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Abstract
Purpose We hypothesised that during a rest-to-exercise transient in hypoxia (H), compared to normoxia (N), (i) the initial 
baroreflex sensitivity (BRS) decrease would be slower and (ii) the fast heart rate (HR) and cardiac output (CO) response 
would have smaller amplitude  (A1) due to lower vagal activity in H than N.
Methods Ten participants performed three rest-to-50 W exercise transients on a cycle-ergometer in N (ambient air) and three 
in H (inspired fraction of  O2 = 0.11). R-to-R interval (RRi, by electrocardiography) and blood pressure profile (by photo-
plethysmography) were recorded non-invasively. Analysis of the latter provided mean arterial pressure (MAP) and stroke 
volume (SV). CO = HR·SV. BRS was calculated by modified sequence method.
Results Upon exercise onset in N, MAP fell to a minimum (MAPmin) then recovered. BRS decreased immediately from 
14.7 ± 3.6 at rest to 7.0 ± 3.0 ms  mmHg−1 at 50 W (p < 0.01). The first BRS sequence detected at 50 W was 8.9 ± 4.8 ms 
 mmHg−1 (p < 0.05 vs. rest). In H, MAP showed several oscillations until reaching a new steady state. BRS decreased rap-
idly from 10.6 ± 2.8 at rest to 2.9 ± 1.5 ms  mmHg−1 at 50 W (p < 0.01), as the first BRS sequence at 50 W was 5.8 ± 2.6 ms 
 mmHg−1 (p < 0.01 vs. rest). CO-A1 was 2.96 ± 1.51 and 2.31 ± 0.94 l  min−1 in N and H, respectively (p = 0.06). HR-A1 was 
7.7 ± 4.6 and 7.1 ± 5.9  min−1 in N and H, respectively (p = 0.81).
Conclusion The immediate BRS decrease in H, coupled with similar rapid HR and CO responses, is compatible with a 
withdrawal of residual vagal activity in H associated with increased sympathetic drive.
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Abbreviations
[HCO3

−]  Bicarbonate concentration
[La]  Blood lactate concentration
A  Amplitude of the bi-exponential model, sub-

scripts 1 and 2 refers to phase I and phase II, 
respectively

b  Baseline value of the bi-exponential model
BRS  Spontaneous baroreflex sensitivity

CO  Cardiac output
d  Time delay of the bi-exponential model
DAP  Diastolic arterial pressure
H  Hypoxic condition
HR  Heart rate
MAP  Mean arterial pressure
N  Normoxic condition
OP  Operating point
pCO2  Carbon dioxide partial pressures
pO2  Oxygen partial pressures
RRi  R-to-R interval
SAP  Systolic arterial pressure
SpO2  Peripheral blood oxygen saturation
SV  Stroke volume
TPR  Total peripheral resistances
τ  Time constant of the bi-exponential model, 

subscripts 1 and 2 refers to phase I and phase 
II, respectively
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Introduction

In acute hypoxia, the control of heart rate (HR) and blood 
pressure is challenged by several mechanisms. To sustain 
the oxygen delivery, the decrease in blood oxygen concen-
tration must be accompanied by an increase in cardiac out-
put (CO), both at rest and during dynamic exercise (Sten-
berg et al. 1966; Ferretti et al. 1990; Adami et al. 2014). 
This CO increase is mainly sustained by an increase of HR 
with preserved stroke volume (SV) (Hartley et al. 1973; 
Siebenmann and Lundby 2015). Data suggest that these 
changes are the result of a different equilibrium in the 
autonomic nervous system, implying higher sympathetic 
and lower parasympathetic activity (Moore et al. 1986; 
Saito et al. 1988; Rowell et al. 1989; Sagawa et al. 1997; 
Boushel et al. 2001; Weisbrod et al. 2001; Halliwill and 
Minson 2002; Hopkins et al. 2003; Buchheit et al. 2004; 
Ferretti et al. 2005; Lador et al. 2008; Siebenmann and 
Lundby 2015).

When analysing the rest-to-exercise transient in nor-
moxic condition, the first rapid HR response can be sup-
pressed by vagal blockade with atropine (Fagraeus and 
Linnarsson 1976) suggesting a prompt withdrawal of the 
vagal activity (Fagraeus and Linnarsson 1976; Lador et al. 
2006; Fontolliet et al. 2021). Following this concept, it 
has been hypothesised that conditions of reduced vagal 
activity at rest, as acute hypoxia, might be characterised 
by a reduced amplitude of the initial HR and CO response 
to exercise onset (phase I) (Lador et al. 2006). To the best 
of our knowledge, this hypothesis has been tested experi-
mentally only once (Lador et al. 2008), although with a 
small number of observations (5 subjects). They reported 
that in acute hypoxia (inspired fraction of  O2,  FIO2, = 0.11) 
phase I of the cardiovascular response to exercise onset 
was characterised by smaller HR and CO amplitudes.

Hypoxia affects also arterial baroreflexes. Changes in 
slope of a baroreflex curve around the operating point 
(OP) (Kent et al. 1972) under different physiological con-
ditions have been ascribed to modulation by the autonomic 
nervous system (Ogoh et al. 2005). The acute exposure to 
simulated high altitude (~ 4300 m) modifies the cardiac 
response of the carotid arterial baroreflex by resetting the 
entire response curve towards higher HR values and by 
decreasing the maximum gain of the reflex (Sagawa et al. 
1997, neck pressure-suction technique). Coherently, appli-
cation of the sequence method in acute hypoxia revealed a 
decrease of the spontaneous baroreflex sensitivity (BRS) 
around the OP (Klemenc and Golja 2011; Fisher et al. 
2022).

Bringard et  al. (2017), who applied the sequence 
method during the exercise transient, demonstrated an 
immediate reduction of the BRS at exercise start, which 

they ascribed to sudden vagal withdrawal, in line with 
the interpretation of the rapid cardiovascular response to 
exercise (Lador et al. 2006). Thus, if the vagal withdrawal 
conjecture holds, we would expect that, in acute normo-
baric hypoxia, a rest-to-light exercise transient would be 
characterised by: i) a smaller decrease of BRS and ii) a 
smaller amplitude of the phase I of HR and CO (corrobo-
rating the preliminary results of Lador et al 2008), than in 
normoxic conditions. The aim of the present study was to 
test these hypotheses by analysing the dynamics of arterial 
baroreflexes (Bringard et al. 2017; Taboni et al. 2021a, b, 
2022) and the HR an CO kinetics (Lador et al. 2006; Fon-
tolliet et al. 2021) during a rest-to-50 W exercise transient 
in normoxia and acute normobaric hypoxia.

Materials and methods

Subjects

Ten healthy subjects were enlisted (9 males and 1 female). 
Age, height, and body mass were 32 ± 6 years, 176 ± 9 cm, 
and 71 ± 13 kg, respectively. All subjects were moderately 
active. Their maximal aerobic capacity measured on the 
cycle ergometer (Lode Corival, Lode B.V., Groningen, The 
Netherlands) was 276 ± 67 W, 3.9 ± 1.0 W  kg−1. They were 
already familiar with the laboratory protocols since they had 
participated in previous experiments. None reported history 
of cardiovascular, pulmonary, or neurological diseases or 
was taking medications at the time of the study. The sub-
jects were asked to refrain from drinking coffee or smok-
ing for 24 h before the experiments. All subjects gave their 
informed consent after having received a detailed descrip-
tion of the methods and experimental procedures of the 
study. Every subject was aware of the right of withdrawing 
from the study at any time without jeopardy. This study was 
performed in line with the principles of the Declaration of 
Helsinki. Approval was granted by the Commission Canton-
ale d’Éthique de la Recherche, Canton de Genève, CH (Date 
11th July 2018–No. 2018–00913).

Experimental procedure

The subjects came to the laboratory on one occasion, at 
least 2 h after a light meal. In the laboratory, ambient tem-
perature was set to 24 ± 1 °C and barometric pressure was 
731 ± 8 mmHg. After instrumentation and wearing cycling 
shoes, the subject took place on an electromagnetically 
braked cycle ergometer (Lode Corival, Lode B.V., Gronin-
gen, The Netherlands). The experimental protocol was car-
ried out in normoxia (N) and in hypoxia (H), which were 
administered in random order and were separated by 30 min 
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to allow for rest and hydration. Both in N and H, participants 
wore an oro-nasal mask (7450 V2 Mask™, Hans Rudolph, 
Inc., Shawnee, KS, USA) connected to an ultrasonic flowme-
ter (Spiroson®, ECO MEDICS AG, Duernten, Switzerland). 
In H, the experiments were carried out while the subject 
was breathing a hypoxic gas mixture  (FIO2 = 0.11), which 
was delivered by means of a low resistance, two-way non-
rebreathing T-shape valve (Hans Rudolph, Inc., Shawnee, 
KS, USA). The inhalation port was connected to a 200 l 
Douglas bag, used as pressure buffer system, and filled with 
a gas mixture containing 11% oxygen in nitrogen coming 
from a high-pressure tank. After connection, 10 min of quiet 
breathing were allowed to attain alveolar gas equilibration 
before performing the procedure.

The experimental protocol was as follows. After subjects’ 
instrumentation and equipment calibration, the subjects 
spent at least 10 min in quiet rest. Data were continuously 
recorded during the last 5 min of this period. At the 4th min-
ute of resting recording, a 20 µl capillary blood sample was 
taken from the right earlobe for blood lactate concentration 
([La]) measurement. At the same time, a 35–55 µl arterial-
ised capillary blood sample was taken from the left earlobe 
for measurement of pH, of oxygen and carbon dioxide partial 
pressures  (pO2 and  pCO2, respectively), and of bicarbonate 
concentration  ([HCO3

−]). Afterwards, the subject performed 
three square-wave rest-to-exercise transients at the constant 
power of 50 W. The first exercise bout lasted 10 min to 
ensure at least 5 min of steady state condition; blood samples 
for [La], pH,  pO2,  pCO2, and  [HCO3

−] were taken at the 9th 
minute. After the first exercise bout, the subject rested on 
the cycle-ergometer of 6 min and then performed two addi-
tional 50 W exercise bouts lasting 5 min, separated by 6 min 
of rest. Both in N and H, every rest-to-exercise transient 
started without previous flywheel acceleration; this usually 
implies that the mechanical power necessary for the flywheel 
acceleration may compensate for the delayed activation of 
the magnetic brake of the cycle ergometer (Hibi et al. 1996).

Measurements

Continuous non-invasive arterial blood pressure profiles 
were recorded at the medium finger (Portapres, Finapres® 
Medical Systems, Enschede, The Netherlands) and periph-
eral blood oxygen saturation  (SpO2) was continuously moni-
tored at the index finger of the left arm (Nellcor N-595, 
Medtronic, Minneapolis, MN, USA). The left arm was 
positioned on a support at the heart level. Beat-by-beat HR 
was recorded by electrocardiography (ECG100C module, 
BIOPAC® Systems Inc., Goleta, CA, USA). All signals were 
collected and sampled at 400 Hz (MP150 system with Acq-
Knowledge acquisition and analysis software, BIOPAC® 
Systems Inc., Goleta, CA, USA) and stored on a personal 
computer for subsequent analysis. [La] was measured by an 

enzymatic-amperometric method (Biosen C-Line Glucose 
and Lactate analyser, EKF Diagnostics, Cardiff, UK) on 
20 μl capillary blood samples. Arterialised blood pH,  pO2, 
 pCO2, and  [HCO3

−] were measured (ABL800 FLEX, Radi-
ometer, Brønshøj, Denmark) on 35–55 μl capillary blood 
samples.

Data treatment

Arterial blood pressure profiles were analysed to obtain beat-
by-beat values of systolic (SAP), diastolic (DAP), and mean 
(MAP) arterial pressure using the Beatscope® software 
(Finapres® Medical Systems, Enschede, The Netherlands). 
The same software provided a beat-by-beat calculation of 
SV by the Modelflow method (Wesseling et al. 1993). Beat-
by-beat CO was calculated as the SV times the correspond-
ing HR and total peripheral resistances (TPR) as the ratio 
between MAP and CO. Data in steady state conditions were 
computed on the last 5 min of the first resting period and of 
the 10 min exercise bout.

In steady state condition, at rest and at exercise, the BRS 
was calculated with the sequence method (Bertinieri et al. 
1988), using MAP and R-to-R interval (RRi) as independent 
and dependent variable, respectively (Taboni et al. 2018). 
A phase shift of one beat between MAP and RRi was intro-
duced (Steptoe and Vogele 1990), then, sequences of 3 or 
more consecutive beats characterised by consensual increase 
or decrease in MAP and RRi were identified. Within each 
sequence, the relationship between RRi and MAP was ana-
lysed by linear regression to compute the slope and the coef-
ficient of determination  (R2). When  R2 > 0.85, the slope was 
retained (Iellamo et al. 1997). In steady state conditions, 
the mean slope of the RRi versus MAP relationship was 
considered representative of the BRS for each subject and 
the mean RRi and MAP value was considered as the cor-
responding OP.

BRS during the exercise transients was computed with 
the same approach as previously proposed for exercise 
onset (Bringard et al. 2017), breath holding onset (Taboni 
et al. 2021b), fast whole body tilting (Taboni et al. 2021a), 
and light-to-moderate exercise transient (Taboni et al. 
2022). A phase shift of one beat for HR was introduced 
and the same criteria used at steady state were applied to 
retain sequences. The mean value of the RRi versus MAP 
relationship over the three repetitions of exercise transient 
was considered representative of the mean BRS for each 
subject. In N during the exercise transient, MAP showed 
an abrupt fall, until a minimum MAP value was recorded, 
then a recovery. Consequently, the baroreflex sequences 
retrieved during the first seconds of exercise in N have 
been grouped in two categories: (i) before the attainment 
of minimum MAP (“pre MAPmin” in Fig. 3), and (ii) 
the first sequence after the attainment of minimum MAP 
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(“post MAPmin” in Fig. 3). In H during the exercise tran-
sient, MAP did not show any abrupt fall, which prevened 
identification of a minimum MAP. Thus, the baroreflex 
sequences retrieved during the first seconds of exercise in 
N have been grouped as follows: (i) the very first sequence 
identified after the exercise start (“first slope” in Fig. 3), 
and (ii) the second sequence identified after the exercise 
start ("second slope” in Fig. 3).

The dynamics of the CO and HR changes over time (f(t)) 
during the two exercise transients was analysed using a bi 
exponential model (Barstow and Molé 1987; Lador et al. 
2006):

where b is the baseline value, A is the response ampli-
tude, d is the time delay, and τ is the time constant. The sub-
scripts 1 and 2 refer to the initial (phase I) and the primary 
(phase II) components, respectively. H(t−d) is the Heaviside 
function, when t < d it equals 0 and the last term of the right-
hand branch of Eq. 1 cancels out. When the amplitude of one 
phase resulted equal to 0 l  min−1 for CO or 0 bpm for HR, 
the corresponding time constant was not considered for the 
statistical analysis.

Statistical analysis

Data are presented as mean ± standard deviation. Two-way 
ANOVA for repeated measures was used to investigate dif-
ferences in the four steady state conditions in order to isolate 
the effect of exercise and of hypoxia separately. One way 
ANOVA for repeated measures was used to investigate dif-
ferences between MAP and BRS measured at different time 
points during exercise transients. Tukey’s multiple compari-
sons test was used to isolate differences when necessary. 
Student’s T test for repeated measures was used to compare 
Eq. 1 parameters obtained in N and H. Differences were 
considered significant when p < 0.05. The statistical software 
Prism (version 8, GraphPad®, La Jolla, CA, USA) was used. 
Data fitting with Eq. 1 was performed after superimposi-
tion of the three exercise transients for each subject in order 
to avoid timeline distortion due to averaging (Francescato 
et al. 2014a, b; Bringard et al. 2014); MATLAB (version 
9.5.0.944444 with Curve Fitting Toolbox, The MathWorks, 
Inc., Natick, MA, USA) was used with this aim. Figure 1, 
all Panels and Fig. 2, Panels C-D report average data from 
all rest-to-exercise transients and from all subjects (n = 30) 
interpolated at 0.1 s.

f(t) = b + A1

(

1 − e
−t

�1

)

+ H(t−d)A2

[

1 − e
−(t−d)

�2

]

(1)H(t−d) =

{

0, t − d < 0

1, t − d ≥ 0

Results

Mean steady state data are reported in Table 1. All car-
diovascular data changed from rest to exercise except 
DAP (both in N and H). Most data differed between H 
and N except for resting and exercising MAP, DAP, and 
 [HCO3

−], and resting SV, CO, and [La].
The time course of the main investigated parameters is 

shown in Fig. 1. In H, with respect to N, the exercise tran-
sient showed a greater increase of CO and HR, a slightly 
lower SV, MAP and TPR, and a progressive decrease of 
 SpO2.

During the rest-to-exercise transient in N, MAP showed 
a sudden decrease at the very beginning of exercise (Fig. 1, 
Panel D, red line). Minimum MAP was 73 ± 11 mmHg 
(p = 0.0002 and p < 0.0001 vs. rest and 50 W steady state, 
respectively) and appeared after 8.1 ± 1.8 s from exercise 
onset. Such a pattern was not observed during the same 
transient in H (Fig. 1, Panel D, blue line). This implied 
that the pattern of the MAP-RRi relationship differed 
between conditions, as shown by Fig. 2.

The BRS measured during the exercise transients are 
reported in Fig. 3. In N, the first slope was always com-
puted on sequences that occurred before minimum MAP 
was reached, and thus was characterised by consensual 
decrease in MAP and RRi. The BRS values before and 
after minimum MAP were lower than in resting steady 
state (p ≤ 0.0148), but similar to those during exercise 
steady state (p ≥ 0.6796). In H, the first BRS slope was 
taken regardless of its direction and 22 out of 29 sequences 
were characterised by consensual decrease in MAP and 
RRi. Moreover, these first sequences appeared within 
3.6 ± 3.1 s after the exercise onset. As in N, they were 
lower than in resting steady state (p = 0.0001).

Parameters obtained from the analysis of the CO and 
HR kinetics are reported in Table 2. Both the CO and HR 
baselines were higher in H than in N. Regarding phase 
I, CO  A1, CO τ1, and HR  A1 were similar in H and N 
whereas HR τ1 was higher in H than in N. Regarding phase 
II, both CO and HR  A2 and τ2 were higher in H than in N.

Discussion

Arterial baroreflex at steady state

At rest, BRS around the OP was lower in H than in N, in 
line with previous observations (Koller et al. 1988; Lucy 
et al. 2000; Buchheit et al. 2004; Siebenmann and Lun-
dby 2015; Siebenmann et al. 2019). This may be a conse-
quence of a lower vagal output to the heart. In fact, BRS 
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Table 1  Steady state values 
(mean ± SD) in the four 
experimental conditions

SAP systolic arterial pressure, DAP diastolic arterial pressure, MAP mean arterial pressure, HR heart rate, 
RRi R-to-R interval, SV stroke volume, CO cardiac output, TPR total peripheral resistances, BRS barore-
flex sensitivity, SpO2 peripheral blood oxygen saturation, [La] blood lactate concentration, pO2 capillary 
blood partial pressure of oxygen, pCO2 capillary blood partial pressure of carbon dioxide, [HCO3

−] blood 
bicarbonate concentration, * statistically different from the corresponding value in normoxia (*: p < 0.05; 
**: p < 0.01; ****: p < 0.0001), # statistically different from the corresponding value at rest (#: p < 0.05; ##: 
p < 0.01; ###: p < 0.001; ####: p < 0.0001)

Normoxia Hypoxia

Rest 50 W Rest 50 W

SAP (mmHg) 120 ± 9 145 ± 12 #### 127 ± 18** 164 ± 20****, ####

DAP (mmHg) 68 ± 13 68 ± 10 69 ± 11 68 ± 14
MAP (mmHg) 83 ± 12 89 ± 9 # 83 ± 12 89 ± 14 #

HR  (min−1) 77 ± 9 94 ± 8 #### 86 ± 9** 123 ± 15****, ####

RRi (ms) 788 ± 90 645 ± 62 #### 713 ± 71*** 494 ± 71****, ####

SV (ml) 75 ± 20 105 ± 24 #### 74 ± 17 96 ± 18*,####

CO (l  min−1) 5.9 ± 1.9 9.9 ± 2.4 #### 6.3 ± 1.7 11.7 ± 2.1****, ####

TPR (mmHg min  l−1) 15.8 ± 5.8 9.7 ± 2.9 #### 14.5 ± 5.3* 8.0 ± 2.5**, ####

BRS (ms  mmHg−1) 14.7 ± 3.6 7.0 ± 3.0 #### 10.6 ± 2.8** 2.9 ± 1.5**, ####

SpO2 (%) 96 ± 4 97 ± 1 82 ± 5** 67 ± 6***, ##

[La] (mmol  l−1) 1.26 ± 0.33 1.29 ± 0.75 1.06 ± 0.36 2.29 ± 1.16**, ###

pO2 (mmHg) 89 ± 11 91 ± 14 48 ± 8**** 39 ± 6****, ###

pCO2 (mmHg) 39 ± 4 39 ± 5 33 ± 4* 30 ± 9**
pH 7.41 ± 0.01 7.43 ± 0.03 7.49 ± 0.04*** 7.49 ± 0.05**
[HCO3

−] (mmol  l−1) 24.9 ± 1.3 24.7 ± 1.8 25.8 ± 1.5 25.7 ± 2.1

Fig. 1  Time course of the cardiac output (CO), heart rate (HR), stroke 
volume (SV), mean arterial pressure (MAP), total peripheral resist-
ances (TPR), and peripheral blood oxygen saturation  (SpO2) dur-

ing the rest to 50 W exercise transient in normoxia (red line) and in 
hypoxia (blue line). Mean values from all subjects (n = 10). The time 
scale refers to the time elapsed from the exercise onset
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is reduced by full vagal blockade with atropine (Fontolliet 
et al. 2018), and enhanced in conditions characterised by 
a strong vagal output to the heart, such as supine posture 
(O’Leary et al. 2003; Steinback et al. 2005), water immer-
sion (Chouchou et al. 2020), and short-term microgravity 
exposure (Hirayanagi et al. 2004; Di Rienzo et al. 2008). 
Moreover, the decrease of vagal activity in H is often asso-
ciated with an increased sympathetic activity (Robinson 
et al. 1966; Saito et al. 1988; Hopkins et al. 2003; Ferretti 
et al. 2005; Tan et al. 2013; Siebenmann et al. 2015, 2019).

The lower BRS in H was coupled with a displacement 
of the OP toward lower RRi without any changes in MAP 
(Table 1), indicating resetting of the baroreflex in H. It was 

previously suggested that a hypoxic hyperventilation may 
be responsible for a decrease in the arterial baroreflex gain 
(Melcher 1980; Mancia and Mark 1983). In agreement with 
this hypothesis, the maximum baroreflex gain, obtained 
with the neck pressure-suction technique, was found to be 
lower than at sea level at altitudes above 4000 m (Sagawa 
et al. 1997). Since a  FIO2 of 0.11 corresponds to a simulated 
altitude around 5000 m, the observed BRS decrease in the 
present study may in fact reflect a reduction of the maximum 
gain of the open-loop arterial baroreflex relationship. How-
ever, the observed decrease of the BRS around the OP in H 
may also be due to an OP displacement along the barore-
flex curve away from the point of maximum gain, i.e. the 

Fig. 2  Contour plots of the 
relationship between R-to-R 
interval (RRi) and mean arte-
rial pressure (MAP) from 10 s 
before to 60 s after exercise 
onset (black arrowhead). Panels 
A and B: beat-by-beat value 
from a representative subject 
with a time shift of 1 beat 
applied between MAP and 
RRi. Panels C and D: mean 
values obtained from all rest-to-
exercise transients (n = 30) with 
a time shift of 1 beat applied 
between MAP and RRi. In all 
panels, dots and squares repre-
sent, respectively, rest and 50 W 
steady states

Fig. 3  Tukey representation 
of the baroreflex sensitivity 
(BRS) measured at different 
time points in normoxia and in 
hypoxia. *: significantly dif-
ferent vs. rest steady state (**: 
p < 0.01; ***: p < 0.001; ****: 
p < 0.0001); #: significantly dif-
ferent vs. exercise steady state 
(p < 0.05). MAPmin: minimum 
mean arterial pressure
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centring point, as occurs during exercise (Potts et al. 1993; 
Norton et al. 1999; Fadel et al. 2001; Ogoh et al. 2003, 2005; 
Raven et al. 2006). To the best of our knowledge, no open-
loop based studies of the arterial baroreflex have analysed 
the relative OP position in acute hypoxia.

At exercise, the BRS measured around the OP was lower 
in H than in N due to a BRS decrease of similar extent from 
rest to exercise steady states (−7.4 ± 4.6 ms  mmHg−1 in N 
and −8.0 ± 3.4 ms  mmHg−1 in H, p = 0.6158). This observa-
tion is compatible with residual vagal activity in resting H. If 
this is so, BRS decrease during the exercise transient might 
be the result of an additional vagal withdrawal, not only in 
N but also in H. In this case, the reduction of resting vagal 
activity in H would be partial. We can speculate that it may 
be greater the stronger the level of acute hypoxia to which 
a subject is exposed.

Baroreflex dynamics during the exercise transient

In N, MAP and TPR showed a sudden fall at exercise onset 
(Fig. 1, Panel D and E), in line with previous findings (Brin-
gard et al. 2017), possibly due to prompt muscle vasodilation 
(Rådegran and Saltin 1998). The observed MAP fall was 
coupled with a RRi decrease as in a baroreflex relationship, 
so that BRS could be measured, as previously proposed 
(Bringard et al. 2017; Taboni et al. 2021a, b). The measured 
BRS of this baroreflex sequence was significantly lower than 
that measured at rest, and similar to that at exercise (Fig. 3), 
thus witnessing a prompt decrease of the BRS around the 
OP, similarly to previous observations (Bringard et al. 2017). 
When passing from rest to exercise, the open-loop arterial 
baroreflex relationship is displaced without any changes in 
maximal gain but with a shift of OP away from the centring 
point (Potts et al. 1993; Norton et al. 1999; Fadel et al. 2001; 
Ogoh et al. 2003, 2005; Raven et al. 2006), so that the BRS 

decrease measured upon exercise onset may simply represent 
this OP shift. The BRS decrease around OP occurs rapidly, 
within the very first few seconds of exercise, therefore only 
a very fast mechanism may be implied. It has been hypoth-
esised that this mechanism may be the sudden withdrawal 
of the vagal tone, since the activation of the sympathetic 
system would require a longer time (Warner and Cox 1962; 
Fagraeus and Linnarsson 1976; Lador et al. 2006, 2013; 
Fontolliet et al. 2021).

In H, contrary to N, MAP did not show a single transient 
nadir but rather multiple oscillatory adjustments (Fig. 1, 
Panel D and Fig. 2), whereas TPR showed a similar initial 
fall upon exercise onset in the two conditions despite a lower 
baseline value in H (Fig. 1, Panel D). This apparently dif-
ferent MAP control at exercise onset in H may be due to a 
greater baseline sympathetic drive than in N (Saito et al. 
1988; Rowell et al. 1989; Halliwill and Minson 2002), which 
would sustain arterial blood pressure and counteract hypoxic 
vasodilation (Weisbrod et al. 2001; Halliwill and Minson 
2002). In H, several oscillations were observed before the 
attainment of a new steady state MAP value (Fig. 1, Panel 
D and Fig. 2) and during these MAP oscillations, it was 
possible to identify several baroreflex sequences. The BRS 
around OP promptly decreased since the first sequence after 
exercise start (Fig. 3), similarly to N. This suggests that the 
mechanism leading to the BRS decrease may be the same 
in the two analysed conditions, so that vagal withdrawal can 
still partly determine it. This would reinforce the concept 
that some level of vagal activity is still present in H.

Concerning baroreflex resetting during the exercise tran-
sient, in N the results are in line with previous literature 
(Bringard et al. 2017; Fagoni et al. 2020). The attainment 
of minimum MAP may trigger the resetting process. In 
H instead, it is hard to identify clear patterns of resetting. 
Although the mean data in H suggest the attainment of a 

Table 2  Mean ± standard deviation and (95% confidence interval) of the parameters of the cardiac output (CO) and heart rate (HR) kinetics as 
obtained by data fitting with Eq. 1

Individual data are reported in the Supplementary material (Tables S1 and S2, respectively for CO and HR).
N normoxia, H hypoxia, * significantly different vs. corresponding N value (*: p < 0.05; **: p < 0.01; ***: p < 0.001; ****: p < 0.0001)

Phase I Phase II

Baseline (l  min−1 
or  min−1)

Amplitude (l  min−1 
or  min−1)

Time constant (s) Time delay (s) Amplitude (l  min−1 
or  min−1)

Time constant
(s)

CO N 5.46 ± 1.38 2.96 ± 1.51 2.1 ± 1.0 11.4 ± 13.3 1.13 ± 0.86 9.1 ± 4.4
(4.47–6.45) (1.87–4.04) (1.3–2.8) (0.3–22.5) (0.52–1.75) (5.4–12.8)

H 6.58 ± 1.62*** 2.31 ± 0.94 2.3 ± 1.8 12.8 ± 3.4 2.68 ± 0.78** 23.8 ± 15.4*
(5.42–7.74) (1.63–2.97) (1.1–3.6) (10.3–15.2) (2.12–3.25) (12.8–34.8)

HR N 78 ± 9 7.7 ± 4.6 0.8 ± 1.0 5.6 ± 5.4 7.8 ± 5.5 4.0 ± 3.8
(72–85) (4.4–11.0) (0.1–1.6) (1.5–9.7) (3.8–11.7) (1.1–6.9)

H 93 ± 12*** 7.1 ± 5.9 2.9 ± 2.7* 18.9 ± 13.1 22.8 ± 8.2**** 26.9 ± 13.3***
(85–101) (2.9–11.3) (0.4–5.5) (9.6–28.3) (16.9–28.6) (17.5–36.4)
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minimum MAP similar to that in N (Fig. 2, panel D), this 
is not easily identifiable in all subjects. The progressive 
decrease of SpO2 during the exercise transient in H suggests 
that other factors than baroreflex mechanisms or stronger 
sympathetic stimulation may participate in the HR response 
to exercise onset (Halliwill et al. 2003), which make the pat-
terns followed by HR and MAP more complex than in N.

Cardiovascular dynamics during the exercise 
transient

When analysing the rest-to-exercise transient, the phase I of 
the CO kinetics showed no significant differences in both 
amplitude and time constant in the two conditions (Table 2). 
This result goes against previous literature. In fact, when 
analysing a rest-to-50 W exercise transient in the same 
hypoxic conditions, lower  A1 and lower τ1 were found in 
H than in N (Lador et al. 2008). This discrepancy may be 
due, at least in part, to the fact that in this study the number 
of participants was twice that of Lador et al (2008). Not-
withstanding this, we note that, during full parasympathetic 
blockade, the CO kinetics at exercise onset shows a clear 
phase I, though with a smaller  A1 than in control (Fontolliet 
et al. 2021). This was ascribed to sudden increase of SV by 
vagus-independent mechanisms active upon exercise onset, 
such as an increase of pre-load via muscle pump action 
(Chung et al. 1997; Sundblad et al. 2000, 2014; Naeije and 
Badagliacca 2017; Fagoni et al. 2020) and a reduction of 
after-load via prompt vasodilation at the level of the con-
tracting muscles (Ferretti et al. 1995; DeLorey et al. 2003; 
Clifford 2007; Chin et al. 2010). Moreover, the phase I of 
the HR kinetics was characterised by similar amplitude and 
higher time constant in H than in N (Table 2). This is, at 
odds with the same hypoxic transient of Lador et al (2008), 
where HR  A1 was lower and HR τ1 was equal compared to 
N. The phase I of HR responses to exercise onset is abol-
ished under full parasympathetic blockade with atropine 
(Fontolliet et al. 2021). We speculate that, in H, the  A1 of 
CO and HR were partially affected by vagal withdrawal, in 
line with the previous observation that at rest some degree of 
vagal activity may subsist. Notably, cardiovascular responses 
in N and H might have been influenced also by the respira-
tory apparatus used in the two conditions. In fact, in H a 
low resistance, two-way non-rebreathing T-shape valve was 
mounted at the mouth of each participant which increased 
the dead space by approximately 50%.

The phase II of both CO and HR was characterised by 
higher  A2 and τ2 in H than in N, in line with previous 
findings (Lador et al. 2013). The current interpretation 
is that the incurring sympathetic stimulation may play 
a major role during this phase (Lador et al. 2006, 2013; 
Fontolliet et al. 2021), triggered by a more intense muscle-
metabolic reflex (Houssiere et al. 2005) and chemoreflex 

(Jouett et al. 2015; Keir et al. 2019), given the progres-
sive further  SpO2 decrease after the exercise onset (Fig. 1, 
Panel F). Of course, a higher τ2 of CO should carry along 
a higher τ2 of oxygen uptake, which was not analysed in 
this study. Yet a hint suggesting that this may indeed be 
the case comes from the steady state lactate values in H, 
indicating early lactate accumulation in the exercise tran-
sient (Ferretti et al. 2022) leading to higher lactate steady 
state at exercise than at rest.

Conclusions

Upon exercise onset in acute normobaric hypoxia, the 
immediate fall of peripheral resistances at exercise start 
was not accompanied by a dramatic fall of mean arterial 
pressure. This last showed several oscillations until reach-
ing a new steady state value. Moreover, the baroreflex sen-
sitivity decreased immediately and was associated with 
the presence of a phase I of heart rate responses. These 
fast cardiovascular readjustments upon exercise onset are 
compatible with a withdrawal of residual vagal activity 
concomitant with increased sympathetic drive. After the 
first cardiovascular adjustments, the attainment of the new 
steady state was slower in hypoxia than in normoxia, as 
long as acute hypoxia was characterised by further periph-
eral deoxygenation.
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