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Abstract
Purpose  Dietary nitrate (NO3

−) supplementation can lower systolic blood pressure (SBP) and improve exercise performance. 
Salivary flow rate (SFR) and pH are key determinants of oral NO3

− reduction and purported to peak in the afternoon. We 
tested the hypotheses that NO3

−-rich beetroot juice (BR) would increase plasma [nitrite] ([NO2
−]), lower SBP and improve 

exercise performance to a greater extent in the afternoon (AFT) compared to the morning (MORN) and evening (EVE).
Method  Twelve males completed six experimental visits in a repeated-measures, crossover design. NO3

−-depleted beetroot 
juice (PL) or BR (~ 13 mmol NO3

−) were ingested in the MORN, AFT and EVE. SFR and pH, salivary and plasma [NO3
−] 

and [NO2
−], brachial SBP and central SBP were measured pre and post supplementation. A severe-intensity exercise toler-

ance test was completed to determine cycling time to exhaustion (TTE).
Results  There were no between-condition differences in mean SFR or salivary pH. The elevation in plasma [NO2

−] after BR 
ingestion was not different between BR-MORN, BR-AFT and BR-EVE. Brachial SBP was unchanged following BR sup-
plementation in all conditions. Central SBP was reduced in BR-MORN (− 3 ± 4 mmHg), BR-AFT (− 4 ± 3 mmHg), and BR-
EVE (− 2 ± 3 mmHg), with no differences between timepoints. TTE was not different between BR and PL at any timepoint.
Conclusion  Acute BR supplementation was ineffective at improving TTE and brachial SBP and similarly effective at increas-
ing plasma [NO2

−] and lowering central SBP across the day, which may have implications for informing NO3
− supplementa-

tion strategies.
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Introduction

Diurnal variation in acute cardiovascular events is well 
established, with epidemiological data revealing increased 
incidence of strokes (Elliot 1998; Sheppard et al. 2015), 
myocardial infarctions (Cohen et al. 1997; Fabbian et al. 
2017), and sudden cardiac death (Cohen et al. 1997) in the 
morning. Typical morning behaviours, including arousal 
from sleep, sudden postural changes, increased activity 
and psychological stress, instigate increases in sympathetic 
tone, vasoconstriction and peripheral arterial resistance, 
which contribute to the ‘morning surge’ in blood pressure 
(BP) (Kario 2010). Both peripheral and central BP exhibit 
parallel circadian rhythms, with lower values manifesting 
during night-time sleep, followed by abrupt increases with 
morning wakening before attaining peak values in the late 
afternoon (Douma and Gumz 2018). Diurnal fluctuations 
in exercise performance across a range of sport and exer-
cise settings is also well established, with performance 
purported to attain peak and nadir levels in the afternoon 
and morning, respectively (Chtourou et al. 2011, 2012; 
Hammouda et al. 2012; Lericollais et al. 2009; Martin 
et al. 1999; Souissi et al. 2004; Hill 2014). Although BP 
and exercise performance exhibit a diurnal variation, the 
efficacy of dietary interventions to modulate these diurnal 
responses is unclear.

Dietary nitrate (NO3
−)  supplementation has been 

reported to improve various aspects of cardiovascular 
function, including lowering resting brachial BP and arte-
rial stiffness variables, and to improve exercise perfor-
mance (Jackson et al. 2018; Bahrami et al. 2021; Li et al. 
2020; Senefeld et al. 2020). These effects have been linked 
to increased circulating plasma [nitrite] ([NO2

−]), a sub-
strate for nitric oxide (NO) production via the so-called 
NO3

−–NO2
−–NO pathway (Kapil et al. 2020). After inges-

tion, approximately 25% of NO3
− enters the enterosali-

vary circulation, being absorbed by, and concentrated in, 
the salivary glands on the first-pass (Govoni et al. 2008). 
Subsequently, NO3

−-rich saliva is secreted into the oral 
cavity wherein NO3

− undergoes second-pass metabolism 
by anaerobic bacteria on the tongue which reduce salivary 
NO3

− to NO2
− (Doel et al. 2005; Duncan et al. 1995). Once 

swallowed, a portion of this NO2
− is reduced to NO and 

other reactive nitrogen intermediates in the stomach (Ben-
jamin et al. 1994), with some NO2

− and reactive nitrogen 
intermediates entering systemic circulation for later NO 
generation (Kapil et al. 2020). Whilst NO3

− supplementa-
tion has the potential to improve BP, vascular function, 
and exercise performance, it is currently unclear whether 
such effects are consistent across the day.

The efficacy of the NO3
−–NO2

−–NO pathway to elicit 
physiological effects is dependent on NO3

− transport 

into the oral cavity and the host oral microbiome for 
NO3

− reduction (Govoni et al. 2008; Bailey et al. 2016; 
Hezel and Weitzberg 2015; Jansson et al. 2008; Lundberg 
2012). Indeed, when salivary NO3

− uptake and secre-
tion or oral NO3

− reduction are impaired, the increase in 
plasma [NO2

−] and lowering in BP after NO3
− supple-

mentation are attenuated (Govoni et al. 2008; Bailey et al. 
2016; McDonagh et al. 2015). On the other hand, secre-
tion of NO3

− into the oral cavity and exposure to the oral 
NO3

−-reducing anaerobes will be enhanced by increas-
ing salivary flow rate (SFR). However, although previous 
research has shown that music stimuli can elevate saliva 
secretion and salivary NO2

− generation (Jin et al. 2018), 
it is presently unclear whether diurnal variation in SFR 
impacts salivary and plasma [NO3

−] and [NO2
−].

In addition to SFR, salivary pH can impact oral 
NO3

− reduction. Specifically, increasing salivary pH after 
NO3

− supplementation has been reported to increase sali-
vary and plasma [NO2

−] (Cocksedge et al. 2023). Since 
both unstimulated SFR (Dawes 1975, 1972) and salivary 
pH (Choi et al. 2017; Ferguson and Fort 1974) exhibit cir-
cadian rhythms, with an acrophase in the afternoon, oral 
NO3

− reduction and the resultant increases in salivary and 
plasma [NO2

−] after NO3
− supplementation may be great-

est in the afternoon. Consistent with this postulate, oral 
NO3

− reduction was reported to be enhanced in the after-
noon compared with the morning during a mouth rinse 
with a KNO3

− solution (Rowland et al. 2021). However, 
it is unclear whether enhanced oral NO3

− reduction in the 
afternoon during a brief mouth rinse is reproducible after 
NO3

− ingestion and whether this effect translates into greater 
plasma [NO2

−], and more pronounced reductions in BP and 
improvements in exercise tolerance.

The purpose of this study was to investigate the effect 
of dietary NO3

− supplementation on NO3
− metabolism, 

peripheral and central BP, pulse wave variables, and exer-
cise performance, and the extent to which any improvements 
in these variables after NO3

− supplementation exhibited a 
diurnal variation. It was hypothesised that NO3

− supple-
mentation would increase salivary and plasma [NO2

−], and 
improve brachial and central BP, pulse wave variables and 
exercise performance to a greater extent when ingested in the 
afternoon compared to the morning and evening.

Methods

Participants

Twelve young healthy males [mean ± SD: age: 23 ± 4 years, 
stature: 1.80 ± 0.09 m, body mass: 75.8 ± 10.9 kg, V̇O2peak : 
50.4 ± 8.5  ml.kg.min−1, gas exchange threshold (GET): 
118 ± 32 W, peak aerobic power (PAP): 323 ± 68 W] 
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volunteered to participate in this study. None of the partici-
pants were tobacco smokers (Bailey et al. 2016) or vapers or 
taking any medication known to interfere with stomach acid 
production (e.g., proton pump inhibitors). No participants 
had any pre-existing medical conditions such as hyperten-
sion or diabetes. All participants were classified as recrea-
tionally active (McKay et al. 2022). Experimental testing 
was approved by Loughborough University Research Ethics 
Approvals Human Participants Sub Committee (ethics code: 
R18-P145) and confirmed with the principles of the Declara-
tion of Helsinki, apart from registration in a database. Par-
ticipants gave their written informed consent to participate.

Pre‑visit standardisation

Participants recorded their dietary intake 24 h prior to their 
first session and were asked to replicate this before sub-
sequent visits. Each participant was given a list of NO3

−- 
and thiocyanate-rich foods (Dewhurst-Trigg et al. 2018) to 
abstain from eating 24 h before sessions and asked to avoid 
caffeine and alcohol ingestion in the 12 h and 24 h before 
each visit, respectively. All visits were conducted in a post-
prandial state. Since SFR is reduced in a state of hypohy-
dration (Ship and Fischer 1997), participants were provided 
with 40 mL·kg−1 body mass−1 of fluid to consume in the 24 h 
before each visit (Minshull and James 2013) and instructed 
to consume 500 mL of water 1 h before testing to ensure 
euhydration on arrival. During testing sessions, participants 
were given 300 mL of water in 2 equal boluses to ensure 
euhydration was maintained. Since antibacterial mouthwash 
disrupts oral NO3

− reduction (Govoni et al. 2008), partici-
pants were required to abstain from using mouthwash 48 h 
prior to each testing session. Participants were instructed to 
maintain their habitual exercise patterns for the duration of 
the study but were required to avoid strenuous exercise in 
the 24 h prior to each visit.

Experimental design

Participants reported to the laboratory on eight occasions. 
During the first visit, participants were familiarised with all 
the experimental procedures and completed a ramp incre-
mental test for determination of GET, PAP and V̇O2peak . 
GET is a non-invasive estimate of the lactate threshold and 
demarcates the boundary between the moderate and heavy 
intensity exercise domains. PAP was the maximum power 
output attained during the incremental ramp test. V̇O2peak is 
defined as the highest volume of oxygen uptake during the 
incremental ramp test. During visit two, participants were 
familiarised with the time to exhaustion (TTE) exercise pro-
tocol. In the six main experimental visits, baseline measures 
of SFR and pH, BP and vascular function (pulse wave analy-
sis) were obtained, in sequence, and salivary and plasma 

samples were collected for later assessment of [NO3
−] and 

[NO2
−]. Urine and serum osmolality were also evaluated at 

baseline to assess hydration status. Subsequently, partici-
pants ingested 2 × 70 mL of concentrated NO3

−-rich (BR; 
13 mmol NO3

−) or NO3
−-depleted (PL; ~ 0.04 mmol NO3

−) 
beetroot juice (Beet It, James White Drinks Ltd., Ipswich, 
UK) with 30 g of cornflakes and 125 mL of semi-skimmed 
milk. Saliva measurements were repeated 1 h post beetroot 
ingestion. All baseline measurements were then repeated 
2.5 h following beetroot ingestion to coincide with the peak 
plasma [NO2

−] (Wylie et al. 2013). Finally, participants 
completed the TTE exercise test. The six experimental 
conditions, PL and BR in the morning (started at 08:00; 
PL-MORN and BR-MORN), afternoon (started at 12:00; 
PL-AFT, BR-AFT) and evening (started at 15:00; PL-EVE 
and BR-EVE) were administered in a randomised, repeated-
measures, crossover experimental design. PL and BR sup-
plement administration was randomised (counterbalancing 
not possible due to the number of sequence permutations) 
and double-blinded (supplement bags labelled 1 and 2 by an 
independent investigator). Supplement ingestion occurred 
at 09:00, 13:00 and 16:00 in the MORN, AFT and EVE, 
respectively.

Measurements

Hydration status

Urine samples obtained at baseline was analyzed immedi-
ately to evaluate urine osmolality (Osmocheck, Vitech Sci-
entific, UK), with a reading of < 700 mOsmol/kg required for 
visit continuation (Sawka et al. 2007). Additionally, 5 mL of 
venous blood was collected into a serum tube and left to clot 
at room temperature, with serum separated by centrifugation 
(3500 × g at 4 °C for 15 min) and frozen at − 80 °C for later 
analysis of osmolality via freezing-point depression (Gono-
tec 225 Osmomat 030 Cryoscopic Osmometer; Gonotec, 
Germany). Serum osmolality values ranging between 285 
and 295 mOsmol.kg H2O−1 were taken to imply euhydration 
(Knepper et al. 2015).

Saliva collection

Prior to sample collection, participants rinsed their oral cav-
ity with room-temperature tap water to remove any food 
debris. Following 2 min rest, unstimulated saliva samples 
were collected via passive drool and spit into pre-weighed 
sterile containers every 20 s for 2 min. This process was then 
repeated after 2 min. Samples were subsequently weighed 
for determination of SFR before salivary pH was measured 
in duplicate using a microFET electrode (Sentron, Leek, The 
Netherlands), with the measured pH value accepted once 
readings on the pH meter were stable for 5 s. A 3-point 
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calibration of the pH probe was undertaken prior to analy-
sis using buffers with known pH (4.01, 7.00, 10.01). 1 mL 
aliquots were then frozen at − 80 °C for later analysis of 
salivary [NO3

−] and [NO2
−]. Given that salivary [NO3

−] and 
[NO2

−] are influenced by SFR (Granli et al. 1989), salivary 
[NO3

−] and [NO2
−] data were also normalised to SFR to 

report salivary [NO3
−] and [NO2

−] flux per min.

Blood pressure

Participants were required to rest supine for 10 min. There-
after, BP of the brachial artery was measured using an 
automated sphygmomanometer (Omron Healthcare, Kyoto, 
Japan). In total, five measurements were taken at 2 min inter-
vals, with the mean of all five readings used for analysis. 
MAP was calculated as ([(2 × DBP) + SBP]/3).

Aortic blood pressure and pulse wave variables

Following 20 min supine rest, pulse wave analysis was 
assessed at the radial artery using applanation tonometry 
methods (SphygmoCor; Atcor Medical, Sydney, Australia) 
to determine central BP and indices of arterial stiffness. 
Pulse wave analysis calibrated to brachial BP uses a vali-
dated generalised transfer function to derive corresponding 
central aortic pressures (Chen et al. 1997). All tonometry 
data were recorded by a single investigator. A minimum of 
two recordings were taken at each time interval and the two 
measurements with the highest quality index (> 80%) were 
accepted for analysis. Pulse wave analysis indices of inter-
est included: aortic systolic and diastolic BP, augmentation 
pressure (AP: the amplitude of the reflected wave), augmen-
tation index (AI: the reflected wave amplitude divided by 
pulse pressure expressed as a percentage) and, due to the 
known influence of HR on AI, AI adjusted for heart rate of 
75 bpm (AI@HR75).

Blood collection

Following 30 min supine rest, a tourniquet was applied 
around the upper arm prior to sample collection. Blood 
samples were subsequently drawn from an antecubital 
vein via venepuncture into 6 mL lithium heparin vacutain-
ers. Samples were centrifuged at 3000 × g and 4 °C for 
10 min, within 2 min of collection. Plasma was subsequently 
extracted and immediately frozen at − 80 °C for later analy-
sis of [NO3

−] and [NO2
−].

Exercise procedures

All exercise tests were performed on an electronically-
braked cycle ergometer (Lode Excalibur Sport, Gronin-
gen, The Netherlands). During the first laboratory visit, 

participants completed a ramp incremental test involving 
4 min of baseline cycling at 20 W followed by a linear 
30 W/min increase in work rate until task failure. Task fail-
ure was recorded once the pedal rate fell ≥ 10 rpm below 
self-selected cadence (70–100 rpm) for ≥ 5 s. The saddle 
and handlebar height and configuration were recorded and 
reproduced in subsequent tests. Breath-by-breath pulmonary 
gas exchange data were collected continuously during the 
incremental test and averaged over consecutive 10 s peri-
ods (Vyntus CPX metabolic cart, Vyaire Medical, Chicago, 
USA). Participants wore a face mask and breathed through 
a low dead space, low resistance, digital volume transducer 
assembly. The inspired and expired gas volume and gas con-
centration signals were continuously sampled via a capillary 
line connected to the mouthpiece. The gas analyser was cali-
brated prior to testing with gases of known concentration. 
The turbine volume transducer was calibrated automatically 
and manually using a 3 L syringe (Hans Rudolph, Kansas 
City, Missouri). V̇O2peak was taken as the highest 30 s mean 
value attained prior to the participant’s volitional exhaus-
tion. GET, was determined from a cluster of measurements 
including (1) the first disproportionate increase in CO2 pro-
duction ( V̇CO2 ) from visual inspection of individual plots 
of  V̇CO2 vs. V̇O2 , (2) an increase in expired ventilation ( V̇E
)/V̇O2 with no increase in  V̇E/V̇CO2 , and (3) an increase 
in end-tidal O2 tension with no fall in end-tidal CO2 ten-
sion. The TTE protocols involved 4 min cycling at 20 W 
followed by a step increase in work rate equivalent to 75%Δ 
(GET + 75% of the difference between the work rate at GET 
and PAP), with account taken for the mean response time for 
V̇O2 during the ramp protocol (i.e., two-thirds of the ramp 
rate (20 W) deducted from the work rate at GET and PAP 
to account for the muscle-to-lung gas transit time). The test 
was terminated once pedal cadence fell ≥ 10 rpm below the 
self-selected cadence for ≥ 5 s. This exercise protocol was 
replicated during visits 3–8 and TTE was recorded.

[NO3
−] and [NO2

−] determination

All glassware, utensils and surfaces were rinsed thor-
oughly with deionised water to remove residual 
NO3

− and NO2
− prior to analysis. Plasma samples were 

deproteinised prior to [NO3
−] determination. Firstly, 

500 μL of 0.18 N NaOH was added to 100 µL of sam-
ple followed by 5 min incubation at room temperature. 
Subsequently, samples were treated with 300 μL aqueous 
ZnSO4 (5% w/v) and vortexed for 30 s before undergo-
ing an additional 10 min incubation period at room tem-
perature. Samples were then centrifuged at 21,000 × g for 
10 min and the supernatant was removed for subsequent 
analysis. The [NO3

−] of the deproteinised plasma sample 
was determined by its reduction to NO in the presence of 
0.8% (w/v) vanadium chloride (VCl3) in 1 M HCl via 50 
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μL injections into the septum of the air-tight purge ves-
sel. The spectral emission of electronically excited nitro-
gen dioxide, derived from the reaction of NO with ozone, 
was detected by a thermoelectrically cooled, red-sensitive 
photomultiplier tube housed in a gas-phase chemilumi-
nescence NO analyser (Sievers NOA 280i, Analytix Ltd, 
Durham, UK). All samples were analyzed in duplicate. 
The [NO3

−] was determined by plotting signal (mV) area 
against a calibration plot of sodium nitrate standards. Prior 
to plasma [NO2

−] determination, samples were deprotein-
ised using ice-cold ethanol. Specifically, 500 μL of ethanol 
was added to 500 μL of sample followed by 15 min incu-
bation. Samples were then centrifuged at 21,000 × g for 
10 min and the supernatant was removed for subsequent 
analysis. Plasma [NO2

−] was determined by its reduction 
to NO in the presence of glacial acetic acid and aque-
ous sodium iodide (4% w/v) and calibrated using sodium 
nitrite standards. To determine plasma [NO2

−], 200 μL of 
deproteinised plasma was injected into the purge vessel. 
Origin Lab was used to smooth the NO analyser signal 
and objectively identify the peaks to derive the NO2

− con-
centration data. After thawing at room temperature, saliva 
samples were centrifuged for 10 min at 21,000 × g and the 
supernatant was then removed and diluted at least 100-
fold with deionised water for subsequent analysis. [NO3

−] 
and [NO2

−] were determined using the same reagents 
described above for the respective plasma analyses.

Statistical analysis

Statistical analysis was performed using IBM SPSS Sta-
tistics version 27. Shapiro Wilk’s test was used to check 
data normality. Baseline data and data containing one factor 
(condition [PL-MORN, BR-MORN, PL-AFT, BR-AFT, PL-
EVE, BR-EVE] including hydration biomarkers, SFR, sali-
vary pH, and TTE) were analyzed using one-way repeated-
measures ANOVAs. Plasma [NO3

−] and [NO2
−], BP and 

vascular function were initially analysed using two-way 
repeated-measures ANOVAs (condition [PL-MORN, BR-
MORN, PL-AFT, BR-AFT, PL-EVE, BR-EVE] × time [0 h 
and 2.5 h]). Salivary [NO3

−] and [NO2
−] were initially ana-

lyzed using two-way repeated-measures ANOVAs (condi-
tion [PL-MORN, BR-MORN, PL-AFT, BR-AFT, PL-EVE, 
BR-EVE] × time [0 h, 1 h, 2.5 h]). Significant ANOVA inter-
action effects were followed up with post hoc Dunnett’s tests 
for comparisons to baseline control for the salivary data and 
Holm-Bonferroni corrected paired-samples t tests were used 
for all other variables. To calculate effect sizes, partial eta 
squared (np

2) was used for the omnibus tests and Cohen’s dz 
(t/√n) for paired-samples t tests. All data are displayed as 
mean ± SD unless otherwise stated. Statistical significance 
was accepted at P ≤ 0.05.

Results

Hydration biomarkers

For all participants, urine osmolality on arrival was < 700 
mOsmol.kg H2O−1 in all six conditions. Serum osmolality 
was between 285 and 295 mOsmol kg H2O−1 across all visits 
and not different between conditions (P > 0.050, np

2 = 0.03).

Salivary flow rate and pH

There were no inter-condition differences in SFR or salivary 
pH at baseline (both P > 0.050). Mean SFR and pH between 
1 and 2.5 h did not differ between conditions (np

2 = 0.14, 
np

2 = 0.16, both P > 0.050, Fig. 1, respectively).

Salivary [NO3
−] and [NO2

−]

There were no inter-condition differences in salivary [NO3
−] 

at baseline (P > 0.050). There was a main effect for condition 
(P < 0.001, np

2 = 0.79) and time (P < 0.001, np
2 = 0.84), and 

a condition × time interaction effect (P < 0.001, np
2 = 0.71) 

for salivary [NO3
−]. Compared to baseline, salivary [NO3

−] 
was unchanged at 1 h and 2.5 h in PL-MORN (P > 0.050) 
but reduced at 2.5 h vs baseline in PL-AFT (P = 0.034) and 
PL-EVE (P = 0.018). Salivary [NO3

−] was elevated above 
baseline at all time points in BR conditions (all P < 0.001), 
with no differences between BR-MORN, BR-AFT and BR-
EVE at 1 h (dz ≤ 0.60) or 2.5 h (dz ≤ 0.05, both P > 0.050, 
Fig. 2). Normalising salivary [NO3

−] relative to SFR did 
not alter any of the observed effects compared to absolute 
salivary [NO3

−].
There were no inter-condition differences in salivary 

[NO2
−] at baseline (P > 0.050). There was a main effect 

for condition (P < 0.001, np
2 = 0.74) and time (P < 0.001, 

np
2 = 0.79), and a condition × time interaction effect 

(P < 0.001, np
2 = 0.66) for salivary [NO2

−]. Salivary [NO2
−] 

was unchanged between 0 and 2.5 h in PL-MORN, PL-AFT 
and PL-EVE (all P > 0.050). Salivary [NO2

−] was increased 
above baseline at all time points in BR-MORN, BR-AFT and 
BR-EVE (all P < 0.001), with no inter-condition differences 
at 1 h (dz ≤ 0.16) or 2.5 h (dz ≤ 0.42, both P > 0.050, Fig. 2). 
Normalising salivary [NO2

−] to SFR did not change any of 
the observed effects compared to absolute salivary [NO2

−].

Plasma [NO3
−] and [NO2

−]

Plasma [NO3
−] was not different between conditions at 

baseline (P > 0.050). There was a main effect for condition 
(P < 0.001, np

2 = 0.95) and time (P < 0.001, np
2 = 0.96), 

and a condition × time interaction effect (P < 0.001, 
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np
2 = 0.92). Plasma [NO3

−] remained stable between base-
line and 2.5 h in PL-MORN, PL-AFT and PL-EVE (all 
P > 0.050) but was elevated above baseline at 2.5 h in BR-
MORN (640 ± 141 µM), BR-AFT (663 ± 79 µM) and BR-
EVE (626 ± 154 µM) (all P < 0.001), with no differences 
between the BR conditions (P > 0.050, dz ≤ 0.31, Fig. 3).

Plasma [NO2
−] was not different between conditions at 

baseline (P > 0.050). There was a main effect for condition 
(P < 0.001, np

2 = 0.73) and time (P < 0.001, np
2 = 0.80), 

and a condition × time interaction effect (P < 0.001, 
np

2 = 0.76). Plasma [NO2
−] was unchanged between 0 and 

2.5 h in PL-MORN (P > 0.050) but decreased in PL-AFT 
(P = 0.027) and PL-EVE (P = 0.050). Plasma [NO2

−] was 
increased above baseline 2.5 h post supplement ingestion 
in BR-MORN (642 ± 289 nM), BR-AFT (670 ± 314 nM) 
and BR-EVE (675 ± 355 nM) (all P < 0.001), with no dif-
ferences between conditions (P > 0.050, dz ≤ 0.11, Fig. 3).

Brachial artery blood pressure

Systolic blood pressure

There were no inter-condition differences in brachial 
SBP at baseline (P > 0.050). There was a main effect for 
time (P = 0.007, np

2 = 0.50), but no main effect for condi-
tion (P > 0.050, np

2 = 0.05) or condition × time interaction 
(P > 0.050, np

2 = 0.09, Table 1).

Diastolic blood pressure

There were no inter-condition differences in brachial DBP at 
baseline (P > 0.050). There was a condition × time interac-
tion (P = 0.005, np

2 = 0.25), but no main effect for condition 
(P > 0.050, np

2 = 0.03) or time (P > 0.050, np
2 = 0.11). Fol-

low up post-hoc analysis revealed that brachial DBP was 

Fig. 1   Mean salivary flow rate 
(SFR; upper panel) and salivary 
pH (lower panel) from 1 to 
2.5 h following ingestion of 
nitrate-depleted and nitrate-rich 
beetroot juice in the morning 
(PL-MORN and BR-MORN), 
afternoon (PL-AFT and BR-
AFT) and evening (PL-EVE 
and BR-EVE). The bars rep-
resent the group mean ± SEM 
responses with the filled circles 
representing individual partici-
pants. No differences observed 
between conditions (P > 0.050)
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unchanged over time in PL-MORN (dz = 0.46), PL-AFT 
(dz = 0.60) and PL-EVE (dz = 0.67), and in BR-MORN 
(dz = 0.08), BR-AFT (dz = 0.51), and BR-EVE (dz = 0.34, 
all P > 0.050, Table 1).

Mean arterial pressure

There were no inter-condition differences in brachial MAP 
at baseline (P > 0.050) or any main effects for condition 
(P > 0.050, np

2 = 0.05) or time (P > 0.050, np
2 = 0.02), or a 

condition × time interaction (P > 0.050, np
2 = 0.11, Table 1).

Aortic blood pressure and arterial stiffness

Central systolic blood pressure  There were no inter-condi-
tion differences in central SBP at baseline (P > 0.050). There 
was a main effect for time (P = 0.011, np

2 = 0.49) and con-
dition × time interaction (P = 0.007, np

2 = 0.27) but no main 

effect for condition (P > 0.050, np
2 = 0.04). Central SBP was 

unchanged over time in PL-MORN (dz = 0.09), PL-AFT 
(dz = 0.19) and PL-EVE (dz = 0.28, all P > 0.050). Cen-
tral SBP was lower at 2.5  h compared to baseline within 
BR-MORN (P = 0.030, dz = 0.88), BR-AFT (P = 0.009, 
dz = 1.19) and BR-EVE (P = 0.046, dz = 0.69), with no dif-
ferences between these conditions (P > 0.050, dz ≤ 0.44, 
Table 2).

Central diastolic blood pressure  There were no inter-condi-
tion differences in central DBP at baseline (P > 0.050). There 
was no main effect for condition (P > 0.050, np

2 = 0.02) or 
time (P > 0.050, np

2 = 0.02), but there was a condition × time 
interaction effect (P = 0.011, np

2 = 0.25). Post hoc analysis 
revealed no significant differences between conditions or 
over time (P > 0.050, Table 2).

Augmentation pressure, augmentation index and  aug-
mentation index normalised to  heart rate  There were no 
inter-condition differences in AP, AI or AI@HR75 at base-
line (all P > 0.050). There was no main effect for condi-
tion (P > 0.050, np

2 = 0.06) or time (P > 0.050, np
2 = 0.05) 

but there was a significant condition × time interaction 
(P = 0.029, np

2 = 0.22) for AP. AP was lower at 2.5  h vs 
baseline in BR-AFT (P = 0.045, np

2 = 0.89), but no differ-
ences were observed in the other conditions (all P > 0.050, 
Table 2). There was no main effect for condition (P > 0.050, 
np

2 = 0.08) or time (P > 0.050, np
2 = 0.17) for AI; how-

ever, there was a condition × time interaction (P = 0.022, 
np

2 = 0.23). Post hoc analysis revealed no significant differ-
ences between conditions (P > 0.050, Table 2). There was a 
main effect for time (P = 0.024, np

2 = 0.42) for AI@HR75, 
but no main effect for condition (P > 0.050, np

2 = 0.04) or 
condition × time interaction (P > 0.050, np

2 = 0.19, Table 2).

Exercise performance  Exercise TTE did not differ between 
PL-MORN (307 ± 96 s), BR-MORN (308 ± 71 s), PL-AFT 
(321 ± 81  s), BR-AFT (311 ± 68  s), PL-EVE (306 ± 76  s) 
and BR-EVE (318 ± 83 s), (P > 0.050, np

2 = 0.02; Fig. 4).

Discussion

This study assessed whether the time-of-day an acute dose 
of dietary NO3

− was administered influenced its efficacy 
to lower BP and improve exercise performance in healthy 
adults. The principal novel findings from this study were: 
(1) SFR, salivary pH, BP and exercise performance did not 
exhibit a marked circadian rhythm; (2) salivary and plasma 
[NO3

−] and [NO2
−] were increased by a similar magnitude 

after BR ingestion in the morning, afternoon and evening; 
(3) BR consumption lowered central SBP by a similar mag-
nitude across the day but did not reduce brachial SBP; and 
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Fig. 2   Salivary nitrate concentration ([NO3
−], upper panel) and sali-

vary nitrite concentration ([NO2
−], lower panel) at baseline, 1 h and 

2.5  h following ingestion of nitrate-depleted and nitrate-rich beet-
root juice in the morning (PL-MORN and BR-MORN), afternoon 
(PL-AFT and BR-AFT) and evening (PL-EVE and BR-EVE). Data 
presented as the group mean ± SEM responses with the filled cir-
cles representing individual participants. *Denotes higher than PL-
MORN, PL-AFT and PL-EVE in BR-MORN, BR-AFT and BR-EVE 
(P < 0.050). #denotes salivary [NO3

−] lower than baseline at 2.5 h in 
PL-AFT and PL-EVE (P < 0.050)
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Fig. 3   Plasma nitrate concen-
tration ([NO3

−], upper panel) 
and plasma nitrite concentra-
tion ([NO2

−], lower panel) 
2.5 h following ingestion of 
nitrate-depleted and nitrate-rich 
beetroot juice in the morning 
(PL-MORN and BR-MORN), 
afternoon (PL-AFT and BR-
AFT) and evening (PL-EVE and 
BR-EVE). The bars represent 
the group mean ± SD responses 
with the filled circles represent-
ing individual participants. 
*Denotes higher than PL-
MORN, PL-AFT and PL-EVE 
in BR-MORN, BR-AFT and 
BR-EVE (P < 0.050)
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Table 1   Brachial artery blood 
pressure at baseline and 2.5 h 
following ingestion of nitrate-
depleted or nitrate-rich beetroot 
juice in the morning, afternoon, 
and evening

Brachial artery systolic blood pressure (SBP), diastolic blood pressure (DBP) and mean arterial pressure 
(MAP) at baseline and 2.5  h following ingestion of nitrate-depleted or nitrate-rich beetroot juice in the 
morning (PL-MORN and BR-MORN), afternoon (PL-AFT and BR-AFT) and evening (PL-EVE and BR-
EVE). Data are presented as group mean ± SD. No differences observed between conditions (P > 0.050)

PL-MORN BR-MORN PL-AFT BR-AFT PL-EVE BR-EVE

SBP (mmHg)
 Baseline 119 ± 7 119 ± 7 118 ± 6 119 ± 7 119 ± 7 119 ± 8
 2.5 h 118 ± 9 115 ± 7 118 ± 6 117 ± 7 118 ± 7 118 ± 8

DBP (mmHg)
 Baseline 68 ± 7 67 ± 8 67 ± 6 68 ± 7 67 ± 8 67 ± 8
 2.5 h 69 ± 7 67 ± 7 68 ± 7 67 ± 6 70 ± 7 69 ± 7

MAP (mmHg)
 Baseline 85 ± 6 85 ± 7 84 ± 6 85 ± 6 84 ± 7 84 ± 7
 2.5 h 85 ± 7 83 ± 6 83 ± 9 83 ± 5 85 ± 7 85 ± 6



1389European Journal of Applied Physiology (2024) 124:1381–1396	

1 3

(4) severe-intensity cycling TTE was not improved with BR 
supplementation irrespective of the time of day ingested. 
These findings improve understanding of the effects of acute 
BR supplementation on BP, vascular function and exercise 
performance in healthy young men by evaluating the poten-
tial for time-specific effects of BR supplementation on these 
health indices.

Salivary flow rate and pH

Previous studies have shown both unstimulated SFR (Dawes 
1975, 1972) and salivary pH (Choi et al. 2017; Ferguson and 
Fort 1974) exhibit circadian variability, being lowest dur-
ing sleep and the early morning and peaking mid-afternoon. 
Contrary to previous findings, SFR and salivary pH did not 

Table 2   Central blood pressure 
and pulse wave analysis 
variables at baseline and 2.5 h 
following ingestion of nitrate-
depleted or nitrate-rich beetroot 
juice in the morning, afternoon, 
and evening

Central systolic blood pressure (SBP), central diastolic blood pressure (DBP), augmentation pressure (AP), 
augmentation index (AI) and augmentation index normalised to heart rate (AI@HR75) at baseline and 
2.5 h following ingestion of nitrate-depleted or nitrate-rich beetroot juice in the morning (PL-MORN and 
BR-MORN), afternoon (PL-AFT and BR-AFT) and evening (PL-EVE and BR-EVE). Data are presented 
for n = 11 as group mean ± SD
*Denotes lower than baseline (P < 0.050)

PL-MORN BR-MORN PL-AFT BR-AFT PL-EVE BR-EVE

SBP (mmHg)
 Baseline 100 ± 6 100 ± 7 99 ± 6 101 ± 5 100 ± 6 101 ± 7
 2.5 h 100 ± 8 97 ± 6* 100 ± 6 98 ± 6* 99 ± 6 99 ± 7*

DBP (mmHg)
 Baseline 69 ± 6 70 ± 7 69 ± 5 71 ± 5 69 ± 6 69 ± 5
 2.5 h 71 ± 6 69 ± 6 70 ± 6 68 ± 5 71 ± 7 70 ± 7

AP (mmHg)
 Baseline – 3 ± 3 – 2 ± 4 – 2 ± 3 – 2 ± 3 – 3 ± 2 – 1 ± 4
 2.5 h – 1 ± 4 – 3 ± 3 – 1 ± 4 – 3 ± 3* – 3 ± 2 – 4 ± 2

AI (%)
 Baseline – 10 ± 8 – 7 ± 13 – 8 ± 9 – 7 ± 10 – 10 ± 7 – 5 ± 11
 2.5 h – 6 ± 12 – 13 ± 9 – 4 ± 13 – 11 ± 10 – 11 ± 7 – 12 ± 7

AI@HR75 (%)
 Baseline – 17 ± 9 – 14 ± 12 – 15 ± 9 – 15 ± 10 – 17 ± 9 – 12 ± 12
 2.5 h – 16 ± 11 – 20 ± 8 – 14 ± 12 – 20 ± 9 – 19 ± 7 – 20 ± 8

Fig. 4   Time to exhaustion 
(TTE) during severe-intensity 
cycling exercise following 
ingestion of nitrate-depleted 
or nitrate-rich beetroot juice in 
the morning (PL-MORN and 
BR-MORN), afternoon (PL-
AFT and BR-AFT) and evening 
(PL-EVE and BR-EVE) (upper 
panel). The bars represent the 
group mean ± SEM responses 
with the filled circles represent-
ing individual participants. No 
differences observed between 
conditions (P > 0.050)
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exhibit a circadian rhythm in the current study with these 
variables not being significantly different across the morn-
ing, afternoon, and evening assessment points. It is well 
documented that food and fluid consumption can alter SFR 
and salivary pH (Ship and Fischer 1997; Brunstrom et al. 
2000; Watanabe and Dawes 1988). Since fluid consump-
tion and food intake was standardised over the 24 h preced-
ing each testing session and participants were objectively 
determined to be euhydrated in the current study, the lack 
of diurnal variation on SFR and salivary pH is unlikely to 
be a result of altered dietary intake. However, it is plausible 
that our hydration protocol may have overridden the underly-
ing daily rhythm in SFR. Moreover, both SFR and salivary 
pH were highly variable between-participants, which likely 
impeded the detection of any subtle changes in these vari-
ables across the day. We concede that a larger sample size 
may have been necessary to detect subtle changes in SFR 
and salivary pH. It should also be acknowledged that the 
methods used to collect and measure SFR and pH may not 
have been sufficiently sensitive to detect small diurnal vari-
ability in these responses. Previous studies have used passive 
drool techniques or fitted oral collection devices to collect 
saliva and have collected samples for 11–12 successive days 
between ~ 07:00 and 22:00 to evaluate SFR (Dawes 1975, 
1972). Similarly, a previous study reporting circadian-like 
patterns in salivary pH captured continuous changes over 
48 h using custom-made intraoral appliances (Choi et al. 
2017). In contrast, the current study only measured SFR and 
salivary pH on nine occasions between 08:00 and 18:30 and 
with different techniques, which may account for the lack 
of a significant within-day variability in SFR or salivary 
pH herein.

Dietary nitrate metabolism

Salivary and plasma [NO3
−] and [NO2

−] were not differ-
ent between pre-supplementation baseline measures during 
the morning, afternoon, and evening experimental testing 
sessions. Consistent with previous research (Bailey et al. 
2016; Cocksedge et al. 2023; Burleigh et al. 2018; Woessner 
et al. 2016), both salivary and plasma [NO3

−] and [NO2
−] 

increased following the acute ingestion of BR in the present 
study. However, contrary to the experimental hypothesis, the 
increases in salivary and plasma [NO3

−] and [NO2
−] after 

BR supplementation were consistent across the morning, 
afternoon, and evening. These findings align with previous 
research which has shown stability in plasma and urinary 
[NO3

−] (Ringqvist et al. 2000) and plasma [NOx] (Tangphao 
et al. 1999) over a 24 h period. The lack of diurnal varia-
tion in the evaluated NO3

− metabolism biomarkers in the 
current study may be partially attributed to the absence of 
a circadian rhythm in SFR and salivary pH. However, it is 

worth acknowledging that there may be diurnal variation in 
salivary and plasma [NO3

−] and [NO2
−] if assessed using 

more ecologically valid experimental designs (i.e., where 
individuals maintain their habitual dietary intake and activ-
ity levels) due to the NO3

− content of the diet with different 
meals.

Blood pressure and vascular function

Despite evidence of circadian rhythms in BP reported in the 
literature (Douma and Gumz 2018; Williams et al. 2013; 
Jankowski et al. 2013; Boggia et al. 2016), no differences 
in baseline pre-supplementation brachial BP were observed 
between the morning, afternoon, and evening in healthy 
young men in the present study. Previous studies assessing 
24 h BP have reported that the amplitudes of basal resting 
rhythms are small (3–6 mmHg peak-to-trough) in healthy 
young men and women (Scheer et al. 2010). Moreover, 
and also contrary to the experimental hypothesis, brachial 
SBP was not lowered in the morning, afternoon or evening 
after acute BR ingestion. Numerous previous studies have 
assessed the potential of NO3

− supplementation to lower BP, 
with a lowering in brachial SBP after NO3

− consumption 
observed in several (Bahadoran et al. 2017; Kapil et al. 2010; 
Larsen et al. 2006; Siervo et al. 2013; Bailey et al. 2010), but 
not all, previous studies (Siervo et al. 2013; Cermak et al. 
2012; Zoughaib et al. 2023; Shepherd et al. 2015; Walker 
et al. 2019). However, a principal original contribution of the 
current study was evaluating the efficacy of NO3

− supple-
mentation to lower brachial BP at three different time points 
across the day and the observation that brachial SBP was not 
lowered in the morning, afternoon or evening after acute 
BR ingestion. The factors that regulate BP across the day 
are multifaceted (including but not limited to renal haemo-
dynamics, the nervous system and mental/emotional stress) 
and highly complex (Smolensky et al. 2017), and as such it 
is unclear why reductions in brachial BP were not observed 
in the present study.

In contrast to the peripheral brachial artery SBP response, 
aortic SBP was lowered from the pre-supplementation base-
line after BR supplementation by a similar magnitude in the 
morning, afternoon and evening. Lower aortic SBP after 
acute NO3

− supplementation has been reported in some 
(Pekas et al. 2021; Kukadia et al. 2019; Hughes et al. 2016; 
Kim et al. 2019), but not all (Floyd et al. 2019) previous 
studies. In studies assessing both aortic and brachial SBP, 
a concurrent lowering in central and peripheral SBP has 
been reported (Pekas et al. 2021; Hughes et al. 2016; Kim 
et al. 2019), however, some studies have observed a reduc-
tion in central but not peripheral SBP (Kukadia et al. 2019; 
Mills et al. 2020). In contrast with the findings of the current 
study, both central and peripheral SBP have been reported to 
be lowered after acute NO3

− supplementation in the morning 
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(Pekas et al. 2021; Hughes et al. 2016; Kim et al. 2019), with 
studies reporting a greater effect on central than peripheral 
SBP not specifying the time of the day the assessments were 
completed (Kukadia et al. 2019; Mills et al. 2020). Both 
the lowering of central SBP and the increases in plasma 
[NO2

−] after BR ingestion were consistent across timepoints 
in the current study. Therefore, while previous studies have 
reported a strong agreement between plasma [NO2

−] and 
brachial SBP after acute NO3

− supplementation, the cur-
rent study suggests that central, but not brachial, SBP is 
modulated by circulating plasma [NO2

−]. The mechanisms 
for the lowering of brachial SBP after NO3

− ingestion have 
been considered to be linked to the reduction of circulating 
plasma NO2

− to NO leading to elevated cyclic guanosine 
monophosphate signalling leading to vasodilation (Kapil 
et al. 2020, 2010). However, NO2

− can directly elicit vaso-
dilation via s-nitrosylation (Bryan et al. 2005). In addition 
to increasing plasma [NO2

−], acute BR ingestion has been 
demonstrated to increase plasma S-nitrosothiol concentra-
tions (Abu-Alghayth et al. 2021) which have been suggested 
to more closely reflect the improvement in vascular function 
after NO3

− ingestion than plasma [NO2
−] (Pinheiro et al. 

2015). It has also been suggested that the lowering in BP 
with elevated NO2

− can occur via mechanisms independ-
ent of NO-cGMP signalling, and instead related to a novel, 
alternative redox pathway (mediated by hydrogen peroxide, 
persulfides and oxidation of protein kinase G1α), which cul-
minates in NO-independent vasorelaxation (Feelisch et al. 
2020). Therefore, further research is required to assess the 
mechanisms for the lowering in SBP after acute BR inges-
tion in humans and the extent to which this may differ in the 
control of central and peripheral SBP.

Acute BR ingestion largely did not modulate indices 
of arterial stiffness in the current study. Specifically, AP 
and AI were unaltered after BR ingestion in the morning 
or evening, but there was a small lowering in AP after BR 
ingestion in the afternoon. The clinical relevance of this 
finding in healthy young normotensive males is unclear 
(Wojciechowska et al. 2006). The general lack of improve-
ment in pulse wave variables after acute NO3

− ingestion is 
consistent with most (Pekas et al. 2021; Kim et al. 2019; 
Liu et al. 2013), but not all (Hughes et al. 2016), previ-
ous studies reporting the effects of BR on AP and AI in 
the morning. The current study extends these previous 
observations by assessing the effects of BR supplementa-
tion on these variables in the afternoon and evening. It is 
possible that chronic NO3

− supplementation is required to 
improve pulse wave variables (Li et al. 2020) since arte-
rial remodelling, including changes in the timing and/or 
magnitude of reflected waves from the peripheral arterial 
tree, may be necessary to elicit changes in central haemo-
dynamics. Longer term NO3

− supplementation and the 
potential for greater overall NO exposure could positively 

modulate endothelial homeostasis (Carlström et al. 2018), 
and vascular gene expression to support vascular func-
tion (Rammos et al. 2015). In turn, such effects could 
contribute to lower vascular resistance and associated 
pulse wave variables. Therefore, our findings suggest that 
acute BR ingestion is more likely to lower central versus 
peripheral SBP, and to not influence indices of arterial 
stiffness in healthy young males. This finding is consist-
ent with research in pre-diabetic and diabetic individuals 
after daily ingestion of dietary NO3

− for 6 months (Fac-
onti et al. 2019). Although exact mechanisms of action 
are unclear, lowered SBP yet unaltered arterial stiffness 
with NO3

− consumption has been postulated to be due in 
part to increased venodilation leading to decreased preload 
(Mills et al. 2020).

Exercise performance

There were no changes in high-intensity cycling TTE 
between the morning, afternoon and evening timepoints 
after PL ingestion in the current study. This observation 
conflicts with previous studies reporting diurnal variation 
in maximal voluntary contractions (Chtourou et al. 2012; 
Martin et al. 1999), Wingate test performance (Chtourou 
et al. 2012, 2011; Hammouda et al. 2012; Lericollais et al. 
2009; Souissi et al. 2004) and exhaustive severe-intensity 
cycling exercise (Hill 2014), with performance typically 
peaking in the afternoon and being lowest in the morn-
ing. Acute ingestion of BR providing ~ 13 mmol NO3

− did 
not improve TTE during high-intensity cycling in the cur-
rent study. While the existing literature generally supports 
a small but significant effect of NO3

− supplementation to 
improve performance across a range of exercise settings 
(Senefeld et al. 2020), and acute NO3

− supplementation has 
previously been reported to enhance performance during 
continuous high-intensity exercise tests (Wylie et al. 2013), 
there are also previous studies reporting no ergogenic effects 
in such settings (Cocksedge et al. 2020). It has previously 
been reported that sprint cycling performance is impaired in 
the morning compared to the afternoon and that acute BR 
ingestion (providing ~ 6.5 mmol NO3

−) can improve sprint 
cycling performance in the morning such that it is not dif-
ferent from the afternoon (Dumar et al. 2021). However, a 
limitation of that study was the lack of an appropriate pla-
cebo supplement to ensure the participants were blinded 
to the treatment conditions. The current study expands on 
this previous study by indicating that acute BR ingestion 
did not improve performance compared to PL in the morn-
ing, afternoon or evening. The lack of an ergogenic effect 
in the current study is unlikely to be due to an insufficient 
NO3

− dose (Wylie et al. 2013). There is some evidence to 
suggest that NO3

− supplementation may be more likely to 
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improve continuous high-intensity exercise performance 
after multiple-day supplementation, due to the greater time 
course needed to increase muscle [NO2

−] (Kadach et al. 
2023; Gilliard et al. 2018; Wylie et al. 2019) and subse-
quently impact skeletal muscle contractile function (Cermak 
et al. 2012; Jones et al. 2018), which may account for the 
lack of ergogenic effect of acute BR ingestion in the current 
study.

Potential implications and experimental 
considerations

The findings of the current study suggest that acute BR 
supplementation is more likely to lower central SBP than 
brachial artery SBP across the course of the day. Whilst the 
measurement of brachial artery BP is well-established and 
provides strong clinical prognostic value, the importance of 
assessing central aortic BP and indices of aortic wave reflec-
tions has been clearly established in recent years (McEniery 
et al. 2014; Siervo et al. 2013). Indeed, the coronary arter-
ies are exposed to central rather than peripheral pressures, 
which may account for observations that cardiovascular 
events may be more closely related to central pressures 
(McEniery et al. 2014). Moreover, the greater effect of BR 
ingestion on lowering central compared to brachial SBP is 
consistent with some studies reporting that central SBP is 
more likely to respond to antihypertensive treatments than 
brachial SBP (McEniery et al. 2014). The clinical relevance 
of the observed reductions in central SBP in healthy young 
men is currently unknown and warrants additional inves-
tigation. However, central SBP readings > 125 mmHg are 
associated with a significant increase in atherosclerotic car-
diovascular outcomes, and for every 10 mmHg increase in 
central SBP the risk of an adverse cardiovascular outcomes 
increases by 11.7% (Kwon et al. 2022). This is important 
since resolving the time of day that administration of anti-
hypertensive interventions elicits the optimal effects on 
cardiovascular health and cardioprotection remains unclear 
and an active area or research in cardiovascular medicine 
(Mackenzie et al. 2022; Hermida et al. 2010).

Limitations

A challenge of administering NO3
− acutely is that the 

second-pass metabolism of NO3
− delays the attainment of 

peak plasma [NO2
−] until ~ 2–4 h post ingestion, and assess-

ments of BP and exercise performance are recommended to 
take place upon attainment of peak plasma [NO2

−] (Wylie 
et al. 2013). To accommodate for the slow plasma [NO2

−] 
pharmacokinetics after NO3

− ingestion, a limitation of 
the current study is that BP, vascular function and exer-
cise performance measures were assessed early afternoon 

(~ 12:00–13:00), mid-afternoon (~ 16:00–17:00) and early 
evening (~ 19:00–20:00) after, respectively, ingesting BR in 
the morning (~ 09:00), early afternoon (~ 13:00) and mid-
afternoon (~ 16:00). Therefore, the morning BP surge was 
not assessed in the current study, and the exercise test may 
not have been conducted early enough in the day to detect 
previously reported morning decrements in performance. 
Moreover, research in chronobiology has investigated the 
effect of chronotype; an individual’s predisposition towards 
morningness and eveningness, on responses to exercise 
(Vitale and Weydahl 2017). Studies have shown that circa-
dian rhythms of physiological variables such as temperature 
are shifted dependent on chronotype characterisation, with 
biological rhythms in morningness types showing earlier 
peaks and troughs compared to eveningness types (Baehr 
et al. 2000; Bailey and Heitkemper 2001). Since chrono-
type was not characterized for the participants in the cur-
rent study, this may have contributed to the observation of 
marked diurnal variability in exercise tolerance in the cur-
rent study.

Conclusion

In young healthy males, we observed no significant circa-
dian variability in SFR, salivary pH, salivary and plasma 
[NO3

−] and [NO2
−], brachial or central BP or high-intensity 

exercise TTE across the non-supplemented baseline assess-
ments. Acute NO3

−-rich BR consumption resulted in similar 
increases in salivary and plasma [NO3

−] and [NO2
−] and 

reductions in central SBP in the morning, afternoon, and 
evening. In contrast, brachial SBP was unchanged following 
BR supplementation in the morning, afternoon, and evening 
and TTE was not improved at any of the timepoints assessed 
after BR ingestion. These findings improve our understand-
ing of the effect of BR supplementation on BP, vascular 
function and exercise performance and suggest that central 
SBP is consistently lowered across the day after BR sup-
plementation in healthy adults.
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