated an uncoupling of heart rate and BF in AF. BF derived 
from personal HR monitors will likely use either single-
lead ECG frequency spectrums, HR variability algorithms 
(Chung et al. 2021) or second level derivations based on 
pulse-plethysmography from wrist- or arm-band wearables 
(Lazaro et al. 2018). Encouragingly, there are some emerg-
ing technologies that are reporting BF directly from either 
chest wall motion sensors or expired mouth-air sensors, but 
these have not yet reached the wider public market, let alone 
being validated for use with patient populations.

In the optimistic anticipation that technology will soon 
evolve towards more practical, valid and affordable means of 
measuring BF for use in exercise in healthy and clinical pop-
ulations (Nicolo et al. 2020), we sought to assess the under-
pinning physiological rationale/evidence for the value of BF 
at least in healthy populations. In this assessment, limited 
data were found on the reporting of BF during incremen-
tal exercise at submaximal and up to maximal efforts that 
could be adapted to our aims. There was one study during 
submaximal and three relevant studies during incremental 
maximal effort in healthy athletic populations using cardio-
pulmonary exercise tests (CPET) (Bogaard et al. 1996; Kim 
et al. 2013; Kipp et al. 1985; Cummin et al. 1986). From 
the maximal test data, the “mean” data (Fig. 1) were plotted 
to illustrate potential relationships between relative aerobic 
power (%V̇O2max) and BF to assess its possible utility in a 
similar way to HR. Across these three studies there appeared 
to be a consistent relationship of BF with % V̇O2max with a 
between-studies variation of ~ 5–8 br.min−1 at any given % V̇
O2max The expected curvilinear nature of the BF kinetics 

Fig. 1  Re-adapted data from three studies in athletic populations to 
illustrate the potential value of the association between breathing fre-
quency  (br.min−1) and relative aerobic power (%V̇O2max)
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(Balady et al. 2010) is clearly visible in Fig. 1, raising the 
hypothesis that similar to athletic populations, BF could also 
be used to represent a reliable exercise response curve in AF 
for factors such as the identification of ventilatory thresholds 
(Carey et al. 2005). The assumptions of such a rationale 
are that VT-1 denotes the lower end of moderate-intensity 
aerobic endurance exercise and VT-2, also known as the 
respiratory compensation threshold, represents vigorous- 
to high-intensity aerobic endurance exercise (Balady et al. 
2010; Mezzani et al. 2013).

Assuming the same features of CPET demonstrated 
in Fig. 1 can be applied in cardiopulmonary diseased 
populations, we therefore sought in this current study to 
evaluate the relationship between BF and the typically 
recommended cardiac rehabilitation “moderate” exercise 
intensity parameters of HR (where possible), % V̇O2peak 
and VT-1 in adults with persistent and permanent AF and 
non-AF CHD (the comparator group). Our ultimate goal, 
dependent on emerging technology, is to explore the use 
of BF instead of HR to represent submaximal aerobic 
exercise intensity across a number of cardiac conditions, 
in both testing and training scenarios, (e.g. AF, heart 
failure, bradycardia, tachycardia, those on chronotropic 
medications or medications that have chronotropic side 
effects).

Methods

Ethical approval, equity, diversity, inclusion

The BF and related physiological measures of participants 
with AF and CHD (without AF) collected in previously pub-
lished work (Reed et al. 2019, 2022) were analysed. These 
studies were designed with patient and public involvement. 
Additional ethical approval was obtained from the Ottawa 
Health Science Network Research Ethics Board to use and 
share these data sets for the purposes of this new analysis 
and with new collaborators. The study was performed in 
accordance with the ethical standards as outlined in the 1964 
Declaration of Helsinki and its later amendments or compa-
rable ethical standards.

All of the publishers’ criteria for patient equity, diver-
sity and inclusion are standard and requisite practice 
within the normal referral/recruitment to the patient ser-
vices where the research occurred. This has been previ-
ously published (Reed et al. 2019, 2022), and it must be 
appreciated that recruiting eligible females and ethnic 
minorities to cardiac rehabilitation is currently a widely 
reported challenge (Mehra et al. 2020).

Participants

The detailed recruitment methodologies for both AF and 
CHD have been described previously (Reed et al. 2022, 
2019). The inclusion criteria for the AF patients included: 
(1) documented persistent or permanent AF as confirmed 
by a physician; (2) rate-controlled with a resting HR 
of ≤ 100 bpm; (3) ability to perform CPET to exhaustion; 
and, (4) age ≥ 40 years. Patients were excluded if they 
already participated in routine exercise training more than 
twice a week, had a diagnosis of chronic obstructive pul-
monary disease, severe mitral or aortic stenosis, or hyper-
trophic cardiomyopathy with obstruction. Details of the 
recruitment process, inclusion criteria and study protocol 
for the CHD participant data were published previously 
(Reed et al. 2019).

Cardiorespiratory exercise testing and data analyses

Cardiorespiratory fitness was measured in both AF and 
CHD participants using symptom-limited ramp protocols 
with respiratory gas exchange measured by CPET. AF 
participants were assessed using a portable CPET (Care-
fusion Oxycon Mobile) while exercising on an electroni-
cally braked cycle ergometer (COSMED, USA) with the 
details previously published (Reed et al. 2022). The ini-
tial cycle ergometer work rate was set at 40 Watts for the 
first 2 min and increased by 20W every minute thereafter. 
CHD participants were assessed on a treadmill with gas 
exchange measured by a lab-based metabolic cart (Sen-
sormedics Vmax, Yorba Linda, CA, United States), with 
testing details described previously (Reed et al. 2019). For 
both AF and CHD participants, gas exchange and BF were 
monitored continuously, and the highest rate of oxygen 
uptake achieved during the last minute of the CPET rep-
resented peak aerobic power (peak V̇O2 in  ml.kg−1.min−1). 
For both AF and CHD participants, VT-1 and VT-2 were 
determined by plotting V̇CO2, ventilation ( V̇E), V̇E/V̇O2, 
and V̇E/V̇CO2 against V̇O2. VT-1 and VT-2 would be used 
as the target moderate exercise intensity reference point 
to assess the utility of a corresponding BF (Mezzani et al. 
2013; Arena and Sietsema 2011).

Differences of within- or between-participant group data 
(e.g., AF vs. CHD) were assessed using t tests, and asso-
ciations between measures were assessed with a Pearson 
correlation coefficient (r). Slope estimates of BF relative 
to exercise intensity for linear or curvilinear functions were 
determined by exponential or polynomial growth models 
using MATLAB (version R2022a), as exampled on exist-
ing data in Fig. 1. The level of statistical significance was 
set at p < 0.05. Data can be made available upon reasonable 
request.
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Results

The key health measures from 97 cardiac rehabilitation par-
ticipants included CPET responses from 30 AF participants 
(19 males, 3 with CHD) and 67 CHD participants (38 males) 
(Tables 1 and 2). In keeping with contemporary research 
and publishing recommendations (Clayton and Tannenbaum 
2016), we have provided the separate male and female data 
to assist any future studies or interested research groups 
who may wish to use/compare our sex-specific data. Median 
and mean exponential and polynomial growth curves were 
modelled through the BF data as a function of % V̇O2peak. 
As the 2nd order polynomial curve matched well with the 

individual ventilatory equivalents ( V̇ E/ V̇O2, V̇ E/ V̇CO2) 
linked to VT-1, it was chosen as the preferred regression 
model as illustrated in Figs. 2 and 3. As there was little 
observable difference in the mean versus median growth 
curves, the mean curve was chosen to represent the group 
responses for the analyses.

Atrial fibrillation participants

Of the 30 AF participants, 13 had persistent AF and 17 
had permanent AF. The group BMI (> 31) is catego-
rized as obese, with one third of participants having a 
BMI > 35  kg.m−2. The individual patient BF responses, as a 

Table 1  Health and 
cardiopulmonary exercise 
testing measures in males 
and females with persistent 
and permanent atrial fibrillation

V̇O2 rate of oxygen uptake, RER respiratory exchange ratio, BF breathing frequency  (br.min−1), BMI body 
mass index, VT ventilatory threshold, VT-1 the first ventilatory threshold; V̇E/V̇O2 and V̇E/V̇CO2 ventila-
tory equivalents for rates of oxygen uptake and carbon dioxide expiration, respectively

Male n = 19 SD Female n = 11 SD Pooled M & F SD

Age (years) 69.8 8.8 72.3 8.7 70.7 8.7
Height (cm) 177.4 4.7 167.7 10.4 173.8 8.6
Mass (kg) 97.4 20.5 89.6 25.8 94.6 22.5
BMI (kg/m2) 31.0 6.7 31.8 8.6 31.3 7.3
V̇O2peak  (ml.kg−1.min−1) 19.0 5.0 15.7 4.5 17.8 5.0
RER peak 1.2 0.1 1.2 0.1 1.2 0.1
BF peak  (br.min−1) 35.5 3.9 33.2 7.3 34.6 5.4
BF @ VT  (br.min−1) 23.2 4.8 23.1 4.4 23.2 4.6
%BF peak @VT-1 65.4 11.1 71.5 15.1 67.6 12.8
%V̇O2peak @VT-1 57.8 13.5 60.1 10.9 58.6 12.5

V̇E/V̇O2 @VT-1 32.8 4.8 31.3 4.5 32.3 4.6

V̇E/V̇CO2 @VT-1 33.7 5.0 34.1 4.5 33.9 4.8

Table 2  Health and 
cardiopulmonary exercise 
testing measures in males and 
females with coronary heart 
disease

V̇O2 rate of oxygen uptake, RER respiratory exchange ratio, BF breathing frequency  (br.min−1), BMI body 
mass indx, VT ventilatory threshold, VT-1 the first ventilatory threshold, V̇E/V̇O2 and V̇E/V̇CO2 ventilatory 
equivalents for rates of oxygen uptake and carbon dioxide expiration, respectively; HRpeak peak heart rate

Male n = 38 SD Female n = 29 SD Pooled M & F SD

Age (years) 57.7 9.6 55.9 13.4 56.9 11.4
Height (cm) 174.8 6.9 161.3 7.6 168.9 9.8
Mass (kg) 86.7 15.0 72.5 16.3 80.5 17.0
BMI (kg/m2) 28.4 4.6 27.9 6.4 28.2 5.4
V̇O2peak  (ml.kg−1.min−1) 26.9 6.0 26.5 8.0 26.7 6.9
RER peak 1.1 0.1 1.1 0.1 1.1 0.1
BF peak  (br.min−1) 35.4 4.8 37.9 5.0 36.5 5.0
BF @ VT  (br.min−1) 22.3 4.9 22.5 4.4 22.4 4.6
%BF peak @VT-1 63.1 11.2 59.8 11.5 61.7 11.3
%V̇O2peak @VT-1 57 8.8 58.0 10.4 57.4 9.5

V̇E/V̇O2 @VT-1 25.3 4.2 26.2 5.5 25.7 4.8

V̇E/V̇CO2 @VT-1 31.6 4.5 33.5 4.7 32.4 4.7
%HRpeak @ VT-1 73 6 70 7 72 7
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Fig. 2  Individual atrial fibrillation patient breathing frequency 
responses, as a function of %VO2peak during incremental exercise in 
19 males (top graph) and 11 females (bottom graph). Note the curvi-
linear nature of the plots with VT-1 (1.st ventilatory threshold) occur-

ring at near 60%VO2 peak in both males and females; y = the group 
mean second-order polynomial regression curve for predicting BF 
from %VO2peak (see Table 1)
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Fig. 3  Individual coronary heart disease patient breathing frequency 
responses, as a function of %VO2peak during incremental exercise in 
37 males (top graph) and 28 females (bottom graph). Note the curvi-
linear nature of the plots with VT-1  (1st ventilatory threshold) occur-

ring at near 60%VO2 peak in both males and females; y = the group 
mean second-order-polynomial regression curve for predicting BF 
from %VO2peak (see Table 2)
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function of relative aerobic exercise intensity (%V̇O2peak), 
are illustrated in Fig.  2. The group mean BF at VT-1 
occurred at 59% V̇O2peak and was ~ 23 br·min−1 (br·min−1) 
with inter-individual variations (1 SD) of 4.5  br·min−1 
(Table 1).

Whilst the mean age of the AF cohort was nearly 
70 years, it is of note that two of the female participants 
were 83 and 90 years, with V̇O2peak values of 14.5 and 
17.0  ml.kg−1.min−1, respectively. For the whole group, 
peak BF was weakly negatively but significantly cor-
related with age (r = − 0.42, p = 0.02). For both males 
and females peak BF was very weakly correlated with 
V̇O2peak (r < 0.15, p = 0.46). In thoroughly evaluating 
criteria for V̇O2max vs. V̇O2peak, 25 of 30 participants 
attained respiratory exchange ratios > 1.10 (40). At 
VT-1, the group’s mean (SD) for %BF peak was 67.6% 
(12.8%) and % V̇O2peak was 58.6% (12.5%) (Table 1, 
Fig. 2). Observation of HR responses in the AF group 
demonstrated random fluctuations, as expected in most 
participants and thus rendered such data not valid for 
reporting and analysing.

Coronary heart disease participants

The characteristics of patients with CHD are summarised 
in Table 2. The individual patient BF responses, as a func-
tion of relative aerobic exercise intensity (%V̇O2peak), are 
illustrated in Fig. 3. The group mean BF at VT-1 occurred 
at 57%V̇O2peak and was ~ 22 br·min−1, with inter-individual 
variations (1 SD) of 4.6 br·min−1 (Table 2). For the CHD 
group, peak BF was not significantly correlated with age 
(r = − 0.067., p = 0.592). Peak BF was correlated with V̇
O2peak in females (r = 0.375 p = 0.049) but not in males 
(r = 0.163, p = 0.328). In evaluating the criteria for V̇O2max 
vs. V̇O2peak, 36 of 67 participants achieved respiratory 
exchange ratios > 1.10 (40). At VT-1, the group’s mean 
(SD) for %BF peak was 61.7 ± 11.3% (Table 2, Fig. 3). Mean 
%HRpeak in the CHD group at VT-1 for males and females 

were 73 ± 6% and 70 ± 7%, respectively, with a pooled mean 
of 72 ± 7% (Tables 2 and 3).

Comparison of AF and CHD participants

Table 3 summarises a comparison of the health and exer-
cise testing response differences between the AF and CHD 
participants. Compared to the CHD participants, those with 
AF had the following significant differences: 13.8 years 
older; a greater BMI of 3.1 kg/m2; and 33% lower V̇O2peak 
(− 8.9  ml.kg−1.min−1).

AF and CHD participants had very similar BF and % V̇
O2peak values at VT-1, but the AF participants were exer-
cising at a significantly greater %BF peak (67.7% vs 61.7%, 
p = 0.007).

Discussion

To the best of our knowledge, this is the first study to assess 
BF during incremental peak exercise in adults with AF and 
CHD (without AF). Our goal was to examine a potential 
alternative pragmatic means to the traditional use of HR 
for monitoring exercise intensity in a group of people 
where measuring HR is known to be problematic. Our 
main finding was that in individuals with AF and CHD (all 
aged > 55 years), exercising at a BF of 22 to 25 br·min−1 
represented a safe and beneficially recommended moder-
ate exercise intensity as defined by either %HRpeak, % V̇
O2peak or VT-1 (Anselmi et al. 2021; Gati et al. 2020; Bos-
omworth 2015; Mozaffarian et al. 2008; Milani et al. 2023). 
Future pragmatic research around setting an efficacious tar-
get BF during steady state exercise (e.g. 22 to 25 br·min−1) 
is needed in respect of our currently reported 20% SD (4 to 
5 br·min−1) at VT-1. However, such a 20% range is simi-
lar to that reported for %HRpeaks found at VT-1 (Milani 
et al. 2023). Whilst we noted in Fig. 1 that in athletes the 
BF showed promising associations with the ventilatory or 
anaerobic threshold (Carey et al. 2005), those reports did 

Table 3  Comparison of health 
and cardiopulmonary exercise 
testing measures between AF 
and CHD participants (pooled 
male and female data)

V̇O2 rate of oxygen uptake, RER respiratory exchange ratio, BF breathing frequency  (br.min−1), BMI body 
mass index, VT ventilatory threshold, VT-1 the first ventilatory threshold; HRpeak peak heart rate

AF (n = 30) CHD (n = 67) P values 95% CI

Age years 70.7 (8.7) 56.9 (11.4)  < 0.001 − 18.0, − 9.6
BMI (kg.m2) 31.3 (7.3) 28.2 (5.4) 0.021 − 5.8, − 4.9
V̇O2peak  (ml.kg−1.min−1) 17.8 (5.0) 26.7 (6.9)  < 0.001 6.1, 11.7
BF peak  (br.min−1) 34.6 (5.4) 36.5 (5.0) 0.106 − 0.4, 4.1
BF @ VT-1  (br.min−1) 23.2 (4.6) 22.4 (4.6) 0.240 − 3.3, 0.8
%BF peak @ VT-1 67.6 (12.8) 61.7 (11.3) 0.007 − 12.5, − 2.1
%V̇O2peak @ VT-1 58.6 (12.8) 57.4 (9.5) 0.656 -17.9, 10.0
%HRpeak @ VT-1 – 72 (7) – –



 European Journal of Applied Physiology

not specifically analyse or provide any related conclusions 
linked to BF. If a comparison can be made with Fig. 1, it 
relates to the %BFpeak range we reported (Figs. 2 and 3) at 
VT-1, which aligned to 57–59%V̇O2peak (Table 3). When 
comparing BF in the athletes of Fig. 1 at 57–59% V̇O2peak, 
they had BF values of 27–29 br·min−1 (55–65% of their 
BFpeak). This is similar to our CHD and AF participants at 
this intensity, with %BF peaks of 61% and 67%, respectively. 
It does, however, need to be acknowledged that for Fig. 1 
we estimated the athlete BF response curves from a single 
group-mean data point versus the mean of the individual 
participant’s response curves in our data. We are unaware 
of any other similar data from which to compare our results 
for healthy or disease-specific populations.

Breathing frequency responses compared 
to historically accepted theories of cardiopulmonary 
pulmonary dynamics and exercise prescription

In comparing our BF response curves (Figs. 2 and 3), 
as a function of relative exercise intensity (%V̇O2peak), 
with those from the limited evidence-base of younger and 
trained participants (Fig. 1), we too found a clear curvi-
linear line. Figure 1, however, only represents responses 
for intensities > 25% V̇O2peak, where ours are taken 
from a starting point of rest and moving through initial 
lower exercise stages at ≤ 15% V̇O2peak. Intuitively one 
might expect to see a simple positively accelerating BF 
curve similar to that of minute ventilation or V̇CO2 dur-
ing incremental exercise (Beaver et al. 1985; Diamond 
et al. 1977). However, our BF responses more closely 
resembled a U-shaped ventilatory-equivalent curve for 
oxygen uptake ( V̇E/V̇O2) during incremental exercise 
from rest up to maximum effort (Diamond et al. 1977). 
Even with the onset or acute increments of light-moder-
ate intensities of exercise, BF among other ventilatory 
factors have previously shown to respond with an abrupt 
“jump” in activity within less than two-minutes (Cummin 
et al. 1986; Diamond et al. 1977). Specific to breathing 
frequency, Cummin et al. (1986) reported, during four 
incremental submaximal bouts of cycling (18 min per 
bout), an acute “jump” in BF of 4 to 7 br·min−1 (25–50%) 
in the first two-minutes of each bout; but within 3 to 
5 min it then dropped back down by 3 to 4 br·min−1 to 
remain at a steady state for the remainder of each 18 min 
bout. Interestingly this downward drift in BF during pro-
longed steady state exercise was at its lowest value at the 
end of the 18 min. This downward drift in BF is opposite 
to the widely known upward drift of HR that typically 
occurs over this same period (Souissi et al. 2021).

Translating ramp protocol exercise test responses 
into longer bouts of subsequent exercise training

As our data in Figs. 2 and 3 are based on ramp protocols with 
one-minute stages, the above evidence by Cummin et al. 
does help to provide a clearer rationale to why the BFs at 
the low-moderate intensities were higher than at VT-1, and 
then increased to maximum producing a U-shaped curve. 
This likely raises the most important pragmatic application 
challenge of this current study, on the validity of taking a 
BF collected from a ramped-incremental exercise test with 
short duration stages, and translating it into a subsequent 
target BF for more prolonged exercising training bouts. 
Future research is thus required to develop such differenti-
ated models of testing vs training BF response targets when 
considering it as an alternative monitoring tool to HR and 
ratings of perceived exertion/breathlessness typically used 
in rehabilitative exercise.

BMI and V̇O2peak

The mean BMI of the AF group was 31 kg·m−2, and one third 
of these patients had a BMI > 35 kg·m−2, which is expected 
as one of the key associated risk factors for AF (Morseth 
et al. 2021; Morillo et al. 2017). The V̇O2peak of the AF 
males (19.0  ml.kg−1.min−1) and females (15.7  ml.kg−1.min−1) 
would rank these participants at the lower percentiles for 
fitness; specifically in the 10th and 5th percentiles, respec-
tively, for age-matched Canadians aged ~ 70 years (Lewth-
waite et al. 2020; Hoffmann et al. 2019). Whilst the 33% 
lower V̇O2peak in the AF compared with CHD participants 
agrees with a number of existing reports (Reed et al. 2018; 
Elliott et al. 2021; Atwood et al. 2007; Ueshima et al. 1993), 
there are two strong confounding contributing factors that 
warrant mentioning: i. the AF participants were on average 
14 years older and ii. they performed their exercise tests on 
a cycle ergometer (Astrand et al. 2003).

Peak breathing frequency

The peak BF of the AF males and females (35 and 33 
br·min−1, respectively) were similar to the CHD partici-
pants (35 and 37 br·min−1, respectively) and age-matched 
non-AF populations (Lewthwaite et al. 2020; Roman et al. 
2016). However, compared to younger athletic populations 
(Bogaard et al. 1996; Kim et al. 2013; Kipp et al. 1985), a 
submaximal BF of 22–25 would likely be associated with a 
lower relative exercise intensity (40–50% V̇O2max), given 
that in young healthy populations the BF peak has been 
reported to be 40 to 50 br·min−1. Consistent with these 
higher BF values in younger populations, we demonstrated 
a weak but significant negative correlation between age and 
breathing frequency. However, our group was limited to a 
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mean age range of 15 years, where we may have lacked a 
wide enough spread of data at the bottom and top of the 
age range to determine a more meaningful correlation. The 
question of whether our participants reached a true maximal 
BF and V̇O2 is partially answered as “yes” for AF where 25 
of 30 AF participants attained one of the key “maximal” 
criteria with respiratory exchange ratios of > 1.10 (Balady 
et al. 2010; Lewthwaite et al. 2020). However, in the CHD 
participants 47% of them did not attain a peak RER > 1.10, 
which may indicate they had even a greater V̇O2peak and 
BF peak, compared to AF participants, than what we have 
reported.

Breathing frequency and key cardio‑ventilatory 
response thresholds

As noted above, a BF range of 22 to 25 br·min−1 coincided 
with VT-1 and represented 57–60% V̇O2peak in both AF 
and CHD participants, which is within the range for healthy 
untrained individuals (45–65% V̇O2max) (Balady et  al. 
2010). For the CHD patients, the 70–73% HRpeak occurring 
in this BF range also provides some confidence in relation to 
meeting current cardiac rehabilitation guidelines (Gati et al. 
2020). However, an area that does raise questions of AF and 
CHD is the altered normal exercise respiratory dynamics 
found in the ventilatory equivalents ( V̇E/V̇O2 and V̇E/V̇CO2) 
(Mezzani et al. 2013). In AF both V̇E/V̇O2 and V̇E/V̇CO2 
had respective ratios > 31 and 33 at VT-1 (Table 2) and in 
CHD V̇E/V̇CO2 was > 32. These values do border on clini-
cally significant levels for impaired cardiac or pulmonary 
function/disease (Balady et al. 2010; Mezzani et al. 2013; 
Nusair 2017). Furthermore, recent evidence has confirmed 
such declines in ventilatory efficiency being a specific clini-
cal feature in AF (Elliott et al. 2021).

Conclusions, clinical implications and limitations

This study has laid down some encouraging groundwork for 
a “potential” new way of monitoring exercise intensity in 
rehabilitation populations when normal assumptions about 
exercise HR dynamics become mitigated (e.g. heart failure, 
pulmonary disease, cancer). As innovative technologies con-
tinue to emerge, practitioners and patients could potentially 
have another means, other than HR, to assess physiological 
strain and aid in patient self-monitoring of exercise intensity. 
At this point, it is important to respect that the pragmatics 
of using BF during actual exercise training sessions is yet to 
be fully assessed. Further work is thus required to evaluate 
how the relationship between BF and other more traditional 
cardiopulmonary responses occur during extended duration 
constant load moderate-intensity or higher-intensity interval 
training bouts.
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