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Abstract
Purpose To quantify the effects of prolonged cycling on the rate of ventilation ( V̇

E
 ), frequency of respiration  (FR), and tidal 

volume  (VT) associated with the moderate-to-heavy intensity transition.
Methods Fourteen endurance-trained cyclists and triathletes (one female) completed an assessment of the moderate-to-
heavy intensity transition, determined as the first ventilatory threshold  (VT1), before (PRE) and after (POST) two hours of 
moderate-intensity cycling. The power output, V̇

E
 ,  FR, and  VT associated with  VT1 were determined PRE and POST.

Results As previously reported, power output at  VT1 significantly decreased by ~ 10% from PRE to POST. The V̇
E
 associated 

with  VT1 was unchanged from PRE to POST (72 ± 12 vs. 69 ± 13  L.min−1, ∆ − 3 ± 5  L.min−1, ∆ − 4 ± 8%, P = 0.075), and 
relatively consistent (within-subject coefficient of variation, 5.4% [3.7, 8.0%]). The V̇

E
 associated with  VT1 was produced 

with increased  FR (27.6 ± 5.8 vs. 31.9 ± 6.5  breaths.min−1, ∆ 4.3 ± 3.1  breaths.min−1, ∆ 16 ± 11%, P = 0.0002) and decreased 
 VT (2.62 ± 0.43 vs. 2.19 ± 0.36  L.breath−1, ∆ − 0.44 ± 0.22  L.breath−1, ∆ − 16 ± 7%, P = 0.0002) in POST.
Conclusion These data suggest prolonged exercise shifts ventilatory parameters at the moderate-to-heavy intensity transition, 
but V̇

E
 remains stable. Real-time monitoring of V̇

E
 may be a useful means of assessing proximity to the moderate-to-heavy 

intensity transition during prolonged exercise and is worthy of further research.
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Abbreviations
FR  Frequency of respiration
HR  Heart rate
V̇CO2  Rate of carbon dioxide production
V̇E  Expired minute ventilation
V̇O2  Rate of oxygen consumption
V̇O2peak  Peak rate of oxygen consumption
VT  Tidal volume
VT1  First ventilatory threshold

Introduction

Power output at the boundaries between the moderate, 
heavy, and severe intensity domains are routinely used to 
assess performance capability, regulate training load and 
competition intensities, and to quantify adaptations to train-
ing (Burnley and Jones 2018; Jones et al. 2019; Maunder 
et al. 2021). However, we and others have observed that 
the power outputs observed at these intensity transitions 
decreases over time during prolonged exercise (Clark et al. 
2018a, 2019a, b; Stevenson et al. 2022). This has implica-
tions for the application of physiological profiling data col-
lected in well-rested athletes to prolonged training sessions 
(Maunder et al. 2021).

Identification of a physiological marker that changes over 
time during prolonged exercise in accordance with changes in 
the intensity domain transitions would be useful for within-
session intensity regulation, and could result in a more pre-
cise calculation of training intensity distribution (Maunder 
et al. 2021). We previously observed that the classic upward 
drift in heart rate during prolonged cycling was proportion-
ally greater than the downward drift in power output at the 
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moderate-to-heavy intensity transition (Stevenson et al. 2022). 
This indicates that the heart rate observed at the moderate-
to-heavy intensity transition during a physiological profiling 
assessment in a well-rested athlete may not provide useful 
information regarding the athlete’s proximity to the transition 
following multiple hours of exercise. Therefore, investiga-
tion of other markers of exercise intensity for this purpose are 
warranted.

Expired minute ventilation ( V̇E ), and its underlying param-
eters respiratory frequency  (FR) and tidal volume  (VT), can be 
measured non-invasively by endurance athletes in real-time 
(Clarenbach et al. 2005; Witt et al. 2006; Nicolò et al. 2017b). 
These ventilatory parameters are highly-responsive to exercise 
intensity (Nicolò et al. 2017a, 2018). The V̇E and  FR typi-
cally rise linearly with exercise intensity up to the respiratory 
compensation point, after which non-linear increases occur; 
whereas  VT typically plateaus at higher intensities (Nicolò 
et al. 2020). There is emerging suggestion that  VT may be 
regulated primarily by stimulation of central and periph-
eral chemoreceptors and skeletal muscle metaboreceptors 
by exercise-induced changes in  CO2, pH, and skeletal mus-
cle metabolites, whereas  FR may be primarily regulated by 
fast inputs such as group III/IV muscle afferents and central 
command (Tipton et al. 2017; Nicolò et al. 2020). Accord-
ingly, monitoring changes in ventilatory parameters during 
exercise may have the potential to provide endurance athletes 
with useful information regarding their physiological status in 
real-time. This contention is further supported by the upward 
drift in ventilatory parameters that may be observed during 
prolonged, constant-work rate exercise (Phillips et al. 2016; 
Katagiri et al. 2023). If prolonged exercise-induced changes 
in these ventilatory parameters align with prolonged exercise-
induced changes in the intensity domain transitions; that is, 
if one or more ventilatory parameters coincident with the 
intensity domain transitions remains constant over time dur-
ing prolonged exercise, despite reductions in external work 
rates achieved at the transition, then monitoring ventilatory 
parameters during exercise may provide athletes with useful 
information regarding their real-time proximity to the intensity 
domain transitions.

Accordingly, the purpose of the present investigation was 
to quantify the effects of prolonged cycling on the V̇E ,  FR, 
and  VT associated with the moderate-to-heavy intensity tran-
sition. The data presented here were collected as part of a 
previously-published study (Stevenson et al. 2022).

Methods

Ethical approval

This study was performed in accordance with the stand-
ards of the Declaration of Helsinki, 2013. The Auckland 

University of Technology Ethics Committee approved all 
procedures (21/253), and all participants provided written 
informed consent prior to participation. This study was not 
registered in a database. Data associated with this study are 
available from the corresponding author upon reasonable 
request.

Participants

Fourteen endurance-trained cyclists and triathletes took 
part in the present investigation (13 males, 1 female; age, 
34 ± 10 y; height, 178.1 ± 5.6 cm; mass, 71.2 ± 6 kg; peak 
oxygen uptake [ V̇O2peak], 59.9 ± 6.8  mL.kg−1.min−1; train-
ing volume, 9 ± 3  h.week−1). A priori sample size estimation 
indicated that a total sample size of 15 was required to detect 
a large magnitude (ES = 0.7) reduction in power output at 
the moderate-to-heavy intensity transition with 80% statis-
tical power using the G*Power software package. A large 
magnitude effect size was used for this calculation based on 
previous studies showing the effect of prolonged exercise on 
the heavy-to-severe intensity transition (Clark et al. 2018b, 
2019a, b). A one-tailed test was used as it seemed implausi-
ble that the moderate-to-heavy intensity power output would 
increase following acute prolonged exercise. One participant 
dropped out of the study. All participants were free of recent 
(< 3 months) musculoskeletal injury and chronic disease and 
habitually training > 5  h.week−1 in cycling-based endurance 
sports.

Study design

The data presented here were collected as part of a previ-
ously-published study (Stevenson et al. 2022). Briefly, par-
ticipants reported to the laboratory following an overnight 
fast on two occasions: (i) a characterisation trial for meas-
urement of V̇O2peak and initial estimation of the moder-
ate-to-heavy intensity transition, (ii) a prolonged trial for 
measurement of the moderate-to-heavy intensity transition 
before and after two hours of cycling at 90% of the initial 
estimate of the moderate-to-heavy intensity transition. The 
first ventilatory threshold  (VT1) was used as the marker of 
the moderate-to-heavy intensity transition.

Characterisation trial

Participants initially reported to the laboratory for an incre-
mental cycling test. Participants arrived after a 10-h over-
night fast having refrained from vigorous exercise for 24 h 
and having ingested ~ 1 L of plain water ~ 2 h beforehand. 
Height and body mass was first measured. Cycling sub-
sequently commenced on an electromagnetically-braked 
ergometer at 95 W, and the power output initially increased 
by 35 W every 3 min (Excalibur Sport, Lode BV, Groningen, 
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NET). Expired gases were collected continuously using indi-
rect calorimetry (TrueOne 2400, ParvoMedics, UT, USA). 
Once the respiratory exchange ratio exceeded 1.0 and clear 
signs of increased V̇E.V̇  O2

−1 emerged, power output was 
increased by 35 W every minute until task failure. The V̇
O2peak was identified as the highest 15-s average V̇O2, and 
 VT1 was identified as the V̇O2 at which a systematic rise 
in V̇E

.V̇O2
−1 occurred. This V̇O2 was converted to a power 

output by linear fit of the power output vs. V̇O2 relationship, 
using the last minute of V̇O2 data from each 3-min stage.

Prolonged trial

Participants arrived for the prolonged trial after a 10-h over-
night fast, having refrained from vigorous exercise for 24 h, 
and having ingested ~ 1 L of plain water ~ 2 h beforehand. 
Following measurement of body mass, the experimental 
trial commenced on the same electromagnetically-braked 
ergometer as the initial assessment with a 5-min warm-up at 
100 W, followed by a five-stage incremental assessment to 
determine the power output and heart rate at the moderate-
to-heavy intensity transition (PRE). The incremental test 
began with 4-min at 50 W below the previously estimated 
 VT1 power output, and power output increased by 25 W 
per increment. Expired gases were measured continuously 
during the incremental test (TrueOne 2400, ParvoMedics, 
UT, USA; Tickr, Wahoo Fitness, Atlanta, USA). Participants 
then cycled for 5 min at 100 W, and then at 90% of the pre-
viously estimated power output at  VT1 for 2 h. Participants 
consumed plain water ad libitum. Following the two-hour 
constant work-rate phase, participants again cycled for 5 min 
at 100 W before repeating the five-step incremental exercise 
assessment (POST).

The moderate-to-heavy intensity transitions in PRE and 
POST were estimated using the  VT1 method in accordance 
with the procedures described above for the initial assess-
ment. The V̇O2 at  VT1 was converted to a power output by 
linear fit of the power output vs. V̇O2 relationship, using the 
last minute of V̇O2 data from each of the five 4-min stages. 
The  VT1 was then matched to a corresponding V̇E ,  FR, and 
 VT value by linear fit of the relationship between these varia-
bles and power output using the last minute of data from each 
stage. The linear fit of individual V̇E  (R2 = 0.977 ± 0.015), 
 FR  (R2 = 0.927 ± 0.061), and  VT  (R2 = 0.829 ± 0.278) against 
power output curves were strong.

The validity of our  VT1 data for estimating the moderate-
to-heavy intensity transition is supported by its alignment with 
the blood lactate-derived LoglogLT estimate (within-subject 
coefficient or variation, ~ 6.9%) and lack of significant differ-
ence between  VT1 and LoglogLT (P = 0.18), as reported in 
our previous publication related to this data collection (Ste-
venson et al. 2022). Specifically, we collected capillary blood 
lactate samples in the last 30-s of each stage, and the blood 

lactate concentration vs. power output relationship was used 
to quantify LoglogLT. The LoglogLT method models a blood 
lactate concentration vs. power output curve using two seg-
ments, and the intersection point of the two lines with the low-
est residuals sum of squares is taken as the moderate-to-heavy 
intensity transition (Jamnick et al. 2018). Whilst no accepted 
gold-standard estimate of the moderate-to-heavy intensity tran-
sition exists, the alignment of these two separate estimates 
supports their validity.

Statistical analysis

Data are presented as mean ± standard deviation (SD), unless 
otherwise stated. Normality of data distributions were assessed 
using the Shapiro–Wilk test. The effect of prolonged exer-
cise on  VT1, expressed as power output (previously reported 
(Stevenson et al. 2022)), V̇E ,  FR, and  VT, was assessed using 
paired t-tests (or non-parametric equivalents). These analy-
ses were performed in GraphPad Prism Version 9.3.1. The 
consistency of values between PRE and POST was assessed 
using within-subject coefficient of variation (CV) statistics 
calculated using the within-standard deviation method and 
Pearsons’s product-moment correlations, both expressed with 
95% confidence intervals. These analyses were performed in 
R (version 4.4.0) with RStudio (version 1.1463). Significance 
was inferred when P ≤ 0.05.

Results

Power output at  VT1 significantly decreased from PRE 
to POST (217 ± 42 W vs. 196 ± 42 W, ∆ − 21 ± 12 W, ∆ 
− 10 ± 6%, P < 0.001) (Stevenson et al. 2022). During the 
moderate-intensity, constant-work rate phase between PRE and 
POST, V̇E (P = 0.065),  FR (P = 0.068), and  VT (P = 0.266) did 
not significantly change with time (Fig. 1). The V̇E at  VT1 was 
unchanged from PRE to POST (72 ± 12 vs. 69 ± 13  L.min−1, 
∆ − 3 ± 5  L.min−1, ∆ − 4 ± 8%, P = 0.075, Fig. 2a), whereas 
 FR at  VT1 increased (27.6 ± 5.8 vs. 31.9 ± 6.5  breaths.min−1, 
∆ 4.3 ± 3.1  breaths.min−1, ∆ 16 ± 11%, P < 0.001, Fig. 2b) 
and  VT decreased (2.62 ± 0.43 vs. 2.19 ± 0.36  L.breath−1, ∆ 
− 0.44 ± 0.22  L.breath−1, ∆ − 16 ± 7%, P < 0.001, Fig. 2c) 
from PRE to POST. The within-subject CV for V̇E at  VT1 
between PRE and POST was 5.4% (3.7, 8.0%), and the PRE 
and POST values were strongly associated (r = 0.928 [0.782, 
0.977], P < 0.001) (Fig. 3). Data from a representative partici-
pant is shown in Fig. 4.

Discussion

The aim of the present investigation was to assess the effect 
of prolonged exercise on the V̇E , and its underlying param-
eters  FR and  VT, associated with the moderate-to-heavy 
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intensity transition. Our primary observations were, con-
comitant with a reduction in the power output associated 
with the moderate-to-heavy intensity transition: (i) the V̇E 
associated with the transition was unchanged, whilst (ii) 
the associated  FR increased and (iii)  VT decreased. These 
data suggest that real-time monitoring of V̇E may be a use-
ful means of assessing proximity to the moderate-to-heavy 
intensity transition during prolonged exercise.

We previously observed that the heart rate associated with 
the moderate-to-heavy intensity transition increased follow-
ing prolonged cycling (Stevenson et al. 2022). These data 
indicated that heart rate thresholds, measured in traditional, 
well-rested athlete physiological profiling assessments, may 
not readily translate to prolonged exercise. Specifically, 
adherence to heart rate zones derived from well-rested ath-
lete physiological profiling assessments may risk undertrain-
ing an athlete during prolonged exercise as the heart rate 
associated with the intensity transition drifts upwards over 

Fig. 1  a Rate of ventilation ( V̇
E
 ), b frequency of respiration  (FR), and c tidal volume  (VT) during constant-work rate cycling between PRE and 

POST

Fig. 2  a Rate of ventilation ( V̇
E
 ), b frequency of respiration  (FR), and (c) tidal volume  (VT) at the first ventilatory threshold  (VT1) before (PRE) 

and after (POST) prolonged cycling. *** denotes P ≤ 0.001
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time. Here we present evidence that V̇E may be an alternative 
physiological metric that can be used to provide information 
regarding the proximity to the moderate-to-heavy intensity 
transition during exercise, as the V̇E associated with the tran-
sition was unchanged following prolonged cycling. Whilst 
not statistically significant (P = 0.075), our data does show 
a numeric decrease in the V̇E associated with  VT1 from PRE 
to POST (Fig. 2a). However, even if this effect was statisti-
cally significant, we consider this numeric reduction to be 
practically insignificant in terms of magnitude (∆ − 4 ± 8%), 
given the reported day-to-day variation associated with gas 
exchange-derived estimates of V̇E (~ 4–7%) (Carter and Jeu-
kendrup 2002). Therefore, estimates of the V̇E associated 
with the moderate-to-heavy intensity transition during tra-
ditional physiological profiling assessments may translate 
effectively to prolonged exercise, and therefore to within-
session intensity regulation and calculation of training inten-
sity distribution. That is, if an athlete’s moderate-to-heavy 
intensity transition power output in a well-rested physiologi-
cal assessment is determined as 215 W with a concomitant 
V̇E of 70  L.min−1, our data suggests their moderate-to-heavy 
intensity transition power output after prolonged exercise 
may fall, but the V̇E at the moderate-to-heavy transition 
would remain constant at 70  L.min−1. Therefore, if this ath-
lete intends to undertake a prolonged training session in the 
moderate domain, they could guide their effort according 
to keeping V̇E below 70  L.min−1, although the values used 
in practice should acknowledge the day-to-day variation in 
exercise V̇E.

Our observation that V̇E is tightly linked with physiologi-
cally-based intensity domain transitions is highly-plausible, 
given the physiological stresses associated with increased 
exercise intensity regulate V̇E (Tipton et al. 2017; Nicolò 
et al. 2020). For example, transition from the moderate to 
heavy intensity domain sees perturbations in muscle meta-
bolic homeostasis, including increased lactate and  H+ accu-
mulation and depletion of PCr stores (Black et al. 2017). 
Disturbed muscle metabolic homeostasis drives hyperpnoea 
via stimulation of muscle metaboreceptors (Piepoli et al. 
1995; Stickland et al. 2013). The increased  FR and decreased 
 VT used to produce the constant rate of V̇E at the moderate-
to-heavy intensity transition in POST vs. PRE might reflect 
fatigue in the respiratory musculature, and therefore a shift 
in the most efficient ventilatory pattern to produce a given 
rate of V̇E , following prolonged exercise. This would align 
with the so-called ‘principle of minimal effort’ (Otis et al. 
1950; Mead 1960), but requires examination in specific work 
to be confirmed.

The translation of these data to practical settings 
requires wearable technology that can accurately and reli-
ably measure ventilatory parameters during training. Sev-
eral technologies exist that allow for accurate estimation 
of  FR in real-time during exercise (Nicolò et al. 2017b), 
including through sensors embedded in straps or clothes 
sensitive to thoracic or abdominal strain (Hailstone and 
Kilding 2011; Kim et al. 2013; Liu et al. 2013; Villar et al. 
2015), or ventilation-induced changes in the electrocardio-
gram or photoplethysmography signals (Bailón et al. 2006; 
Meredith et al. 2012; Schumann et al. 2016). Respiratory-
inductive plethysmography has been used to estimate  FR, 

Fig. 4  Data from a representative participant. Estimates of the rate 
of oxygen consumption ( V̇O2) at the first ventilatory threshold  (VT1) 
are shown for PRE and POST, as are the linear fittings of the rate of 

ventilation ( V̇
E
 ), frequency of respiration  (FR), and tidal volume  (VT) 

against power output
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 VT and V̇E , with some success (Clarenbach et al. 2005; 
Witt et al. 2006). Therefore, development of technologies 
that can be used by endurance athletes to estimate real-
time V̇E during exercise, with data integrated onto bicycle 
computers and/or smart watches such that it can be viewed 
in real-time, may allow for improved within-session inten-
sity regulation when coupled with quantification of the V̇E 
associated with the moderate-to-heavy intensity transition 
during routine physiological profiling assessments. How-
ever, as indicated above, intensity-related decisions using 
measurements of V̇E in practice would need to acknowl-
edge the day-to-day variation in exercise V̇E measured 
using said device.

Additionally, translation of these data to applied set-
tings requires further research to address the limitations 
of our study. For example, our observations are specific to 
our exercise protocol; that is, a submaximal incremental 
test followed by two hours of initially moderate-intensity 
exercise. It is possible that the main effects observed here 
do not translate to intermittent or higher-intensity exercise 
protocols, or longer exercise durations. Similarly, our data 
were collected during exercise in a fasted state without 
feeding during exercise, and (primarily) in male athletes. 
Thus, further research is warranted to determine if V̇E at 
the moderate-to-heavy intensity transition remains con-
stant over time during prolonged exercise across a broader 
range of ecologically-valid exercise scenarios.

In summary, the data presented here indicate that real-
time monitoring of V̇E during prolonged exercise might 
provide a useful means of assessing proximity to the 
moderate-to-heavy intensity transition. This would require 
prior assessment of the V̇E associated with the moderate-
to-heavy intensity transition during routine physiological 
profiling assessments, and technologies that allow accu-
rate, real-time monitoring of V̇E during exercise.
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