CORRECTION

Correction: Breathing a low-density gas reduces respiratory muscle force development and marginally improves exercise performance in master athletes

Toni Haddad^{1,2,3} · Valentin Mons^{1,2,6} · Olivier Meste⁴ · Jerome A. Dempsey⁵ · Chris R. Abbiss³ · Jeanick Brisswalter^{1,2} · Gregory M. Blain^{1,2}

Published online: 30 January 2024 © Springer-Verlag GmbH Germany, part of Springer Nature 2024

Correction: European Journal of Applied Physiology https://doi.org/10.1007/s00421-023-05346-6

The original version of this article unfortunately contained some mistakes. The corrected details are provided below: Affiliations 1, 2, 3, 4 and 6 were incorrectly given as

¹LAMHESS, Sciences et Techniques des Activites Physiques et Sportives, Université Cote d'Azur, 261 Bd du Mercantour, 06200 Nice, France

²Centre VADER, Universite Cote d'Azur, Nice, France ³Centre for Exercise and Sport Science Research, School

of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia

⁴Lab I3S, Universite Cote d'Azur, CNRS, Sophia Antipolis, Nice, France

⁶LJAD, Universite Cote d'Azur, CNRS, Nice, France

The original article can be found online at https://doi.org/10.1007/ s00421-023-05346-6.

Toni Haddad toni.haddad@univ-cotedazur.fr

- ¹ Université Côte d'Azur, LAMHESS, Nice, France
- ² Université Côte d'Azur, Centre VADER, Nice, France
- ³ Centre for Human Performance, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
- ⁴ Université Côte d'Azur, CNRS, I3S, Sophia-Antipolis, France
- ⁵ John Rankin Laboratory of Pulmonary Medicine, University of Wisconsin-Madison, Madison, WI, USA
- ⁶ Université Côte d'Azur, CNRS, LJAD, Nice, France

but should have been

¹Université Côte d'Azur, LAMHESS, Nice, France ²Université Côte d'Azur, Centre VADER, Nice, France ³Centre for Human Performance, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia

⁴Université Côte d'Azur, CNRS, I3S, Sophia-Antipolis, France

⁶Université Côte d'Azur, CNRS, LJAD, Nice, France

In the introduction section, third sentence of the second paragraph which previously read:

As such, older endurance-trained individuals represent a model of successful physiological and healthy aging (Hawkins and Wiswell 2003; Tanaka and Seals 2003). (Hawkins and Wiswell 2003; Tanaka and Seals 2003).

Should read:

As such, older endurance-trained individuals represent a model of successful physiological and healthy aging (Hawkins and Wiswell 2003; Tanaka and Seals 2003).

In the "Study limitations" section, fifth and sixth sentences of third paragraph which previously read:

However, the assessment of maximal inspiratory and expiratory pressures (MIP and MEP) is considered a valid noninvasive method for assessing respiratory muscle fatigue, as acknowledged by the American Thoracic Society/European Respiratory guidelines Respiratory (American Thoracic Society/European Respiratory 2002) (Brown and Kilding 2011; Coast et al. 1999; Oueslati et al. 2018; Ozkaplan et al. 2005; Ross et al. 2008; Volianitis et al. 2001). and its frequent use in the literature to evaluate exercise-induced respiratory muscle fatigue. Finally, this study specifically involved male master athletes, and our findings may not be directly applicable to master female athletes.

Should read:

However, the assessment of maximal inspiratory and expiratory pressures (MIP and MEP) is considered a valid noninvasive method for assessing respiratory muscle fatigue, as acknowledged by the American Thoracic Society/ European Respiratory guidelines Respiratory (American Thoracic Society/European Respiratory 2002) (Brown and Kilding 2011; Coast et al. 1999; Oueslati et al. 2018; Ozkaplan et al. 2005; Ross et al. 2008; Volianitis et al. 2001) and its frequent use in the literature to evaluate exercise-induced respiratory muscle fatigue. Finally, this study specifically involved male master athletes, and our findings may not be directly applicable to female master athletes.

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.